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THE METHOD OF FUNDAMENTAL SOLUTIONS FOR BRINKMAN FLOWS.

PART II. INTERIOR DOMAINS

ANDREAS KARAGEORGHIS, DANIEL LESNIC, AND LIVIU MARIN

Abstract. In part I, we considered the application of the method of fundamental solutions (MFS)
for solving numerically the Brinkman fluid flow in the unbounded porous medium outside obstacles
of known or unknown shapes. In this companion paper we consider the corresponding interior
problem for the Brinkman flow in a bounded porous medium which contains an unknown rigid
inclusion D ⊂ Ω. The inclusion D is to be identified by a pair of Cauchy data represented
by the fluid velocity and traction on the boundary ∂Ω. The fluid velocity and pressure of the
incompressible viscous flow in the porous medium Ω\D are approximated by linear combinations
of fundamentals solutions for the Brinkman system with sources (singularities) placed outside the
closure of the solution domain, i.e. in D∪

(

R
2\Ω

)

, assuming, for simplicity, that we analyse planar
domains. By further assuming that the unknown obstacle D is star–shaped (with respect to the
origin), the inverse problem recasts as the minimization of the nonlinear Tikhonov’s regularization
functional with respect to the MFS expansion coefficients and the discretised polar radii defining
D. This minimization subject to simple bounds on the variables is solved numerically using the
MATLAB c⃝ optimization toolbox routine lsqnonlin.

1. Introduction

The study of viscous fluid flows through porous media is of considerable interest in fields such
as petroleum engineering [26] and biological flows [25]. For such systems, the Stokes equations
and Darcy’s law apply at micro– and macro–levels, respectively, whilst a simple interpolation in
between them yields Brinkman’s equations, see [10],

∆u−
1

µ
∇p − κ2u = 0 , (1.1)

where u and p are the fluid velocity and pressure, respectively, µ is the dynamic viscosity of the
fluid, and κ2 > 0 is the resistivity (the reciprocal of permeability) of the porous medium to the
flow. For low κ we approach the slow viscous Stokes flow regime, while for large κ we are in the
usual Darcy porous medium approximation. In some fluid mechanics applications, the Brinkman
equation is an appropriate model for the viscous fluid flow through a cloud of spherical particles
[33], random arrays of spheres [27], or small fixed rigid objects [13].
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In the companion paper (Part I), see [17], the method of fundamentals solutions (MFS) [18]
with Tikhonov’s regularization was developed for solving both direct and inverse problems for the
Brinkman flow in the porous medium exterior to an obstacle of known or unknown shape. In the
exterior inverse problem which was concerned with the identification of the obstacle, the extra data
was the fluid velocity specification/measurement on a curve surrounding the obstacle. In contrast
to the exterior inverse problem in an unbounded domain investigated in Part I, the current study
deals with the interior obstacle case in a bounded domain in which the Brinkman equation (1.1)
and the continuity equation ∇·u = 0 of an incompressible fluid hold in the annular porous medium
domain Ω\D formed in between the unknown obstacle (rigid inclusion), on whose boundary ∂D the
no–slip fluid velocity condition u = 0 holds, and the exterior known boundary ∂Ω on which both
the fluid velocity and traction are specified. Such obstacle identification problems concerning the
detection of unknown flaws, faults of defects concealed in a given container using non-destructive
testing and solved using the MFS occur not only in porous media but also in electrostatics [7],
elasticity [19], thermo-elasticity [22], heat transfer [6] and acoustics [14].
Prior to this work, the centre of mass of D has been reconstructed by means of point sources, disks
of fixed size or direct localization of small obstacles, [29]. In the present paper, we investigate
the full reconstruction (in terms of size and shape determination) of the obstacle D, assumed
star–shaped, by the MFS employed iteratively in the minimization of the nonlinear Tikhonov’s
regularization functional. In addition, partial boundary data is also considered. A similar method
has recently been developed by the authors for the identification of a rigid obstacle immersed in
a stationary Oseen fluid flow from boundary measurements, [16].

2. Mathematical formulation

For simplicity, we consider the two–dimensional formulation and analysis of the problem, with the
mention that all the development in terms of theory and MFS numerics [21, 23] also holds in three
dimensions.
Let Ω ⊂ R

2 be a bounded planar simply–connected domain containing an obstacle D ⊂ Ω such
that Ω\D is connected. Note that D may actually be formed from the union of several disjoined
components, [32, 1, 20]. We assume that the boundaries ∂Ω and ∂D are sufficiently smooth, e.g.
of class C1. The annular domain Ω\D is a porous medium through which an incompressible fluid
flows so that the Brinkman equation (1.1) holds there, along with the continuity equation

∇ · u = 0 in Ω\D (where D denotes the closure of D). (2.1)

The inverse formulation that we are investigating is schematically illustrated in Figure 1. As
far as the physical problem is concerned, we model a scenario where an unknown defect, flaw
or fault (modelled as a rigid inclusion D) contained in the porous medium Ω is to be detected
from Cauchy data fluid (velocity, traction) measurements (2.3) and (2.4) at the boundary of the
porous medium container. Similar formulations have previously been considered in the context
of stationary Stokes flow of slow incompressible fluids, [2, 3, 8], the Oseen flow, [16], or the full
Navier–Stokes equations, [4, 9].
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Figure 1. Schematics of the inverse problem under investigation

As illustrated in Figure 1, the boundary conditions associated to the partial differential equations
(1.1) and (2.1) are:

u = 0 on ∂D, (2.2)

u = f on ∂Ω, (2.3)

t = g on Γ, (2.4)

where Γ is a non–empty open portion of ∂Ω (in many cases Γ = ∂Ω), f is a prescribed boundary
fluid velocity satisfying

∫

∂Ω

f · n dS = 0, (2.5)

where n is the outward unit normal to the boundary ∂Ω and g is a prescribed traction (stress
force), where

t =
(

−p I+ µ
(

∇u+ (∇u)T
))

n (2.6)

and I is the identity tensor. Even more ill–posed formulations consisting of supplying the boundary
fluid velocity data (2.3) on Γ instead of the full data over the whole boundary ∂Ω can also be
considered. Assuming that f ̸≡ 0, the uniqueness of solution of inverse problem (1.1), (2.1)–
(2.4) follows from Holmgren’s analytic unique continuation property for the Brinkman (Stokes
resolvent) equations [29].
Condition (2.2) represents the usual no-slip condition on a fixed rigid wall that is associated
with viscous flow. The inhomogeneous velocity boundary condition (2.3) on ∂Ω may model a
rotating wall condition in case the outer infinitely long cylinder of cross section Ω is rotating.



4 ANDREAS KARAGEORGHIS, DANIEL LESNIC, AND LIVIU MARIN

Another possibility for the inhomogeneous condition (2.3) is to represent an internal fluid velocity
measurement in the exterior domain R

2\D, as previously considered in Part I [17].

3. The method of fundamental solutions (MFS)

The MFS for direct problems of interior Brinkman flows in simply–connected domains was de-
veloped in [28, 34]. In this section, we describe the MFS implementation for approximating the
velocity u and pressure p satisfying the Brinkman system (1.1) and (2.1) in the multiply–connected
domain Ω\D along with the boundary conditions (2.2)–(2.4). We approximate the fluid velocity
u = (u1, u2) and pressure p by (note that Ω denotes the closure of Ω)

ui(x) =
M+N
∑

j=1

(

αjGi1(x, ξj) + βjGi2(x, ξj)
)

, i = 1, 2, x ∈ Ω\D, (3.1)

p(x) =
M+N
∑

j=1

(

αjP1(x, ξj) + βjP2(x, ξj)
)

, x ∈ Ω\D, (3.2)

where
(

ξj
)

j=1,M+N
are sources located outside the solution domain Ω\D and (Gij)i,j=1,2 and

(Pi)i=1,2 represent the fundamental solution of the two–dimensional Brinkman and continuity

equations (1.1) and (2.2) given by, see e.g. [31],

Gik(x,x
′) =

1

2πµκ2r2
[(

−1 + κrK1(κr) + κ2r2K0(κr)
)

δik

+
(xi − x′

i)(xk − x′
k)

r2
(

2− κ2r2K2(κr)
)

]

, i, k = 1, 2, (3.3)

Pk(x,x
′) =

xk − x′
k

2πr2
, k = 1, 2, (3.4)

where x = (x1, x2), x
′ = (x′

1, x
′
2), r = |x−x′|, (δik)i,k=1,2 is the Kronecker delta tensor, and Kn is

the modified Bessel function of the second kind of order n. (Note that throughout the paper, the
notation j = 1,M +N denotes j = 1, 2, . . . ,M +N.)
Assuming that, for simplicity, Ω is a disk of radius R > 0 centred at the origin and containing the
unknown obstacle D (assumed to be star–shaped with respect to the origin) parametrised by

∂D = {r(ϑ) (cosϑ, sinϑ) |ϑ ∈ [0, 2π)} , where 0 < r(ϑ) < R, (3.5)

the MFS source points
(

ξj
)

j=1,M+N
in expressions (3.1) and (3.2) are taken as

ξj = ηext R (cosϑj, sinϑj) , ϑj =
2π(j − 1)

M
, j = 1,M, (3.6)

ξM+j = ηint rj

(

cos ϑ̃j, sin ϑ̃j

)

, ϑ̃j =
2π(j − 1)

N
, j = 1, N, (3.7)

where rj = r(ϑ̃j) for j = 1, N , and ηext > 1 and ηint ∈ (0, 1) are dilation and contraction constants
which signify that the source points ξj ∈ R

2\Ω for j = 1,M and ξM+j ∈ D for j = 1, N . For
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expressing the stress force (2.6) on Γ ⊂ Ω, we need the normal n = (n1, n2) = (cosϑ, sinϑ) and the
tensor gradient ∇u, which based on (3.1) and (3.2) yield the MFS approximations for t = (t1, t2)
given by

ti(x) =
M+N
∑

j=1

(

αjDi1(x, ξj) + βjDi2(x, ξj)
)

, i = 1, 2, x ∈ Γ, (3.8)

where

D11 = −P1 n1 + 2
∂G11

∂x1

n1 +

(

∂G21

∂x1

+
∂G11

∂x2

)

n2,

D12 = −P2 n1 + 2
∂G12

∂x1

n1 +

(

∂G22

∂x1

+
∂G12

∂x2

)

n2,

D21 = −P1 n2 +

(

∂G11

∂x2

+
∂G21

∂x1

)

n1 + 2
∂G21

∂x2

n2,

D22 = −P2 n2 +

(

∂G12

∂x2

+
∂G22

∂x1

)

n1 + 2
∂G22

∂x2

n2,

and the expressions for the partial derivatives

(

∂Gij

∂xk

)

i,j,k=1,2

are provided in the Appendix.

To apply the boundary conditions (2.2)–(2.4), we select the boundary collocation points

xj = R (cosϑj, sinϑj) , j = 1,M, on ∂Ω, (3.9)

and

xM+j = rj

(

cos ϑ̃j, sin ϑ̃j

)

, j = 1, N, on ∂D. (3.10)

We also assume, without loss of generality, that Γ contains the first M1 boundary collocation
points (xj)j=1,M1

, where 0 < M1 ≤ M .

Then, the solution of inverse problem (1.1)–(2.4) is sought as a minimizer of the nonlinear
Tikhonov–type regularization functional

F(α,β, r, ηint, ηext) := ||u||2L2(∂D) + ||u− f ||2L2(∂Ω) + ||t− gε||2L2(Γ) +R(α,β, r;µ1, µ2), (3.11)

where α = (αj)j=1,M+N
, β = (βj)j=1,M+N

, noise is introduced in (2.4) as

gε = g + ε, (3.12)

where ε represents the noise, and R is the regularization term given by

R(α,β, r;µ1, µ2) = µ1

(

|α|2 + |β|2
)

+ µ2 ||r
′||2L2(∂D), (3.13)

where µ1 and µ2 are positive regularization parameters, which can be prescribed either by trial
and error or by using some criterion such as the L-surface method, see [5, 12], or the L–curve
method [11, 6] if we take µ1 = µ2 = µ, or µ1 = 0 and vary µ2, or µ2 = 0 and vary µ1, see [16].
On discretizing the norms in (3.11) and (3.13), and using the MFS approximations (3.1) and (3.2),
we obtain

F(α,β, r, ηint, ηext) = T0 + Tf + Tgε +R, (3.14)
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where r = (rℓ)ℓ=1,N ,

R(α,β, r;µ1, µ2) = µ1

(

|α|2 + |β|2
)

+ µ2

N
∑

j=2

(rj − rj−1)
2 , (3.15)

T0(α,β, r, ηint, ηext) =
2

∑

i=1

N
∑

k=1

[

M+N
∑

j=1

(

αjGi1(xM+k, ξj) + βjGi2(xM+k, ξj)
)

]2

(3.16)

Tf (α,β, r, ηint, ηext) =
2

∑

i=1

M
∑

k=1

[

M+N
∑

j=1

(

αjGi1(xk, ξj) + βjGi2(xk, ξj)
)

− fi(xk)

]2

, (3.17)

and

Tgε(α,β, r, ηint, ηext) =
2

∑

i=1

M1
∑

k=1

[

M+N
∑

j=1

(

αjDi1(xk, ξj) + βjDi2(xk, ξj)
)

− gεi (xk)

]2

, (3.18)

The regularization term (3.13) (or its discretized version (3.15)) is included in order to stabilize
the MFS coefficients α and β and impose a H1−smoothness constraint on the boundary of the
obstacle D parameterized through the polar radius r(ϑ), as in (3.5), see also the analysis [14] for
inverse obstacle acoustic scattering. If we know a priori that the sought obstacle is less smooth
(possibly having corners) then an L1-regularization term ∥r∥L1(∂D) would be more appropriate in
(3.13) instead of the L2-regularization term ∥r′∥2

L2(∂D).

The minimization of functional (3.14) is based on the trust reflection algorithm implemented in the
MATLAB c⃝ optimization toolbox routine lsqnonlin [30]. This is a versatile routine which does
not require the gradient of the objective functional to be supplied by the user and, in addition,
allows for simple physical bounds on the variables to be prescribed. In our case, the lower and
upper bounds are prescribed as

−105 ≤ αj ≤ 105, −105 ≤ βj ≤ 105, j = 1,M +N,

0 < rmin ≤ rℓ ≤ rmax < R, ℓ = 1, N,

and

0.1 ≤ ηint ≤ 0.99, 1.1 ≤ ηext ≤ 2,

where rmin and rmax are lower and upper bounds on the size of the obstacle D compactly contained
in Ω (assumed to be the disk of radius R centred at the origin).
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4. Numerical examples

We take Ω to be the disk of radius R = 2.5 centred at the origin and, in general, we consider the
case of full traction data (2.4) being supplied, i.e. Γ = ∂Ω.
However, limited aperture data (2.4) supplied over an arc Γ ⊂ ∂Ω = ∂B(0;R) will also be
considered in Example 1 below. For the Brinkman flow we took the parameters µ = 1 and κ = 1.
Numerical experiments carried out in Part I [17] in the case of exterior Brinkman flows revealed
that there is no significant change in accuracy of the numerical results when the parameters R, µ
and κ are varied.
For the arbitrary star–shaped obstacle (3.5) the additional traction (stress force) data (2.4) is
numerically simulated by first solving the direct problem (1.1)–(2.3) with known D using the
MFS (with different numbers of degrees of freedom M and N than those employed in the inverse
problem to avoid committing an inverse crime).
For the specified fluid velocity (2.3) on ∂Ω we take, see [2],

u(x1, x2) = f(x1, x2) = (−x2, x1), (x1, x2) ∈ ∂Ω, (4.1)

which satisfies the compatibility condition (2.5).
As in (3.12), the stress force data g is perturbed by noise (multiplicative) as

gε(xk) = (1 + χkp) g(xk), k = 1,M1, (4.2)

where (χk)k=1,M1
are pseudo–random numbers generated from a uniform distribution in [-1, 1] and

p represents the percentage of noise.
In the minimization of (3.14), we impose, in a least–squares sense, a total of 2(M + M1) +
2N equations (2N for boundary condition (2.2), 2M for boundary condition (2.3) and 2M1 for
boundary condition (2.4)) in 2(M+N)+N+2 unknowns (α,β, r; ηint, ηext) and we therefore need
to take M1 ≥ 1 +N/2.
In all the numerical examples considered for the inverse problem we took N = 20,M = 51, M1 =
M× length(Γ)/length(∂Ω), and the initial guesses α0 = β0 = 0, η0

int
= 2/3 and η0

ext
= 3/2. Except

for the limited aperture case illustrated at the end of Section 4.1, in all numerical simulations
we consider only the case of fully specified stress force data (2.4) over the whole of the boundary
∂Ω(= Γ).

4.1. Example 1: Circular obstacle. The obstacle D to be reconstructed is a disk of radius

r(ϑ) = 1, ϑ ∈ [0, 2π). (4.3)

To generate the input stress force data (2.4), the direct problem was solved using the MFS with
M = 60, N = 30, ηint = 3/4, ηext = 5/3 (noting that the accuracy of the numerical results was not
significantly affected by any other reasonable choice of ηint ∈ (0, 1) neither too small nor too close
to unity and ηext ∈ (1,∞) neither too close to unity nor too large).
In the inverse problem we took rmin = 0.5, rmax = 1.5 and the initial guess for the polar radius
r
0 = 0.7. For no noise, i.e. p = 0, Figure 2(a) shows the convergence of the numerical reconstruc-

tions (obtained by minimizing the unregularized functional (3.14) with µ1 = µ2 = 0) toward the
analytical solution (4.3), as the number of iterations niter increases.
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Table 1. Example 1: Maximum absolute errors obtained in the reconstructions
presented in Figure 2.

e e e e
Figure 2(a) 0.300 0.0195 0.0115 0.0082
Figure 2(b) 0.4758 0.1600 0.0871 0.0531
Figure 2(c) 0.4758 0.3413 0.2192 0.0405

Next, the exact data for g is perturbed as in (4.2) using p = 5% noise. The numerical results
obtained with various values of the regularization parameters µ1 and µ2 after niter =1000 are
illustrated in Figures 2(b) and 2(c). From these figures it can be seen that stable and accurate
reconstruction are obtained for suitable choices of the regularization parameters µ1 or µ2. One
can also consider distinct positive regularization parameters 0 < µ1 ̸= µ2 > 0, but their choice
based on the L-surface criterion [5, 12] becomes more tedious.
In order to better quantify the actual error in the reconstructions presented in Figure 2, we also
calculated the maximum absolute error in these from

e = max
ℓ=1,N

|rℓ − 1|,

and in Table 1 we present the values of e for each of the cases depicted in the figure.

Next we investigate the limited aperture case when the extra traction data (2.4) is only partially
supplied on an arc Γ ⊂ ∂B(0;R) = ∂Ω of length 2/3 or 1/3 of the full circumference of the circle
∂B(0;R).
For p = 5% noise, the numerical reconstructions when Γ is 2/3 and 1/3 of the exterior circle are
presented in Figures 3 and 4, respectively. Although the uniqueness of solution still holds due to
the unique continuation principle, we expect the stability and accuracy of the reconstructions to
deteriorate as the length of Γ decreases, as less quantitative information is supplied. Consequently,
compared to the case of full data (2.4) and Γ = ∂B(0;R) = ∂Ω, illustrated in Figure 2, in the
limited aperture case illustrated in Figure 3 for Γ being 2/3 of the exterior circle and Figure
4 for Γ being 1/3 of the exterior circle, the results become more sensitive to the choice of the
regularization parameter µ1 or µ2 but stable and accurate reconstructions can still be observed.

4.2. Example 2: Peanut-shaped obstacle. In this example, we consider reconstructing a more
irregular shape than that of the previous example, given by a peanut–shaped obstacle with the
parametrisation (3.5) and [15],

r(ϑ) =
1

2

√

1 + 3 cos2(ϑ), ϑ ∈ [0, 2π). (4.4)

The direct problem was solved with M = 60, N = 30, ηint = 0.825 and ηext = 5/3. In the inverse
problem (1.1)–(2.4), we took rmin = 0.1, rmax = 1.5 and the initial guess for the polar radius
r
0 = 1. The inputs (4.1) and (4.2) as well as the remaining computational details are the same as
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Figure 2. Example 1: Reconstructions after niter = 1000 iterations for p = 5%
noise, (a) with no noise and no regularization, (b) for various values of µ1 and µ2 = 0
and (c) for various values of µ2 and µ1 = 0.

niter=1 niter=2 niter=5 niter=10

(a)

1=0 1=10-7
1=10-6

1=10-5

(b)

2=0 2=10-3
2=10-2

2=10-1

(c)
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Figure 3. Example 1, aperture case, Γ is 2/3 of the exterior circle: Reconstructions
with p = 5% noise and niter = 1000: (a) for various values of µ1 and µ2 = 0, and
(b) for various values of µ2 and µ1 = 0.

1=0 1=10-6
1=10-5

1=10-4

(a)

2=0 2=10-4
2=10-3

2=10-2

(b)

those in the previous example. Figure 5 represents the same quantities as Figure 2 and the same
performant reconstructions in terms of accuracy and stability can be observed.

5. Conclusions

In this paper, the reconstruction of rigid obstacles immersed in a porous medium through which a
Brinkman fluid is flowing has been investigated using boundary fluid velocity and stress force mea-
surements on the exterior fixed boundary. The approximations for the fluid velocity and pressure
are based on the MFS linear combinations (3.1) and (3.2) of non–singular fundamental solutions
of the Brinkman equations. Further, assuming that the unknown obstacle is star–shaped, the in-
verse problem has been reduced to a nonlinear minimization problem with respect to the unknown
MFS coefficients along with the polar radii parameterising the obstacle. Regularization terms are
further added in order to stabilize the solution. The numerical implementation is realized using
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Figure 4. Example 1, aperture case, Γ is 1/3 of the exterior circle: Reconstructions
with p = 5% noise and niter = 1000: (a) for various values of µ1 and µ2 = 0, and
(b) for various values of µ2 and µ1 = 0.

1=0 1=10-6
1=2  10-6

1=10-5

(a)

2=0 2=10-3
2=10-2

2=10-1

(b)

the MATLAB c⃝ optimization toolbox routine lsqnonlin. Numerical results have been presented
and discussed highlighting the stability and accuracy of the proposed numerical technique. Exten-
sions to the reconstructions of multiple obstacles [20], as well as to three-dimensional Brinkman
flows are possible by changing the two-dimensional fundamental solutions (3.3) and (3.4) to their
corresponding three-dimensional expressions [34], and using spherical [21, 23] instead of polar
coordinates throughout the analysis.
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Figure 5. Example 2: Reconstructions (a) with no noise and no regularization,
(b) for various values of µ1 and µ2 = 0, for p = 5% noise and niter = 1000, and
(c) for various values of µ2 and µ1 = 0, for p = 5% noise and niter = 1000.

niter=1 niter=10 niter=100 niter=1000

(a)

1=0 1= 5  10-6
1=10-5

1=10-4

(b)

2=0 2= 8  10-3
2= 5  10-2

2=10-1

(c)
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Appendix

In this appendix we provide the expressions for the partial derivatives

(

∂Gij

∂xk

)

i,j,k=1,2

needed for

calculating the matrix (Dij)i,j=1,2 appearing in the stress force MFS approximation (3.8). First,
using the identity

2K1(z)

z
= K2(z)−K0(z), z ̸= 0,

we can rewrite (3.3) in the equivalent form, see [24],

Gik(x,x
′) =

1

2πµ

[(

−
1

κ2r2
+

K0(κr) +K2(κr)

2

)

δik

+
(xi − x′

i)(xk − x′
k)

r2

(

2

κ2r2
−K2(κr)

)]

, i, k = 1, 2. (A.1)

Using that

K ′
0(s) = −K1(s), K ′

2(s) = −
1

2
(K1(s) +K3(s)) , (A.2)

we obtain (checked using the symbolic computation package MAPLE
TM

)

∂G11

∂x1

=
1

2πµ

{

2(x1 − x′
1)

κ2r4
−

κ(x1 − x′
1) (3K1(κr) +K3(κr))

4r

+
(x1 − x′

1)
2

r2

[

−
4(x1 − x′

1)

κ2r4
+

κ(x1 − x′
1) (K1(κr) +K3(κr))

2r

]

+
2(x1 − x′

1)(x2 − x′
2)

2

r4

(

2

κ2r2
−K2(κr)

)}

,

∂G12

∂x1

=
∂G21

∂x1

=
1

2πµ

{

(x1 − x′
1)(x2 − x′

2)

r2

[

−
4(x1 − x′

1)

κ2r4
+

κ(x1 − x′
1) (K1(κr) +K3(κr))

2r

]

+
(x2 − x′

2) [(x2 − x′
2)

2 − (x1 − x′
1)

2]

r4

(

2

κ2r2
−K2(κr)

)}

,

∂G22

∂x1

=
1

2πµ

{

2(x1 − x′
1)

κ2r4
−

κ(x1 − x′
1) (3K1(κr) +K3(κr))

4r

+
(x2 − x′

2)
2

r2

[

−
4(x1 − x′

1)

κ2r4
+

κ(x1 − x′
1) (K1(κr) +K3(κr))

2r

]

−
2(x1 − x′

1)(x2 − x′
2)

2

r4

(

2

κ2r2
−K2(κr)

)}

,

∂G11

∂x2

=
1

2πµ

{

2(x2 − x′
2)

κ2r4
−

κ(x2 − x′
2) (3K1(κr) +K3(κr))

4r

+
(x1 − x′

1)
2

r2

[

−
4(x2 − x′

2)

κ2r4
+

κ(x2 − x′
2) (K1(κr) +K3(κr))

2r

]
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−
2(x1 − x′

1)
2(x2 − x′

2)

r4

(

2

κ2r2
−K2(κr)

)}

,

∂G12

∂x2

=
∂G21

∂x2

=
1

2πµ

{

(x1 − x′
1)(x2 − x′

2)

r2

[

−
4(x2 − x′

2)

κ2r4
+

κ(x2 − x′
2) (K1(κr) +K3(κr))

2r

]

+
(x1 − x′

1) [(x1 − x′
1)

2 − (x2 − x′
2)

2]

r4

(

2

κ2r2
−K2(κr)

)}

,

∂G22

∂x2

=
1

2πµ

{

2(x2 − x′
2)

κ2r4
−

κ(x2 − x′
2) (3K1(κr) +K3(κr))

4r

+
(x2 − x′

2)
2

r2

[

−
4(x2 − x′

2)

κ2r4
+

κ(x2 − x′
2) (K1(κr) +K3(κr))

2r

]

+
2(x1 − x′

1)
2(x2 − x′

2)

r4

(

2

κ2r2
−K2(κr)

)}

.
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