

This is a repository copy of *Effective pretreatment of lignocellulosic co-substrates using barley straw-adapted microbial consortia to enhanced biomethanation by anaerobic digestion.*

White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/168685/

Version: Accepted Version

Article:

Raut, M.P., Pandhal, J. orcid.org/0000-0002-0316-8031 and Wright, P.C. (2020) Effective pretreatment of lignocellulosic co-substrates using barley straw-adapted microbial consortia to enhanced biomethanation by anaerobic digestion. Bioresource Technology, 321. 124437. ISSN 0960-8524

https://doi.org/10.1016/j.biortech.2020.124437

Article available under the terms of the CC-BY-NC-ND licence (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can't change the article in any way or use it commercially. More information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Effective pretreatment of lignocellulosic co-substrates using barley straw-adapted microbial consortia to enhanced biomethanation by anaerobic digestion Mahendra P. Raut¹, Jagroop Pandhal¹, Phillip C. Wright^{2,*} ¹ The ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK ² School of Engineering, Faculty of Science, Agriculture & Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK *Corresponding author: Phillip C. Wright. Telephone: +441912087525 and E-mail address: phillip.wright@newcastle.ac.uk E. mail: Mahendra P. Raut – m.raut@sheffield.ac.uk; Jagroop Pandhal ; j.pandhal@sheffield.ac.uk; Phillip C. Wright - phillip.wright@newcastle.ac.uk

21 Abstract

Microbial pretreatments have been identified as a compatible and sustainable process with anaerobic digestion compared to energy-intensive physicochemical pretreatments. In this study, barley straw and hay co-substrate was pretreated with a microaerobic barley straw-adapted microbial (BSAM) consortium prior to anaerobic digestion. The improved digestibility was investigated through 16S rRNA gene sequencing, microbial counts and C:N ratios. BSAM pretreatment resulted in 15.2 L kg ⁻¹ TS of methane yield after 35 days, almost 40 times more than the control. The methane content in total biogas produced were 58% (v/v) and 10% (v/v) in BSAM and control, respectively. This research demonstrated that BSAM-based pretreatment significantly increased the digestibility and surface area of the lignocellulosic material and considerably enhanced biomethanation. This study generates new potential bio-research opportunities in the emerging field of lignocellulosic anaerobic digestionbiorefineries. Keywords: Barley straw, Natural hay, Microbial consortia pretreatment, Anaerobic digestion, 16s rRNA gene sequencing

1. Introduction

Recently, the detriment of fossil fuel use together with increasing global energy demand have spurred enhanced efforts for robust and affordable renewable energy alternatives. According to the International Energy Agency (EIA), this global energy demand will soon rise from 636 quadrillion Btu (British thermal units) (671 quadrillion kilojoule (kJ)) in 2020 to 911 quadrillion Btu (961 quadrillion kJ) by the year 2050 (EIA's International Energy Outlook, 2019). Lignocellulosic material plays a major role as a substantial constituent of global biomass and is therefore considered a low cost and very abundantly available feedstock. It offers great potential for the generation of renewable second-generation bioenergy products such as biomethane and liquid biofuels. Annually, about 181.5 billion tonnes of lignocellulosic biomass is produced worldwide (Kumar et al., 2008). The lignocellulose material comprises energy-rich polymers in the plant material, particularly cellulose (up to 55%) and hemicellulose (up to 35%) that intertwine with phenylpropane units of lignin (up to 40%). The structural properties and recalcitrant nature of these polymers limit the accessibility of microorganisms and enzymes, thereby limiting bioconversion of lignocellulosic polymers (Xu et al., 2019a). Although biomethane production through anaerobic digestion (AD) of lignocellulosic material has great potential, the efficiency of AD, and thus biogas production, is not always satisfactory due to the poor or incomplete digestion (hydrolysis) that often results in economic losses (Heyer et al., 2013) that make the process non-commercially viable. Process modeling identifies that improvements in accessibility and digestibility of lignocellulosic substrates rely on

67 effective pretreatment methods to assist in improved AD performance (Abraham et al.,

68 2020), with a key approach to increase the surface area of feedstocks for

69 microbial/enzymatic activity during the AD process.

Various pretreatment techniques have been investigated, including chemical, physical (mechanical) and biological pretreatment (microorganisms and enzymes), prior to the AD process. It has been shown in a number of reviews recently that these pre-treatments make a positive contribution towards improved biomethane production (Abraham et al., 2020; Wagner et al., 2018). However, the selection of a proper pretreatment method is crucial for commercially viable production of lignocellulosic-derived biomethane. For instance, most of pre-treatments are chemical and physically-based techniques that often require high cost and high energy input, thus may not be economically and environmentally friendly. Biological treatments, on the other hand, are relatively less explored, but are comparatively advantageous over the non-biological pre-treatments in many ways, such as it reduces the formation of inhibitory compounds, reduces the crystalline nature of cellulose and hemicellulose by increasing surface area, minimises energy input and potentially lowers the cost (Wagner et al., 2018). Thus, this approach is becoming an increasingly important topic of research as can be seen in Web of Science® where "anaerobic digestion", "biological pretreatment" and "lignocellulosic biomass" as topics, display an increase in the number of research articles during the year 2011-2020, from 35 to 140.

89 Biological pretreatment strategies utilize microorganisms or enzymes prior to 90 the lignocellulosic feedstock being subjected to an AD process, where enzymatic

pretreatment has been identified as a cost-effective route in bioprocess development. Several microbial pretreatment approaches involving single/ multi-organisms (microbial consortia) have reported the efficacy on biodegradability of lignocellulose and subsequent improvement AD processes (Abraham et al., 2020). Many researchers consider that microbial consortia are an effective microbial pretreatment approach over single-organism-based pre-treatments to improve biomass degradation performance. since the degradation of lignocellulose in natural habitats requires the interaction of multiple microorganisms. Using adapted or constructed microbial consortia is seen to be the most likely successful approach, as it can improve bio-methane potential (BMP) much better than any other tested treatment approach (Shrestha et al., 2017). However, to our knowledge, to date, there have been no reports on the production of biomethane from agriculture waste pretreated with a microaerobic barley straw-adapted microbial (BSAM), as we demonstrate here.

The objective of this present study was to develop an effective BSAM consortia-based pretreatment of barley straw and hay (BSH) as a co-substrate under microaerobic conditions and to demonstrate the effectiveness of this novel microbial pretreatment in a subsequent anaerobic digestion process. The characteristic changes during the BSAM pre-treatment process were measured. Here, we also carried out 16S rRNA gene sequencing analysis of pretreated samples to characterize changes in the microbial community and identify its potential functions related to lignocellulose degradation during pretreatment. Finally, the effectiveness of BSAM-based pretreatment on AD performance was estimated via biogas & biomethane production rates.

1	115	
345	116	2. Materials and Methods
6 7 8	117	
9	118	2.1. Raw material selection for pre-composting
.2	119	
.4 .5	120	We chose a mixture of natural barley straw (Hordeum vulgare) and natural
.7	121	meadow hay straw (hereafter referred to as BSH co-substrate) as the feedstock subjected
.9	122	to a pretreatment and subsequent AD process, since these agricultural materials are
22 23	123	easily available in the United Kingdom. Since hay contains a high nitrogen content, and
24	124	other essential nutrients (total digestible nutrients, crude protein, calcium, potassium
26 27 28	125	and phosphate etc.) versus mature barley straw, a proportion blended in a 2:1 ratio was
29 80	126	used in this study. The co-substrate was natural (without chemical pretreatment)
81 82	127	shredded to a particle size of 3-5 cm using scissors. The initial moisture content of the
34 35	128	BSH co-substrate was 10%, determined by standard gravimetric method. The
36 37	129	unsterilized BSH co-substrate corresponding to dry 100 g total solid (TS) was adjusted
20 39 10	130	to a 80% moisture content taken in a 2 L capacity conical flask.
12	131	
14 15	132	2.2. Enrichment of barley straw - adapted microbial consortia in a compost
16 17	133	habitat
19 19 50	134	
51 52	135	The compost containing BSAM consortia was collected from an optimally
53 54 55	136	selected location in its natural habitat (barley straw composting located at a farm in
6 57	137	Sheffield, U.K) was used as an inoculant to enriched BSAM consortia on BSH co-
58 59 50		
51 52		6
12		

138	substrate in the laboratory. The unsterilized BSH co-substrate corresponding to 100 g of
139	dry BSH co-substrate was adjusted to 80% moisture content and mixed with 25 g of the
140	wet compost containing BSAM consortia in the ratio of approx. 7:1. Urea (NH2CONH2)
141	was also added to the concentration required to adjust the C:N ratio to 40 in the initial
142	co-substrate. The mixture was incubated in a water bath at 25-27 °C for 35 days. To
143	stimulate facultative microbial growth and to increase hydrolysis, microaerobic
144	conditions were maintained using periodical aeration with an oxygen level between of
145	2-5 mg L ⁻¹ , measured using a portable dissolved oxygen meter (HQ30D HACH,
146	Manchester, UK). This pre-digested material was subsequently used as an inoculum in
147	pretreatment experiments as a BSAM consortia.
148	
149	2.3. Pretreatment with the BSAM consortia
150	
151	The purpose behind the pretreatment with BSAM was to achieve partial
152	hydrolysis to gain access to cellulose and hemicellulose and to increase the digestibility
153	of the lignocellulosic material for AD processes. Two pretreatment experiments were
154	set-up in duplicates; BSH only (hereafter denoted as control) and BSH + BSAM. The
155	unsterilized BSH co-substrate corresponding to 100 g of dry BSH co-substrate was
156	adjusted to 80% moisture content and was used in both pretreatment experiments. The
157	BSH + BSAM digesters were loaded at enriched BSAM (as mentioned in section 2.2) to
158	the BSH co-substrate ratio of 1:7. In a control pretreatment, 25 g of wet BSH co-
159	substrate was added instead of BSAM.
160	

1	161	All pretreatment experiments were started at the same time and continued for 40
34	162	days at 25-27 °C. It is noted that during pretreatment, the oxygen level in the pre-
567	163	digester was periodically maintained between 2-5 mg L ⁻¹ in every 2 days, as described
8	164	above. These selected microaerobic conditions in the compost have previously shown
10	165	an increase in abundance and diversity of facultative lignocellulolytic bacteria, with
13 14	166	accelerated solubilisation of lignocellulosic material (Shrestha et al., 2017). During
15 16	167	pretreatment, periodical sampling was carried out to assess microbial population, the
17 18 19	168	C:N ratio, and 16S rRNA gene sequencing to check the progress of pretreatment. The
20 21	169	significance between conditions was determined using two-tailed Student's t test at 95%
22 23	170	confidence.
24 25 26	171	
27 28	172	2.3.1. Changes in viable bacterial population during pretreatment
29 30 31	173	
32 33	174	Microbial population was estimated by counting colony forming units. Although
34 35 36	175	this is not the most accurate method of quantifying microbial abundance, it was deemed
37 38	176	appropriate here where we aimed to relatively compare the differences between the
39 40 41	177	treatment and control, and moreover, further microbial investigations were based on
42 43	178	molecular taxonomy. Briefly, plate counting was performed by a serial dilution
44 45 46	179	technique using R2A agar growth media as suggested elsewhere (Gibbs & Hayes,
47 48	180	1988). One gram (wet wt.) pretreated sample was dissolved in 4 mL sterilized saline
49 50	181	water (0.9%) (Gibbs & Hayes, 1988). This was mixed well and kept for 30 min with
51 52 53	182	constant shaking (70 rpm) at room temperature. The samples were diluted by serial
54 55	183	dilution (10^{-1} to 10^{-5} mL). A 100 µL of appropriate dilution were spread plated on R2A
56 57 58		
59 60		
61 62		8
63		

agar plates. Colonies were counted and populations were expressed in terms of cfu g⁻¹
 of dry compost.

187 2.3.2. Changes in C:N ratio during pretreatment

A one gram of pretreated samples were taken at 0 days (Initial) and 40 days (Final) of pretreatment. The samples were dried in the oven at 60 °C for 3 days. Samples were ground into the powder and dried again for 1 day at 60 °C in the oven. 10 mg of each dried samples were analysed by a Vario MICRO cube CHN/S analyser via the combustion method to obtain the carbon-to-nitrogen (C:N) ratio as described elsewhere (James et al., 2019). Briefly, 2 mg of the dried samples were accurately weighed out on a Mettler-Toledo MX5 5 decimal point microbalance and sealed with the tin capsule. The tin capsule was introduced to the combustion tube of the CHNS analyser via a stream of helium. Within the oxygen-rich environment of the combustion tube at a temperature in excess of 1000 °C, the samples completely combust into gaseous NOx, CO2, H2O, SO2. The resultant gases flow into the reduction tube packed with copper, where excess oxygen is removed and NOx is reduced to nitrogen. The gases are separated using a "Thermal Programmed Desorption" column and detected using a "Thermal Conductivity Detector", where the signal is integrated and the % of each element is calculated. Blanks & Daily Factors are used to ensure consistency between analysis runs and standards are run at regular intervals to confirm analyser function.

pretreated samples

23

 A total of 8 samples were selectively collected from control and BSH + BSAM pretreatment conditions at day 10, 20, 30, and 40 days of pre-composting. One gram of each pretreated sample was added to 10 mL of 10 mM sodium tripolyphosphate and mixed for 10 min. The mixture was then centrifuged at 690 × g for 5 min in order to remove the particles. The supernatant obtained from this was further centrifuged at 17,360 × g for 2 min to obtain the microorganisms as a pellet as described previously (Yamamoto et al., 2009).

25 26 27 28 29 DNA extraction was carried out by the CTAB method as described previously 31 (Karunakaran et al., 2016). Briefly, the microbial cell pellets were suspended in 720 µL of SET buffer (40 mM ethylenediaminetetraacetic acid (EDTA), 50 mM Tris-HCl; pH 9 and 0.75 M sucrose). Subsequently, an aliquot of 81 mL of lysozyme (10mg/mL) was added, vortexed for 10-15 sec and incubated at 37 °C for 30 min. After incubation, 90 µL of 10 % SDS plus 25 µL of freshly prepared proteinase K (20 mg mL⁻¹) were added and vortex for 10-15 sec. Samples were incubated at 55 °C for 2 hours. The samples were centrifuged at 5,000 g for 5 min, and the supernatant was collected into a new Eppendorf tube. To the supernatant, 140 µL of 5 M NaCl solution and 115 µL CTAB/NaCl solution (4.1 g NaCl and 10 g CTAB in 100 mL of distilled water) were 52 53 54 added, mixed well by inverting and incubated at 65 °C for 1 hour with gentle shaking. 56 After incubation, 838 µL of chloroform added to the lysate and mixed well. The aqueous layer was obtained by centrifugation at 14,000 x g for 5 min and carefully

231	collected into another Eppendorf tube. Another $838 \ \mu L$ of chloroform again added to
232	the aqueous layer, mixed and centrifuged at 14,000 x g for 5 min. An aqueous layer was
233	carefully collected into another Eppendorf tube and at least three volumes of 100%
234	isopropanol was added and incubated at -20 °C for overnight. The suspension was then
235	centrifuged at the maximum speed of 21,000 x g for 20 minutes at 4 °C. The supernatant
236	was decanted and DNA pellet was rinsed with 70% ethanol, centrifuged at maximum
237	speed again and decanted. This step was repeated one more time. The pellet containing
238	the DNA was air-dried and resuspended in 100 μ L of TE buffer. DNA quantification
239	was determined using a NanoDrop 2000c spectrophotometer (ThermoFisher Scientific).
240	
241	2.3.4. Microbial diversity analysis by 16S gene sequencing
242	
243	All 100 μL of 20 $\mu g\mu L^{\text{-1}}$ of DNA samples were sent to the RTL Genomics
244	laboratory (Lubbock, TX, USA) to perform PCR amplification, product pooling,
245	purification and 16S gene sequencing using an Illumina MiSeq (Illumina, Inc. San
246	Diego, CA, USA). Briefly, samples were first amplified for the sequencing. The
247	forward primer was constructed (5'-3') with the forward Illumina overhang adapter
248	(TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG) added to the
249	CCTACGGGNGGCWGCAG primer (Klindworth et al., 2013). The reverse primer was
250	constructed (5'-3') with the reverse Illumina overhang adapter
251	(GTCTCGTGGGGCTCGGAGATGTGTGTATAAGAGACAG) added to the
252	GACTACHVGGGTATCTAATCC primer (Klindworth et al., 2013). Amplifications
253	were performed in 25 μL reactions with Qiagen HotStar Taq master mix (Qiagen Inc,
254	Valencia, California), 1 μL of each 5 μM primer, and 1 μL of template. Reactions were
	11

255	performed on ABI Veriti thermocyclers (Applied Biosytems, Carlsbad, California)
256	under the following thermal profile: 95 °C for 5 min, then 10 cycles of 94 °C for 30 s,
257	50 °C for 90 s (+0.5 °C per cycle), 72 °C for 1 min, followed by 25 cycles of 94 °C for
258	30 s, 54 °C for 90 s, 72 °C for 1 min, and finally, one cycle of 72 °C for 10 min and 4 °C
259	hold. Products from the first-stage amplification were added to a second PCR based on
260	qualitatively determined concentrations. Primers for the second PCR were designed
261	based on the Illumina Nextera PCR primers as follows: Forward -
262	AATGATACGGCGACCACCGAGATCTACAC[i5index]TCGTCGGCAGCGTC and
263	Reverse - CAAGCAGAAGACGGCATACGAGAT[i7index]GTCTCGTGGGCTCGG.
264	The second stage amplification was run with the following thermal profile: 95 °C for 5
265	min, then 10 cycles of 94 °C for 30 s, 54 °C for 40 s, 72 °C for 1 min, followed by one
266	cycle of 72 °C for 10 min and 4 °C hold.
267	
268	Amplification products were visualized with eGels (Life Technologies, Grand
269	Island, New York). Products were then pooled into equimolar units and each pool was
270	size selected in two rounds using SPRIselect Reagent (BeckmanCoulter, Indianapolis,
271	Indiana) in a 0.75 ratio for both rounds. Size selected pools were then quantified using
272	the Qubit 4 Fluorometer (Life Technologies) and loaded on an Illumina MiSeq
273	(Illumina, Inc. San Diego, California) 2 x 300 flow cell at 10 pM. A complete
274	description of the applied bioinformatics filters is also available at
275	http://www.rtlgenomics.com/docs/Data_Analysis_Methodology.pdf.
276	
277	2.3.5. Statistical analysis
278	
	12

Richness was calculated as the alpha diversity measure to compare the diversity between the control and BSAM pretreatment samples. The observed diversity was based on unique OTU's found in each sample and reported as the alpha-diversity index with a statistical T-test to compare across all time points. 2.4. Anaerobic digestion of pretreated BSH substrates After 40 days of pretreatment, whole partially digested BSH co-substrates obtained from control and BSAM pretreatment were subsequently subjected to the batch AD process each in duplicate. A 50 mL sample of freshly collected rumen fluid was added to pretreated BHS co-substrates as a methanogenic inoculum in the ratio of approx. 1:4 (w of wet co-substrate/v). The conical flasks were then sealed with a silicone rubber cork. The outlet of the flasks was connected to the water displacement unit using a silicon tube. The flasks were placed into a water bath and maintained at 33-36 °C. The AD process was carried out for 35 days. The rumen fluid is rich in diverse and dynamic methanogen communities (Patra et al., 2017). The rumen slurry was collected from a freshly slaughtered cow rumen at the local abattoir (Woolley Bros Ltd, Holbrook, Sheffield, UK). The slurry was filtered through 3 layers of cheesecloth into 250-mL glass bottles and flushed with carbon dioxide to produce the rumen fluid. 2.4.1. Biogas analysis Biogas volume was monitored daily using the water displacement method, and the corresponding cumulative biogas volume was calculated. Using the ideal gas law,

303	the measured volume was then converted to a gas volume at standard temperature and
304	pressure. Methane and carbon dioxide content of biogas was analysed as previously
305	described by Raut et al. (Raut et al., 2016), with a few modifications. Briefly, gas
306	samples from biological replicates were collected from the headspace of a gas collector
307	using 10 mL gas-tight syringes at 5-day time intervals. The samples were injected into
308	the gas chromatograph TRACE 1300 (Thermo Scientific, Paisley, UK) equipped with a
309	thermal conductivity detector (TCD), of that, 250 μ L of samples was automatically
310	injected into the column. Separation of gas content was achieved using a precolumn
311	Haysep Q (60-80) with 2 m x 1/16 SS packing connected with Molsieve 5A (60-80)
312	column. Argon gas was used as a carrier gas at 36.25 psi pressure. Each run was
313	performed for 13 min using a temperature gradient (with a hold at 50 °C for 2.5 min,
314	followed by a ramp at a rate of 20 °C min ⁻¹ to 70 °C for 45 s, then hold at 70 °C for 8
315	min and finally ramp of 1 min up to 150 °C). The detector and oven temperature were
316	150 °C and 80 °C respectively. The GC was controlled and automated by the
317	Chromeleon software (Dionex, Version 7). The instrument was calibrated using
318	methane and carbon dioxide gas standards of 5, 20, 40, 60% (v/v) from BOC
319	(Guildford, Surrey, UK). A total cumulative biogas, methane and carbon dioxide
320	production was expressed as kg-1 TS co-substrate process in the AD. The significance
321	between conditions was determined using two-tailed Student's t test at 95% confidence.
322	
323	2.5. Kinetic study
324	
325	In order to predict the performance of the AD process of BSAM pretreated
326	material, the modified Gompertz and logistic models were used to compare

2	327	experimental methane yields as suggested by Yadav et al. (2019). Maximum biogas
3	328	production rate (Rm) was obtained from the slope of the line during the exponential
5	329	phase of gas production. Lag phase (Λ) is the x-axis intercept of this slope. The modified
9 9	330	equations of Gompertz model (equation (1)) and logistic model (equation (2)) are as
1	331	follows:
3	332	
5	333	$M = Pexp\left\{-exp\left[\frac{Rm.e}{P}\left(\Lambda - d\right) + 1\right]\right\}$ 1
9	334	
	335	$M = \frac{P}{\left\{1 + exp\left[\frac{4Rm}{P}(\Lambda - d) + 2\right]\right\}}$
4	336	M; Cumulative methane yield (L kg ⁻¹ TS)
5	337	d; Retention time (days)
9	338	P; Maximum specific methane production potential
2	339	Rm; Maximum methane production rate
4	340	λ; Lag Phase
5	341	e; Exp(1) = 2.718
9	342	
2	343	2.6. Energy and economic analysis
4 5	344	
5	345	The assumptions for energy and GHG reduction potential are derived from the
9	346	previous studies by Yadav et al. (2019) and Murphy et al. (2004). Briefly, up to 10000
1	347	kg of straw residues was considered for the analysis. The 1 m^3 of biogas was considered
5	348	as equivalent to 2.04 kWh and 2.33 kWh of electricity and heat generation, respectively
5	349	(Murphy et al., 2004). GHG reduction potential calculation were made based on the
9	350	replacement of diesel generator with combined heat and power (CHP) units running on
1		15
1		

biogas obtained from AD of pretreated straw residues. 1 kWh of energy generation was
assumed as equivalent to 0.23 L of diesel. The present cost of 1 L of diesel in UK is
1.51 USD. One liter of diesel and 1 kg of residue burned were assumed to be

contributed to 2.68 kg and 1.46 kg of CO2 GHG emission respectively.

356 3. Results and discussion

In the present study, we obtained the compost containing BSAM consortia from its natural habitat specialized for barley straw composting located at a farm in Sheffield. U.K. and enriched on BSH co-substrate conditions by mimicking its natural oxygen and temperature conditions. This environment as a source of microbial consortia was chosen due to the continuous adaptation in conditions we deemed suitable for the pre-treatment. The microaerobic and temperature conditions of BSAM in its natural environment might be advantageous to achieve its superior performance in the in-vitro pretreatment (this refers here to the desire to achieve partial digestion of BSH co-substrate biomass). Therefore, the temperature and oxygen levels were maintained in the *in-vitro* pretreatment process at levels approximating those seen in their natural habitats: i.e. 22-27 °C and 2-5 mg L-1, respectively. Microbial consortia enriched in microaerobic conditions are significantly diverse in microbial population compared to the microbial consortia enriched in anaerobic condition, (Lim et al., 2014). There are several studies that demonstrate that microaerobic conditions preferentially selects and stabilises a facultative microbial community during the pretreatment process and particularly promotes the growth of lignocellulolytic facultative anaerobes, which leads to a higher hydrolysis efficiency and digestibility of biomass (Fu et al., 2016; Lim et al., 2014).

This also helps the methanogenic microbial community present in the downstream ADprocess.

The changes in a microbial population, the C:N ratio, and the microbial community analysis of the BSAM consortia during the pretreatment stage and the biomethane production in the downstream AD process are described in detail in the following sections.

382 3.1 Changes in viable bacterial population during the pretreatment stage

During the pretreatment stage, the changes in microbial population and C:N ratio were measured (Fig. 1a, b). The trend in microbial population growth in both BSH (hereafter referred to as the control) and BSH + BSAM consortia pretreatment process showed an initial increase in the total culturable microbial population up to days 8-10. This was typically followed by a brief decrease on day 10, followed by a steady and significant increase in microbial population number up to day 20, plateauing until ca. 40 days of pretreatment. The microbial population of BSH + BSAM was always statistically significantly higher than the control pretreatment from day 2, which showed that the microbes added as an inoculum were able to thrive on the co-substrate. We presume that the growth of the microbial population seen in control pretreatment may attributed to the growth of majority of endophytes (non-phytopathogenic naturally associated organisms) that are already present on the BSH co-substrate. In the case of BSH + BSAM pretreatment, the bacterial population showed a steady and significant increase from day 10 onward and reached a maximum of log 1014 cfu g-1 dry BSH by day 20 as compared to control (log 10 12 cfu g-1 dry BSH) pretreatment. The microbial

399	population was always significantly higher in the BSH + BSAM pretreatment compared
400	to control, which may indicate that the microbial population was dynamic and
401	functional towards lignocellulose degradation during pretreatment. Our results suggest
402	that at the early stage of the pretreatment process, the presence of readily available
403	carbon substrates were used for microbial population growth, regardless of the material
404	provided as a co-substrate. However, in the later stage, BSAM consortia selectively and
405	functionally adapted to the BSH co-substrate over the time of pretreatment tested here.
406	BSAM consortia may harbor a large number of lignocellulolytic microbes capable of
407	degrading BSH co-substrates as seen in a previous study on lignocellulose composting,
408	where the co-occurrence of vast majority of microbes are specialized in the degradation
409	of lignocellulose (Wang et al., 2016) (refer to section 3.3 for more details).
410	
411	3.2. Changes in C:N ratio during pretreatment
412	
413	The C:N ratio is a direct indicator of biodegradation and also for the suitability
414	of biomass for biogas production (Mishra et al., 2018; Raut et al., 2008). Previous
415	studies have reported that the preferred C:N ratio that is effective for biomethanation is
416	in the range of 20-to-30 (Wang et al., 2014; Yen & Brune, 2007), below which
417	biodegradation reaches a maturation phase of compost that often ends with poor
418	biomethanation (Gerardi, 2003; Raut et al., 2008).
419	
420	The C:N ratio data obtained on initial (0 days; I) and final (40 days; F) of the
421	BSH co-substrate pretreatment is given in Fig. 1b. There was a significant reduction in
422	the C:N ratio achieved in the BSAM pretreated biomass compared to the control
	10

423	pretreatment process. The initial C:N ratio of BSH co-substrate was 96 ± 29 and 81 ± 20
424	which had decreased to 60 ± 13 and 29 ± 7 by 40 days of pretreatment in the control and
425	BSH + BSAM pretreatment condition, respectively. It is found that the C:N ratio of
426	BSAM pretreated samples from the beginning was lower than the control. This indicates
427	that nitrogen present in the BSAM inoculum may be attributed to a lower C:N ratio in
428	BSAM pretreated samples. The significant decrease in the C:N ratio of the co-substrate
429	in the BSH + BSAM treatment indicates effective degradation of BSH residues by the
430	BSAM consortia, which resulted in increased in nitrogen content because of a loss of
431	total organic matter, as previously reported (Awasthi et al., 2018). Our results indicate
432	that the BSH + BSAM pretreatment achieved partial digestion of BSH co-substrate and
433	reduced the C:N to an optimal level for biomethanation, which is suitable for a
434	subsequent AD process. The decrease in the C:N ratio and increase in the relative
435	abundance of the microbial population in BSH + BSAM pretreatment means that both
436	parameters reflect the effectiveness of the BSAM consortia during the pretreatment
437	process, as seen in Fig. 1a, b. The functional microbial diversity for the BSH + BSAM
438	pretreatment process was inferred by a 16S rRNA gene sequencing taxonomy analyses.
439	The results are shown in the next section.
440	
441	3.3. Microbial diversity analysis during pretreatment
442	
443	The pretreated samples from the control and BSH + BSAM pretreatment process
444	were collected every 10 days to investigate the diversity and composition of the
445	microbial communities related to lignocellulose degradation. A first overview of the
446	relative abundances of bacterial genera based on 16S rRNA gene sequencing of

extracted DNA is given in Fig. 2. Although there appears to be more observed alpha diversity in the treatment compared to the control, a p-value of 0.08 (T-test -2.313) was calculated over the 4 time points. A marked change in the profiling pattern of bacterial genera with the progression of pretreatment in both control and BSH + BSAM conditions were observed. The changes in structural composition of the microbial community were quite different in the BSAM treated samples, compared to the control pretreatment condition. Notably, in the control pretreatment samples, bacterial genera mostly belonged to the endophytes. Endophytes are non-phytopathogenic plant associated organisms that occur naturally. The endophyte genera include Stenotrophomonas, Rhizobium, Cellvibrio, Microbacterium Sphingomonas, Ochrobacterium and Mesorhizobium, all of which were predominantly found in the control pretreatment condition. The presence of these bacterial genera in the control condition may indicate that they are naturally associated with the barley straw that contributes to plant growth and development. Conversely, the genera of the bacterial community found in the BSAM treated samples were composed of different strains. The genera associated with the lignocellulose degradation such as Fibrobacter, Variovorax, Cellvibrio, Sphingobacterium, Rheinheimera-, Flavobacterium, Brevundimonas, Hydrogenophaga, Caulobacter, Microbacterium, Sphingomonas, Mucilaginibac, Sphingobium and Variovorax were predominantly found in the BSH + BSAM pretreatment condition. The microorganisms of most of these genera are considered to be important in organic waste recycling and have often been found to associate with various environmental niches and organic waste treatment systems (Jordaan, 2015). As shown in Fig. 2, the BSH + BSAM pretreatment process showed remarkable changes in the pattern of bacterial genera over the time of pretreatment tested, reaching towards

maturity and stability of the microbial community at the end of pretreatment process. The 16S gene sequencing results revealed that the genera belonging to the Proteobacteria were the most abundant in the BSH + BSAM pretreatment condition, followed by Bacteroidetes, Actinobacteria, Firmicutes, Actinobacteria and Fibrobacteres. Notably, a large portion of the Operational Taxonomic Units (OTUs) belonged to unclassified and unknown genera. The presence of these unexplored prokaryotes may play key roles in geochemical cycle regulation during pretreatment and could provide insights into fundamental science that may have possible biotechnological applications. Therefore, it would be interesting to positively identify new potential functions of these unknown genera. The correlation of the 25 top most abundant bacterial genera in the control and BHS + BSAM pretreated samples is given in Fig. 3. The correlation coefficient performed at the genus level demonstrated that the bacterial genera involved in lignocellulose degradation were found in both the control and the BSAM pretreatment condition. The bacterial species/strains of these genera (from both control and BSH + BSAM pretreatment) were constantly found to be associated with various environmental niches (e.g. compost, soil and wastewater) and organic waste treatment processes (e.g. sludge system). Notably, the dominant bacterial genera presented in the control conditions were significantly different from the BSAM pretreated samples. The bacterial genera predominantly presented in the control pretreatment condition were found to associated with various microbial systems involved in organics waste

degradation include Sphingobium (Xu et al., 2019b), Sphingopyxis (Silva et al., 2007), Brevundimonas, Dyadobacter (Photphisutthiphong & Vatanyoopaisam, 2019), Bosea (Männistö & Puhakka, 2002), Sphingomonas (Wilhelm et al., 2019), Phenylobacterium (Wilhelm et al., 2018). Notably, in the BSAM pretreated samples, the highly accumulated genera were specialized in lignocellulose degradation including: 1) cellulose/hemicellulose degradation; Cytophaga, Fibrobacter, Cellulomonas (Brethauer et al., 2020) and Asticcacaulis (Wilhelm et al., 2019), 2) aromatic ring/lignin degradation; Hydrogenophaga (Gan et al., 2011), Demequina (Pop Ristova et al., 2017) Acholeplasma (Braun et al., 2015), Rheinheimera (Sharma et al., 2017), Oceanibaculum (Sauret et al., 2014), and 3) nitrogen/phosphorous/sulphur regulation; Hylemonella (Spring et al., 2004), Caldilinea (Wang et al., 2016), Hyphomicrobium, Aquicella, Dongia (Antonelli et al., 2020). The genus belonging to the Proteobacteria phyla were the predominant microbial community (42%) in the BSH + BSAM treated samples. followed by phyla Actinobacteria, Bacteroidetes, Firmicutes, Chloroflexi, and Fibrobacter. In BSH + BSAM pretreatment, the microbial community was more specific to lignocellulose degradation than the consortium in the control pretreatment. This strongly suggests a synergistic action of multiple members of genera affiliated to various functions required to achieve more effective conversion of lignocellulosic biomass. For instance, the genera belonging to the Cytophaga and Cellulomonas are the best specialised cellulose/hemicellulose degraders in the microaerobic niche (Batool et al., 2018; Männistö & Puhakka, 2002). Fibrobacter is a dominant cellulose degrader of rumen ecosystem (Raut et al., 2019). A large group of bacterial genera associated with

aromatic compound/lignin degradation were also found in the BSAM treated samples. Notably, these bacterial genera involved lignin degradation belong to the Proteobacteria and Actinobacteria phyla that have been previously associated with lignin degradation (Brink et al., 2019). Generally, it is believed that the degradation of lignin is an oxidative or aerobic process, which is mostly dominated by fungi. However, the identified lignin/aromatic compound degrading bacterial genera under microaerobic condition in this study are facultative anaerobes, thus they may possibly have novel reductive or non-redox pathways to break down lignin as suggested previously (Rashid et al., 2017). Other genera identified are known to be involved in nitrogen/phosphorous/sulphur metabolism and these were also predominately found in the BSAM treatment, these are possibly forming an essential part of this consortium to function as microbial symbionts contributing to maintenance of optimal micronutrient conditions within the consortia. As a result, the synergetic effect of the bacterial population diversity on biomass pretreatment that focused on lignin, carbohydrate transformation and the regulation of nitrogen, phosphorous and sulphur is indeed an efficient way to fully promote biomass utilization. The microbial community in the BSAM pretreatment condition is suggested to be more diverse and dynamic in nature, comprising microbial genera involved in symbiotic biochemical cycling of macronutrients such as carbon, nitrogen and sulphur. As expected, the majority of bacterial genera identified were facultative anaerobic types, since a microaerobic condition was maintained throughout the pre-treatment process. This suggests that the structure of the microbial community highly depends on the oxygen concentration in the pretreatment process. Based on these

543	observations, the expected mechanism of lignocellulosic biomass pretreatment can be
544	hypothesised as follows: during pretreatment, lignin degrading facultative anaerobes
545	partially removed/modified lignin, making cellulose/hemicellulose accessible to
546	cellulose degrading microorganisms in the consortium that then converted
547	cellulose/hemicellulose into nutrients for self-growth, with the balance being made
548	available for downstream utilization during the downstream AD process. The other
549	dominant bacterial genera found in the BSAM pretreatment were involved in regulating
550	nitrogen, sulphur and phosphorous levels within the consortia. Our 16S rRNA gene
551	sequencing data is very well aligned with the data on changes in microbial population
552	and C:N ratio during the pretreatment processes.
553	

554 3.4. Anaerobic digestion

The pretreated BSH co-substrate was subsequently used for the AD process. The BSAM consortia pretreated BSH co-substrate yielded more biogas than the control as seen in **Fig. 4** a. The total biogas yield from BSAM consortia treated co-substrate reached 27 ± 2.9 L kg⁻¹ TS of co-substrate after 35 days of AD. The value was significantly higher than the control that only produced 4.6 ± 2.0 L kg⁻¹ TS of cosubstrate. This result shows that BSAM consortia pretreatment is capable of significantly enhancing the methane production (15.2 ± 0.6 L in total biogas produced kg⁻¹ TS) yield than control which only yielded 0.4 ± 0.15 L of methane in total biogas produced kg⁻¹ TS (**Fig. 4b, c**). There were significantly higher production of methane and carbon dioxide in the BSAM treated condition compared to the control pretreatment condition. The total methane and carbon dioxide content of total biogas produced in

1	567	BSAM treatment were 58% and 11% respectively which is significantly higher than
3 4	568	control treatment, which were 10% and 4% respectively (fig. 4d, e).
5 6 7	569	
8 9	570	In recent years, the carbon dioxide content of biogas has become an important
0	571	consideration for use as a feedstock to synthesize other biofuels or added-value
4 3 4	572	byproducts and for biogas upgrading (Omar et al., 2019) via carbon dioxide
5	573	sequestration from biogas and industrial effluents using waste gas fermenting microbes
7 8 9	574	such as acetogens (Omar et al., 2019). This is a relatively new concept, the first
0	575	investigation of biogas upgrading using Actinobacillus succinogenes 130Z was made by
2 3 4	576	Gunnarsson et al. (Gunnarsson et al., 2014). The biogas upgrading by utilising the
5	577	carbon dioxide by fermentation not only provides liquid biofuels and carbon dioxide
7 8	578	content in the waste gas effluent/biogas but also potentially overcome the cost of CO2
0	579	capture and storage and the cost of biogas upgrading thereby promoting a bio-based
2	580	economy (Gunnarsson et al., 2014).
4 5 6	581	
7	582	In order to achieve maximum theoretical methane yield, the effective
9 0 1	583	pretreatment and digestion process needs to be developed that can produce greater
2 3	584	methane density (biogas yield) with minimal energy and resource input. This will lead
4 5 6	585	to the commercial expansion of biogas production from lignocellosic biomass. In
7	586	previous studies, the improved methane yield in the AD process was recorded after
9	587	physical, chemical, and biological pretreatment of lignocellulosic materials as reviewed
2	588	recently by Abraham et al. (Abraham et al., 2020). It is concluded that pre-treatment of
4	589	lignocellulosic biomass is an absolute requirement for lignocellulosic-AD performance.
6 7 8 9	590	Microbial consortium pretreatment and improved biogas/methane production during
1		

-

AD were positively correlated in the previous studies (Yuan et al., 2012; Kong et al.,
2018; Li et al., 2020).

To date, Yuan et al. (2012), showed a 156% increase in methane yield in the AD process after a microbial consortium pretreatment when compared to an untreated (control) with newspaper as carbon substrate. In the present study, the cumulative methane yield after 35 days of AD of BSAM consortia-digested material represented a 3300% higher methane yield than the yield obtained from control pretreatment. Our results suggest that a significant increase in the methane yield is due to an increase in the digestibility of the BSH co-substrate during pre-treatment with BSAM consortia that subsequently resulted in the improved AD process. The significant abundance of a microbial population and significantly decreased in the C:N ratio during the pre-digestion stage evidently reflects the performance of the BSAM consortia. Correlating with that finding, is the 16S rRNA gene sequencing data analysis which revealed the dominant observed lignocellulolytic bacterial genera that synergistically enhanced the digestibility of BSH co-substrate during the BSAM pretreatment.

The high energy content of agriculture biomass offers a cheap and sustainable feedstock for bioenergy generation, but pretreatment is an absolute requirement to improve accessibility of polymers and increased surface area for microbial digestion during the AD process. The species diversity within the microbial consortia significantly depends on its environmental conditions that reaches functional stability over the period of time (Zegeye et al., 2019). Here we demonstrated that BSAM consortia enriched from its natural habitats on barley straw worked well *in-vitro*

pretreatment conditions, because of mimicking its microaerobic conditions allowing facultative anaerobes to work efficiently in the consortia, as shown in 16S rRNA gene sequencing analysis. Our study also suggests that the facultative nature of the BSAM consortia further helped in the AD process too. The significant increase in the methane yield indicated that the lignocellulosic material present in the feedstock had become more accessible and likely had a reduced crystallinity of polymers and increased surface area of substrate for microbial digestion during the AD process. 3.5. Kinetic study of methane production The cumulative methane yield obtained from the batch AD of BSH pretreated residues was simulated by employing modified Gompertz and logistic models and the quality of fit for both models were analyzed. These are the most commonly used model for the determination of methane production kinetics. The lag phase (Λ) and maximum biomethane production rate (Rm) were 4 days and 0.739 L kg⁻¹ TS d⁻¹ respectively. The cumulative biogas yield calculated from experimental, modified Gompertz and logistic models were 15.2 L CH4 kg⁻¹ TS, 14.5 L CH4 kg⁻¹ TS and 14.9 L CH4 kg⁻¹ TS respectively. From visual inspection both the models were very well fits for the experimental cumulative methane production data (Fig. 5). The coefficient of

634 determination (R²) observed for both models were 0.999 depicting that the predicted

635 value of cumulative biogas production yield obtained from both models fitted well with

636 their experimental counterpart.

638 3.6. Energy and economic analysis

640	The BSAM pretreated BHS residues showed enhanced total energy (combined
641	electricity and heat) generation potential (118-1180 kWh) as compared to control
642	pretreatment (19.6 - 196 kWh) for 1000 - 10000 kg of straw residue (Table 1). The
643	BSAM pretreatment also showed improve diesel savings (L) (27 - 271 L) compared to
644	control pretreatment (4.5 - 45 L) along with saving of 320 USD for 1000 - 10000 kg of
645	straw residue. Also, 15326 kg of CO_2 emission could be saved by BSAM pretreatment
646	of 10000 kg of BSH residues (Table 2). The results showed that the BSAM pretreatment
647	has positive impact on the biogas yield, energy generation and savings over the control
648	pretreatment. Although the BSAM consortia-based pretreatment used in this study is
649	promising, in the present scenario this approach is not suitable when considering the
650	overall economics of the AD process. Therefore, further improvement by the
651	optimization of pretreatment is needed. This would then also require a deep subsequent
652	financial appraisal.
653	
654	4. Conclusion
655	
656	The microaerobic BSAM consortia significantly improved digestibility of co-
657	substrate and biomethane production. Microbial population counts, C:N ratio and
658	microbial diversity analysis of BSAM pretreatment clearly indicated that that BSAM
659	consortia flourished well on co-substrate and the accumulated microbial genera were
660	specialised in lignocellulose degradation over the period of pretreatment, thereby
661	enhancing digestibility and suitability of co-substrate for biogas production. BSAM
662	pretreatment enhanced biomethanation by 3300% over the control. However, we

663	identified that this pretreatment method needs further optimizations, and future research
664	should be directed to improving production rates before the industrial application and
665	therefore be vital in the AD research field.
666	E-supplementary data for this work can be found in e-version of this paper online.
667	
668	CRediT authorship contribution statement
669	
670	Mahendra P Raut: Conceptualization, Methodology, Investigation, Formal
671	analysis, Software, Writing - original draft. Jagroop Pandhal: Resources, software,
672	data analysis, drafting final manuscript. Phillip C. Wright: Resources,
673	conceptualization, supervision and drafting final manuscript. All authors read and
674	approved the final manuscript.
675	
676	Declaration of Competing Interest
677	
678	Authors declare that they have no competing interests.
679	
680	Acknowledgments
681	This work was supported by Biotechnology and Biological Sciences Research
682	Council (BBSRC) (C1net (BB/L013800/1). We thank Mr. Stephen Atkin from the
683	elemental microanalysis service, Department of Chemistry, University of Sheffield for
684	technical support with total carbon and total nitrogen analysis. We also thank to Dr.

5 Esther Karunakaran from the Department of Chemical and Biological Engineering,

586 University of Sheffield for her help with data analysis.

8 Appendix A. Supplementary data

690 The following are the Supplementary data to this article:

591 Supplementary Data 1.

693 References

	094			
	695	1.	Abraham, A., Mathew, A.K., Park, H., Choi, O., Sindhu, R., Parameswaran, I	В.,
)	696		Pandey, A., Park, J.H., Sang, BI., 2020. Pretreatment strategies for enhanced	
	697		biogas production from lignocellulosic biomass. Bioresour. Technol. 122725.	
	698	2.	Antonelli, F., Esposito, A., Galotta, G., Davidde Petriaggi, B., Piazza, S.,	
	699		Romagnoli, M., Guerrieri, F., 2020. Microbiota in waterlogged archaeological	
)	700		wood: Use of next generation sequencing to evaluate the risk of biodegradation	n.
	701		Appl. Sci. 10(13), 4636.	
	702	3.	Awasthi, M.K., Wang, Q., Wang, M., Chen, H., Ren, X., Zhao, J., Zhang, Z.,	
	703		2018. In vessel co-composting of food waste employing enriched bacterial	
)	704		consortium. Food technol. Biotechnol. 56(1), 83.	
	705	4.	Batool, I., Gulfraz, M., Asad, M.J., Kabir, F., Khadam, S., Ahmed, A., 2018.	
	706		Cellulomonas sp. Isolated from Termite Gut for Saccharification and	
	707		Fermentation of Agricultural Biomass. BioResources 13(1), 752-763.	
)				
				30

1	708	5. Braun, F., Hamelin, J., Bonnafous, A., Delgenès, N., Steyer, JP., Patureau, D.
34	709	2015. Similar PAH fate in anaerobic digesters inoculated with three microbial
5 6 7	710	communities accumulating either volatile fatty acids or methane. PloS One
8 9	711	10(4), e0125552.
10	712	6. Brethauer, S., Shahab, R.L., Studer, M.H., 2020. Impacts of biofilms on the
13 14	713	conversion of cellulose. Appl. Microbiol. Biotechnol. 1-12.
15 16	714	7. Brink, D.P., Ravi, K., Lidén, G., Gorwa-Grauslund, M.F., 2019. Mapping the
17 18 19	715	diversity of microbial lignin catabolism: experiences from the eLignin database.
20 21	716	Appl. Microbiol. Biotechnol. 103(10), 3979-4002.
22 23 24	717	8. Fu, SF., Wang, F., Shi, XS., Guo, RB., 2016. Impacts of microaeration on
25 26	718	the anaerobic digestion of corn straw and the microbial community structure.
27 28 29	719	Chem. Eng. 287, 523-528.
30 31	720	9. Gan, H.M., Ibrahim, Z., Shahir, S., Yahya, A., 2011. Identification of genes
32 33	721	involved in the 4-aminobenzenesulfonate degradation pathway of
34 35 36	722	Hydrogenophaga sp. PBC via transposon mutagenesis. FEMS Microbiol. Lett.
37 38	723	318(2), 108-114.
39 40 41	724	10. Gerardi, M.H., 2003. The microbiology of anaerobic digesters. first ed. Wiley
42 43	725	Interscience (2003).
44 45 46	726	11. Gibbs, R., Hayes, C., 1988. The use of R2A medium and the spread plate
47 48	727	method for the enumeration of heterotrophic bacteria in drinking water. Lett.
49 50	728	Appl. Microbiol. 6(2), 19-21.
51 52 53	729	12. Gunnarsson, I.I.B., Alvarado-Morales, M., Angelidaki, I., 2014. Utilization of
54 55 56 57 58 59 60	730	CO ₂ fixating bacterium <i>Actinobacillus succinogenes</i> 130Z for simultaneous
61 62 63 64 65		31

1	731	biogas upgrading and biosuccinic acid production. Environ. Sci. Technol.
3 4	732	48(20), 12464-2468.
567	733	13. Heyer, R., Kohrs, F., Benndorf, D., Rapp, E., Kausmann, R., Heiermann, M.,
8 9	734	Klocke, M., Reichl, U., 2013. Metaproteome analysis of the microbial
10 11	735	communities in agricultural biogas plants. New biotechnol. 30(6), 614-622.
12 13 14	736	14. International Energy Outlook. 2019.
15 16	737	https://www.eia.gov/outlooks/ieo/pdf/ieo2019.pdf. Accessed November 1, 2020.
17 18	738	15. James, A.M., Harding, S., Robshaw, T., Bramall, N., Ogden, M.D., Dawson, R.,
20 21	739	2019. Selective environmental remediation of strontium and cesium using
22 23	740	sulfonated hyper cross-linked polymers (SHCPs). ACS appl. Mater. Inter.
24 25 26	741	11(25), 22464-22473.
27 28	742	16. Jordaan, K., 2015. Molecular profiling of microbial population dynamics in
29 30 31	743	environmental water. Noordwes-Universiteit (doctoral dissertation).
32 33	744	17. Karunakaran, E., Vernon, D., Biggs, C.A., Saul, A., Crawford, D., Jensen, H.,
34 35	745	2016. Enumeration of sulphate-reducing bacteria for assessing potential for
37 38	746	hydrogen sulphide production in urban drainage systems. Water Sci. Technol.
39 40	747	73(12), 3087-3094.
41 42 43	748	18. Klindworth, A., Pruesse, E., Schweer, T., Peplies, J., Quast, C., Hom, M.,
44 45	749	Glöckner, F.O., 2013. Evaluation of general 16S ribosomal RNA gene PCR.
46 47 48	750	primers for classical and next-generation sequencing-based diversity studies.
49 50	751	Nucleic Acids Res. 41(1), e1.
51 52	752	19. Kong, X., Du, J., Ye, X., Xi, Y., Jin, H., Zhang, M., Guo, D., 2018. Enhanced
53 54 55	753	methane production from wheat straw with the assistance of lignocellulolytic
56 57	754	microbial consortium TC-5. Bioresour. Technol. 263, 33-39.
58 59 60		
61 62		32
63 64 65		
0.00		

1	755	20. Kumar, R., Singh, S., Singh, O.V., 2008. Bioconversion of lignocellulosic
34	756	biomass: biochemical and molecular perspectives. J. Ind. Microbiol. Biotechnol.
567	757	35(5), 377-391.
, 8 9	758	21. Li, P., He, C., Li, G., Ding, P., Lan, M., Gao, Z., Jiao, Y., 2020. Biological
10	759	pretreatment of corn straw for enhancing degradation efficiency and biogas
12 13 14	760	production. Bioengineered 11(1), 251-260.
15 16	761	22. Lim, J.W., Chiam, J.A., Wang, JY., 2014. Microbial community structure
17 18	762	reveals how microaeration improves fermentation during anaerobic co-digestion
20 21	763	of brown water and food waste. Bioresour. Technol. 171, 132-138.
22 23 24	764	23. Mannisto, M., Puhakka, J., 2002. Psychrotolerant and microaerophilic bacteria
25 26	765	in boreal groundwater. FEMS Microbiol. Ecol. 41(1), 9-16.
27 28 29	766	24. Mishra, S., Singh, P.K., Dash, S., Pattnaik, R., 2018. Microbial pretreatment of
30 31	767	lignocellulosic biomass for enhanced biomethanation and waste management. 3
32	768	Biotech 8(11), 458.
34 35 36	769	25. Murphy, J.D., McKeogh, E., Kiely, G., 2004.
37 38	770	Technical/economic/environmental analysis of biogas utilisation. Appl. Energy
39 40 41	771	77 (4), 407e427.
42 43	772	26. Omar, B., El-Gammal, M., Abou-Shanab, R., Fotidis, I.A., Angelidaki, I.,
44 45 46	773	Zhang, Y., 2019. Biogas upgrading and biochemical production from gas
47 48	774	fermentation: Impact of microbial community and gas composition. Bioresour.
49 50	775	Technol. 286, 121413.
52 53	776	27. Patra, A., Park, T., Kim, M., Yu, Z., 2017. Rumen methanogens and mitigation
54 55	777	of methane emission by anti-methanogenic compounds and substances. J. Anim.
50 57 58	778	Sci. Biotechnol. 8(1), 13.
59 60		
61 62 63		33
64 65		

 Sphingobacterium isolated from herbivore manure in Thailand and their cellulolytic activity in various organic waste substrates. Agric. Nat. Resour. 53(2), 89-98. 29. Pop Ristova, P., Bienhold, C., Wenzhöfer, F., Rossel, P.E., Boetius, A., 2017. Temporal and spatial variations of bacterial and faunal communities associated with deep-sea wood falls. PloS One 12(1), e0169906. 30. Rashid, G., Durán- Peña, M., Rahmanpour, R., Sapsford, D., Bugg, T., 2017. Delignification and enhanced gas release from soil containing lignocellulose by treatment with bacterial lignin degraders. J. Appl. Microbiol. 123(1), 159-171. 31. Raut, M., William, S.P., Bhattacharyya, J., Chakrabarti, T., Devotta, S., 2008. Microbial dynamics and enzyme activities during rapid composting of municipal solid waste-a compost maturity analysis perspective. Bioresour. Technol. 99(14), 6512-6519.
 cellulolytic activity in various organic waste substrates. Agric. Nat. Resour. 53(2), 89-98. 29. Pop Ristova, P., Bienhold, C., Wenzhöfer, F., Rossel, P.E., Boetius, A., 2017. Temporal and spatial variations of bacterial and faunal communities associated with deep-sea wood falls. PloS One 12(1), e0169906. 30. Rashid, G., Durán- Peña, M., Rahmanpour, R., Sapsford, D., Bugg, T., 2017. Delignification and enhanced gas release from soil containing lignocellulose by treatment with bacterial lignin degraders. J. Appl. Microbiol. 123(1), 159-171. 31. Raut, M., William, S.P., Bhattacharyya, J., Chakrabarti, T., Devotta, S., 2008. Microbial dynamics and enzyme activities during rapid composting of municipal solid waste-a compost maturity analysis perspective. Bioresour. Technol. 99(14), 6512-6519.
 53(2), 89-98. Pop Ristova, P., Bienhold, C., Wenzhöfer, F., Rossel, P.E., Boetius, A., 2017. Temporal and spatial variations of bacterial and faunal communities associated with deep-sea wood falls. PloS One 12(1), e0169906. Rashid, G., Durán- Peña, M., Rahmanpour, R., Sapsford, D., Bugg, T., 2017. Delignification and enhanced gas release from soil containing lignocellulose by treatment with bacterial lignin degraders. J. Appl. Microbiol. 123(1), 159-171. Raut, M., William, S.P., Bhattacharyya, J., Chakrabarti, T., Devotta, S., 2008. Microbial dynamics and enzyme activities during rapid composting of municipal solid waste–a compost maturity analysis perspective. Bioresour. Technol. 99(14), 6512-6519.
 Pop Ristova, P., Bienhold, C., Wenzhöfer, F., Rossel, P.E., Boetius, A., 2017. Temporal and spatial variations of bacterial and faunal communities associated with deep-sea wood falls. PloS One 12(1), e0169906. Rashid, G., Durán- Peña, M., Rahmanpour, R., Sapsford, D., Bugg, T., 2017. Delignification and enhanced gas release from soil containing lignocellulose by treatment with bacterial lignin degraders. J. Appl. Microbiol. 123(1), 159-171. Raut, M., William, S.P., Bhattacharyya, J., Chakrabarti, T., Devotta, S., 2008. Microbial dynamics and enzyme activities during rapid composting of municipal solid waste–a compost maturity analysis perspective. Bioresour. Technol. 99(14), 6512-6519.
 Temporal and spatial variations of bacterial and faunal communities associated with deep-sea wood falls. PloS One 12(1), e0169906. 30. Rashid, G., Durán- Peña, M., Rahmanpour, R., Sapsford, D., Bugg, T., 2017. Delignification and enhanced gas release from soil containing lignocellulose by treatment with bacterial lignin degraders. J. Appl. Microbiol. 123(1), 159-171. 31. Raut, M., William, S.P., Bhattacharyya, J., Chakrabarti, T., Devotta, S., 2008. Microbial dynamics and enzyme activities during rapid composting of municipal solid waste–a compost maturity analysis perspective. Bioresour. Technol. 99(14), 6512-6519.
 with deep-sea wood falls. PloS One 12(1), e0169906. 30. Rashid, G., Durán- Peña, M., Rahmanpour, R., Sapsford, D., Bugg, T., 2017. Delignification and enhanced gas release from soil containing lignocellulose by treatment with bacterial lignin degraders. J. Appl. Microbiol. 123(1), 159-171. 31. Raut, M., William, S.P., Bhattacharyya, J., Chakrabarti, T., Devotta, S., 2008. Microbial dynamics and enzyme activities during rapid composting of municipal solid waste-a compost maturity analysis perspective. Bioresour. Technol. 99(14), 6512-6519.
 Rashid, G., Durán- Peña, M., Rahmanpour, R., Sapsford, D., Bugg, T., 2017. Delignification and enhanced gas release from soil containing lignocellulose by treatment with bacterial lignin degraders. J. Appl. Microbiol. 123(1), 159-171. Raut, M., William, S.P., Bhattacharyya, J., Chakrabarti, T., Devotta, S., 2008. Microbial dynamics and enzyme activities during rapid composting of municipal solid waste-a compost maturity analysis perspective. Bioresour. Technol. 99(14), 6512-6519.
 Delignification and enhanced gas release from soil containing lignocellulose by treatment with bacterial lignin degraders. J. Appl. Microbiol. 123(1), 159-171. 31. Raut, M., William, S.P., Bhattacharyya, J., Chakrabarti, T., Devotta, S., 2008. Microbial dynamics and enzyme activities during rapid composting of municipal solid waste-a compost maturity analysis perspective. Bioresour. Technol. 99(14), 6512-6519.
 treatment with bacterial lignin degraders. J. Appl. Microbiol. 123(1), 159-171. 31. Raut, M., William, S.P., Bhattacharyya, J., Chakrabarti, T., Devotta, S., 2008. Microbial dynamics and enzyme activities during rapid composting of municipal solid waste-a compost maturity analysis perspective. Bioresour. Technol. 99(14), 6512-6519.
 Raut, M., William, S.P., Bhattacharyya, J., Chakrabarti, T., Devotta, S., 2008. Microbial dynamics and enzyme activities during rapid composting of municipal solid waste-a compost maturity analysis perspective. Bioresour. Technol. 99(14), 6512-6519.
Microbial dynamics and enzyme activities during rapid composting of municipal solid waste-a compost maturity analysis perspective. Bioresour. Technol. 99(14), 6512-6519.
solid waste-a compost maturity analysis perspective. Bioresour. Technol. 99(14), 6512-6519.
99(14), 6512-6519.
32. Raut, M.P., Couto, N., Karunakaran, E., Biggs, C.A., Wright, P.C., 2019.
Deciphering the unique cellulose degradation mechanism of the ruminal
bacterium Fibrobacter succinogenes S85. Sci. Rep. 9(1), 1-15.
33. Raut, M.P., Couto, N., Pham, T.K., Evans, C., Noirel, J., Wright, P.C., 2016.
Quantitative proteomic analysis of the influence of lignin on biofuel production
by Clostridium acetobutylicum ATCC 824. Biotechnol. Biofuels 9(1), 113.
34. Sauret, C., Séverin, T., Vétion, G., Guigue, C., Goutx, M., Pujo-Pay, M., Conan,
P., Fagervold, S.K., Ghiglione, JF. 2014. 'Rare biosphere'bacteria as key
phenanthrene degraders in coastal seawaters. Environ. Pollut. 194, 246-253.

1	802	35. Sharma, A., Gupta, V., Khan, M., Balda, S., Gupta, N., Capalash, N., Sharma,
3 4	803	P., 2017. Flavonoid-rich agro-industrial residues for enhanced bacterial laccase
567	804	production by submerged and solid-state fermentation. 3 Biotech, 7(3), 200.
8 9	805	36. Shrestha, S., Fonoll, X., Khanal, S.K., Raskin, L., 2017. Biological strategies for
10	806	enhanced hydrolysis of lignocellulosic biomass during anaerobic digestion:
12 13 14	807	current status and future perspectives. Bioresour. Technol. 245, 1245-1257.
15 16	808	37. Silva, J.A., Tobella, L.M., Becerra, J., Godoy, F., Martínez, M.A., 2007.
17 18 19	809	Biosynthesis of poly-β-hydroxyalkanoate by Brevundimonas vesicularis LMG
20 21	810	P-23615 and Sphingopyxis macrogoltabida LMG 17324 using acid-hydrolyzed
22 23 24	811	sawdust as carbon source. J. Biosci. Bioeng. 103(6), 542-546.
25 26	812	38. Spring, S., Jäckel, U., Wagner, M., Kämpfer, P., 2004. Ottowia thiooxydans gen.
27 28 20	813	nov., sp. nov., a novel facultatively anaerobic, N2O-producing bacterium
30 31	814	isolated from activated sludge, and transfer of Aquaspirillum gracile to
32 33	815	Hylemonella gracilis gen. nov., comb. nov. Int. J. Syst. Evol. Microbiol. 54(1),
34 35 36	816	99-106.
37 38	817	39. Wagner, A.O., Lackner, N., Mutschlechner, M., Prem, E.M., Markt, R., Illmer,
39 40 41	818	P., 2018. Biological pretreatment strategies for second-generation
42 43	819	lignocellulosic resources to enhance biogas production. Energies 11(7), 1797.
44 45 46	820	40. Wang, C., Dong, D., Wang, H., Müller, K., Qin, Y., Wang, H., Wu, W., 2016.
47 48	821	Metagenomic analysis of microbial consortia enriched from compost: new
49 50	822	insights into the role of Actinobacteria in lignocellulose decomposition.
51 52 53	823	Biotechnol. Biofuels 9(1), 22.
54 55	824	41. Wang, X., Lu, X., Li, F., Yang, G., 2014. Effects of temperature and carbon-
56 57 58 59	825	nitrogen (C/N) ratio on the performance of anaerobic co-digestion of dairy
60 61 62		35
63 64		
0.0		

manure, chicken manure and rice straw: focusing on ammonia inhibition. PloS One 9(5). 89 10 42. Wilhelm, R.C., Singh, R., Eltis, L.D., Mohn, W.W., 2018. Bacterial and fungal contributions to delignification and lignocellulose degradation in forest soils with metagenomic and quantitative stable isotope probing, bioRxiv 387308. 43. Wilhelm, R.C., Singh, R., Eltis, L.D., Mohn, W.W., 2019. Bacterial contributions to delignification and lignocellulose degradation in forest soils with metagenomic and quantitative stable isotope probing. ISME J. 13(2), 413-429. 23 44. Xu, N., Liu, S., Xin, F., Jia, H., Xu, J., Jiang, M., Dong, W., 2019a. Biomethane 26 27 28 production from lignocellulose: Biomass recalcitrance and its impacts on anaerobic digestion. Front. Bioeng. Biotechnol. 7, 191. 45. Xu, Z., Lei, P., Zhai, R., Wen, Z., Jin, M., 2019b. Recent advances in lignin valorization with bacterial cultures: microorganisms, metabolic pathways, and bio-products. Biotechnol. Biofuels 12(1), 32. 46. Yadav, M., Paritosh, K., Pareek, N., Vivekanand, V., 2019. Coupled treatment of lignocellulosic agricultural residues for augmented biomethanation, J. Cleaner Prod. 213, 75-88. 47. Yamamoto, N., Otawa, K., Nakai, Y., 2009. Bacterial communities developing 48 during composting processes in animal manure treatment facilities. Asian Australas J. Anim. Sci. 22(6), 900-905. 48. Yen, H.-W., Brune, D.E., 2007. Anaerobic co-digestion of algal sludge and waste paper to produce methane. Bioresour. Technol. 98(1), 130-134.

1	849	49. Yuan, X., Cao, Y., Li, J., Wen, B., Zhu, W., Wang, X., Cui, Z., 2012. Effect of
34	850	pretreatment by a microbial consortium on methane production of waste paper
5 6 7	851	and cardboard. Bioresour. Technol. 118, 281-288.
89	852	50. Zegeye, E.K., Brislawn, C.J., Farris, Y., Fansler, S.J., Hofmockel, K.S., Jansson,
10	853	J.K., Wright, A.T., Graham, E.B., Naylor, D., McClure, R.S., 2019. Selection,
13 14	854	Succession, and Stabilization of Soil Microbial Consortia. mSystems 4(4),
15	855	e00055-19.
18	856	
20 21	857	
22 23 24	858	
25 26	859	
27 28	860	
29 30 31	861	
32 33	862	
34 35	863	
36	864	
38 39 40	865	
41 42	800	
43	807	
45 46 47	860	
48	870	
50 51	871	
52 53 54	071	
55 56	872	
57	8/3	
59 60		
62		37
63		
65		

874 Figure and Table captions

876 Figures:

Fig. 1. a) Changes in the bacterial population during pretreatment of BSH co-substrate.
b) C:N ratio during pretreatment. Results are expressed as the mean value and standard
deviation of two biological and two technical replicates. Results are expressed as the
mean value and standard deviation of duplicate samples (p-value *< 0.05; ** < 0.01).
NS indicates not significant.

Fig. 2. Relative abundances of bacterial genera based on 16s rRNA gene sequencing of
extracted DNA from control and BS + BSAM treatment condition at day 10, 20, 30 and
40.

Fig. 3. Top 25 bacterial genera were correlated with control and BS + BSAM treatment
condition. MiSeq reads of bacterial 16S rRNA genes were analyzed and assigned to
specific genera based on the sequence similarities to the NCBI 16S reference database.
The correlation coefficient, along with effect size measurements was applied to present
the enriched bacterial genera in BSH only (control) (blue) and BS + BSAM treatment
samples (red).

 Fig. 4. Anaerobic digestion of pretreated BSH co-substrate with/without BSAM
 consortia (orange circle indicates control and green square indicates BSH + BSAM

pretreatment). a) Cumulative biogas production b) cumulative methane yield c)

1	897	cumulative carbon dioxide yield d) % methane content of total biogas produced e) %
3 4	898	carbon dioxide content of total biogas produced (Results are expressed as the mean
5 6 7	899	value and standard deviation of duplicate samples. (p-value $* < 0.05$; $** < 0.01$;
89	900	***<0.001).
10 11 12	901	
13 14	902	Fig. 5. Cumulative methane production fitted with models.
15 16	903	
18	904	Tables:
21 22 23	905	Table 1. Electricity and heat generation from control and BSAM pretreated BSH
24 25	906	residues.
26 27	907	
28 29 30	908	Table 2. Savings from biogas produced by utilizing control and BSAM pretreated BSH
31 32	909	residues.
33 34 35	910	
36 37	911	
38 39 40	912	
41 42	913	
43	914	
45 46 47	915	
48 49	916	
50 51 52	917	
53 54	918	
55 56 57	919	
58 59	920	
60 61		
62 63		39
65		

Figures:

Fig. 2.

BSH residues (kg)	Biogas (m³)		Electricity (kWh)		He	at (kWh)	Total energy (kWh)	
and the second s	Control	Pretreatment	Control	Pretreatment	Control	Pretreatment	Control	Pretreatment
1000	4.6	27	9.4	55	10.2	62.9	19.6	118
5000	23	135	47	275	51	314.5	98	590
10000	46	270	94	550	102	629	196	1180

Table 1. Electricity and heat generation from control and BSAM pretreated BSH residues.

Table 2. Savings from biogas produced by utilizing control	ol and BSAM pretreated BSH residues.
--	--------------------------------------

BSH					1	Savings				
residues	Diesel (L) (0.23 L kW h-1)		USD (1.51 USD L-1)		GHG ^a (kg of CO ₂)		GHG ^b (kg of CO ₂)		Total GHG (kg of CO2)	
(AE)	Control	Pretreatment	Control	Pretreatment	Control	Pretreatment	Control	Pretreatment	Control	Pretreatment
1000	4.5	27,1	6.8	41	12.06	72.62		1460	1472	1533
5000	22.54	136	34	205	60.40	364.48		7300	7360	7664
10000	45	271.1	68	409	120.6	726.2		14600	14721	15326

^a Kg of CO₂ saved from diesel burned (2.68 kg CO₂ per L of diesel burned).
^b Kg of CO₂ saved from burning of residues (1.46 kg CO₂ per kg of residues burned).

1.0

Electronic Annex

Click here to access/download Electronic Annex Supplementary materials- BITE-D-20-07007R1.docx Declaration of Interest Statement

Declaration of interests

☑ The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

□The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: