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Anisotropic Mechanical Response of Layered Disordered Fibrous Materials

M. R. Houghton, M. A. Walkley, and D. A. Head∗

School of Computing, University of Leeds, Leeds LS2 9JT, United Kingdom

(Dated: November 18, 2020)

Mechanically bonded fabrics account for a significant portion of nonwoven products, and serve
many niche areas of nonwoven manufacturing. Such fabrics are characterised by layers of disordered
fibrous webs, but we lack an understanding of how such microstructures determine bulk material
response. Here we numerically determine the linear shear response of needle-punched fabrics mod-
eled as cross-linked sheets of 2D Mikado networks. We systematically vary the intra-sheet fiber
density, inter-sheet separation distance, and direction of shear, and quantify the macroscopic shear
modulus alongside the degree of affinity and energy partition. For shear parallel to the sheets, the
response is dominated by intra-sheet fibers and follows known trends for 2D Mikado networks. By
contrast, shears perpendicular to the sheets induce a softer response dominated by either intra-sheet
or inter-sheet fibers depending on a quadratic relation between sheet separation and fiber density.
These basic trends are reproduced and elucidated by a simple scaling argument that we provide.
We discuss the implications of our findings in the context of real nonwoven fabrics.

I. INTRODUCTION

The nonwovens industry produces a broad range of dif-
ferent fabrics tailored for specific applications such as sur-
gical face masks, fire fighting jackets, antibacterial wipes
and artificial leather [1–3]. The suitability of each fabric
for its intended application is dictated by a variety of de-
sign decisions at each stage of manufacturing, and many
of these decisions are strongly influenced by the mechan-
ical properties of the material. Designing new materials
and modifying existing ones by experimental trial-and-
error is a lengthy and costly process that depends on
iteratively testing and re-manufacturing fabrics. Compu-
tational modelling can in principle accelerate the trans-
lation of new products from the lab to the commercial
market by providing the capability to rapidly pre-screen
putative formulations; however, any such tool would need
to represent the fabric with sufficient fidelity to faithfully
approximate real systems.
At the microscopic level, the webs of many nonwoven

fabrics consist of randomly oriented and distributed net-
works of fibers. Similar networks from other domains
have been successfully modeled using established flexible
and semiflexible polymer theories [4–8]. The mechanical
properties of individual polymers are well understood [9–
11], but work in recent years has also allowed for a deeper
understanding of collective fiber network mechanics [12–
16]. In particular, work on Mikado networks has high-
lighted how the affinity of the response, i.e. the degree
to which the microscopic deformation field follows the
bulk strain, can be reduced for low fiber density and/or
highly flexible fibers, resulting in a significant lowering of
stiffness [17–21]. However, although anisotropy has been
numerically investigated in two dimensions [22], layered
networks in three dimensions have not been studied in
this context.

∗ d.head@leeds.ac.uk

In this manuscript we develop a model for layered
fiber networks motivated by the nonwovens fabric in-
dustry, and use it to investigate the mechanical re-
sponse as a function of controllable network parame-
ters and the direction of the applied shear strain. In
the generation of these networks, we take a simpli-
fied network representation similar to the permeability
work of Mao and Russell [23], i.e. a series of networks
that represent layered nonwoven fabrics that have been
bonded through needlepunching, and provide a first un-
derstanding of the mechanics of needlepunched nonwo-
vens through a systematic exploration of the macroscopic
network anisotropy. Our primary findings are summa-
rized in Fig. 1. We find that the response to a shear par-
allel to the sheet orientation is always dominated by the
intra-sheet fibers that lie within the sheets, with the de-
gree of affinity depending primarily on the network den-
sity. By contrast, perpendicular shear directions generate
a much softer response that can be dominated by intra-
sheet or the connecting inter-sheet fibres, depending on
both fiber density and sheet separation in a manner that
agrees with a simple scaling argument that we provide.
It is hoped that the methodology and first insights gen-
erated by this work will lead to high-fidelity predictive
tools for the nonwovens industry.

II. THE MODEL

Layered networks are generated by crosslinking a series
of parallel two-dimensional random fiber sheets, and the
linear mechanical response determined by minimizing the
total network energy in response to a macroscopic strain
applied at the boundaries. The geometry and mechanics
of the networks are described separately below.
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FIG. 1. A schematic summary of the dominant response
regimes observed for our model. For a shear parallel to the
sheets (‘xy’ in Fig. 2), the response is dominated by fibers
lying within the sheets, with a degree of affinity that depends
primarily on the fiber density. For perpendicular shears (‘yz’
and ‘xz’ in Fig. 2), the short fibers crosslinking the sheets
dominate the response for high density and/or widely sepa-
rated sheets, with a quadratic crossover that is derived in the
main text.

A. Network Geometry

Unless otherwise stated, the simulation box is cubic
with dimensions W × W × W , and contains a series of
square W × W sheets aligned in parallel. Each sheet is
a planar Mikado network of N elastic fibers of monodis-
perse length ℓ deposited with random orientations and
positions, ensuring isotropy and mass homogeneity when
each sheet is viewed on macroscopic length scales [17–20].
A total of M parallel sheets are placed in the simulation
box with the same normal vector for each plane, flush
to the cell walls, and with equal spacing h from adja-
cent sheets. Sheets are also contained within opposing
fixed boundaries, thus there are M = W/h + 1 sheets
in total, with M − 2 off-boundary sheets free to deform.
For simplicity, rather than generate each sheet anew, the
same Mikado network is repeated and rotated by π/2
between layers. This is sufficient to introduce disorder
in the inter-sheet crosslinks as described below. That
any systematic error arising from this rotation is at most
small is evident from plots of the shear modulus against
M in Appendix B, which shows no period 4 modulation
for full rotations as would be expected if this choice was
significant, but we cannot rule out more a significant con-
tribution for e.g. networks placed under torsion, rather
than the shears of interest here.
After generating the desired number of additional

sheets, the network is cross-linked in two stages; intra-
sheet followed by inter-sheet. Intra-sheet cross-linking is
performed by identifying the points of intersection be-
tween filament pairs as per standard Mikado network
generation. Each of these points is treated as a per-
manent and freely-rotating cross-link. Note that while
there are a range of bonding techniques employed for

non-woven fabrics, they are nonetheless often modelled
as flexible bond points [2], thus the neglect of torques
at cross-links is justified for this first investigation. It
should also be noted that the choice between clamped
and freely-rotating cross-links has been shown to make
little difference far from the rigidity percolation transi-
tion [20], which is also the regime of interest here.
The mean distance between cross-links, as measured

along a filament, is denoted ℓc, so the mean number of
cross-links per filament is ℓ/ℓc−1. Inter-sheet cross-links
are then inserted between cross-link nodes lying in adja-
cent sheets, if the node separation is less than a tolerance
ℓintra ≥ h, and with the constraint that each inter-sheet
cross-link is mapped to at most one other cross-link from
each of the neighbouring sheets. As constructed, inter-
sheet crosslinks are short rod-like elements with nodes
only at their ends, and thus can stretch but cannot bend.
Further details are given in Appendix A.
To investigate the response under various imposed

shears, the full network stack undergoes rigid body rota-
tion prior to applying the same shear strain as shown in
Fig. 2. We consider three sheet orientations labeled xy,
yz and xz, referring to the planes in which the sheets lie,
i.e. the third (absent) coordinate is constant for each
sheet. The applied shear strain is always in the x–z
plane as denoted in the figure. For simplicity and con-

FIG. 2. Sheet networks sheared in 3 different orientations by
prior rotation of the full geometry: xy (a), yz (b), and xz (c).
Arrows show the applied shear direction for each orientation.

sistency across all considered network orientations, fila-
ments are truncated at the box boundaries and all bound-
aries are fixed. Networks are deformed by a macroscopic
shear strain γ by laterally translating the upper bound-
ary y = W , with the lower boundary y = 0 kept fixed.
All other boundaries affinely follow the same strain.

B. Network Energy

As in previous works [17–20], individual fibers are mod-
eled as slender elastic bodies with deformation energies
for both stretching/compression and bending. The en-
ergy cost for bending is based on the wormlike chain
model [4], where non-zero curvature of the fiber midline
incurs the energetic penalty

Hbend =
κ

2

∫

ds
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for small curvatures, where the arc-length coordinate s is
integrated along the total contour length of the filament,
and t̂ is the tangent vector. Changes to the filament
contour length incur a corresponding stretching energy
cost

Hstretch =
µ

2

∫

ds

(

dℓ(s)

ds

)2

, (2)

where dℓ/ds represents the relative change in length
along the filament, and µ is a stretching modulus. Both
κ and µ can be given in terms of the cylindrical fiber’s
cross-sectional radius r and Young’s modulus Y as κ =
(Y πr4)/4, µ = Y πr2. Thus the ratio of bending to
stretching coefficients κ/µ = r2/4 is controlled by r, and
Y sets the overall stress scale.

The Hamiltonian for the full network is constructed
by linearly discretizing Eqs. (1) and (2) for all fila-
ment segments between cross-link nodes. As described
above, intra-sheet filaments are free to stretch and bend,
whereas the short connecting inter-sheet filaments may
only deform through stretching (and compression). The
desired shear is then applied at the boundaries, and the
Hamiltonian is minimized to determine the microscopic
network deformation that obeys static (athermal) me-
chanical equilbrium. All nodes other than those at the
boundaries are allowed to move in an unrestricted man-
ner, and since the rod configurations are fully specificied
by the nodes, rod rotation is similarly unconstrained. In
particular, intra-sheet rods are not constrained to rotate
within the original plane of the sheets. The minimization
is performed numerically, with the linear system solved
using the sparse direct LU based MUMPS software pack-
age [24, 25] called externally through our model imple-
mentation in PETSc [26, 27]. These displacements are
then used to calculate metrics of interest.

III. NUMERICAL RESULTS FOR ELASTIC

MODULI

The area of each sheet is denoted A, so the line den-
sity of filaments within each sheet is ρ = Nℓ/A [20].
M ′ = M − 2 denotes the number of freely deforming
sheets that contribute to the system energy, in addition
to all inter-sheet crosslinking rods. Metrics calculated
from the deformed network configurations include the
total network energy, E, and the intra-sheet and inter-
sheet energies, Ein, Eout respectively, defined as the net-
work energy restricted to the corresponding subsets of
filaments. The shear modulus G is related to E via

E/V = 1

2
Gγ2 with V = W 3 the simulation box vol-

ume [28]. Unless otherwise stated the linear box dimen-
sion is W = 2ℓ, the Young’s modulus for the individual
fibers is Y = 1, and the inter-sheet crosslink tolerance is
ℓintra = 6h/5.

A. Intra-sheet Filament Density

We first fix the number of sheets M and vary the over-
all filament density by controlling the number of intra-
sheet filaments, i.e. the number per sheet N or equiv-
alently the inter-sheet line density ρ. This in turn in-
creases the number of inter-sheet cross-linking filaments.
We denote the number of cross-linking filaments between
sheets as Ncf . From Fig. 3(a), it is clear that the shear
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FIG. 3. (a) Shear modulus, G, and (b) energy, E, scaled
to the affine prediction vs number of filaments per sheet, N ,
for three different shear directions. Sheet count and filament
radius were fixed at M = 5 and r = 1.996×10−3 respectively.
The dashed lines in (a) correspond to the affine predictions
of the modulus, Gaff, for the respective shear directions.

modulus for all shear directions increases with increas-
ing filament density, as expected. Moreover, shearing an
xy oriented network produces a significantly larger shear
modulus than the yz or xz oriented networks, for all of
the tested filament densities. Network deformation also
becomes more affine for higher density as demonstrated
in Fig. 3(b), as in previous works [13, 17–20], with the xy
orientation uniformly closer to affine that either the yz
or xz orientations. The xy orientation shows a sharper
initial increase towards affinity.
Fig. 4(a) shows that all orientations exhibit an increas-

ing stretch energy contribution to the total energy as fil-
ament density is increased, and moreover the yz and xz
orientations have a higher bending contribution to the to-
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FIG. 4. Proportion of (a) bending energy to the total energy,
Eb/E, and (b) inter-sheet energy to the total energy, Eout/E,
vs number of filaments per sheet, N , for three different shear
directions. Sheet count and filament radius were fixed at M =
5 and r = 1.996× 10−3 respectively.

tal energy than xy orientations for the range of densities
considered. The relative contribution of the inter-sheet
energy Eout in shown in Fig. 4(b) and demonstrates op-
posing trends for different shear configurations – whereas
the yz and xz orientations exhibit an increasing con-
tribution due to Eout as the filament density increases,
the contributions for xy orientations instead decreases.
The relative contributions due to Eout are also uniformly
lower for the xy orientation than either yz or xz. In all
of plots discussed so far, there is a close correspondance
in the yz and xz orientation data, with no significant
difference between the two.

B. Sheet Separation Distance

To investigate the effect of sheet separation distance,
recall that an increasing inter-sheet separation distance
h corresponds to a decreasing sheet number M and vice

versa, therefore h can be controlled by varying M in a
fixed size box. Fig. 5 shows the shear modulus and energy
per sheet varying M with a fixed number of filaments per
sheet N . The shear modulus steadily decreases with in-
creasing h for all of the shear orientations as shown in

Fig. 5(a). However, this data is for fixed box size and
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FIG. 5. (a) Total network shear modulus, G, and (b) energy
per sheet, E/M ′, vs sheet separation distance, h, for three
different shear directions, where M ′ = M − 2. Number of
filaments per sheet and filament radius were fixed at N = 300
and r = 1.996 × 10−3 respectively. The dashed lines corre-
spond to the affine predictions of the moduli for the respective
shear directions.

thus a varying number of sheets. To get a clearer pic-
ture of the effect of increased sheet separation distance
for fixed filament density, we can extract the energy cor-
responding to one sheet and a single set of connecting
cross-linking filaments by scaling the total energy by the
number of sheets; see Fig. 5(b) (note this definition ne-
glects one layer of inter-sheet fibers). From this we ob-
serve a much weaker decrease in the energy per sheet for
the yz and xz orientations, with no discernible variation
for the xy orientation. There is a similar variation in
the degree of affinity, with a weak but steady increase
in affinity for the yz and xz orientations, but no visible
variation for the xy orientation, as shown in Fig. 6.
Turning to the distribution of energies within the net-

works, Fig. 6 shows how affinity has no measurable de-
pendence on separation distance for the xy oriented net-
work, but increases with increasing separation distance
for both the yz and xz orientations. Fig. 7(a) shows
how increased sheet separation distance has no appar-
ent effect on the ratio of bending to stretching energy
for xy oriented networks, but promotes a higher contri-
bution of stretching energy in the yz and xz oriented
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FIG. 6. Energy, E, scaled to the affine prediction vs sheet
separation distance, h, for three different shear directions.
Number of filaments per sheet and filament radius were fixed
at N = 300 and r = 1.996× 10−3 respectively.
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FIG. 7. Proportion of (a) bending energy to the total energy,
Eb/E, and (b) inter-sheet energy to the total energy, Eout/E,
vs sheet separation distance, h, for three different shear di-
rections. Number of filaments per sheet and filament radius
were fixed at N = 300 and r = 1.996× 10−3 respectively.

networks. In terms of the intra-sheet/inter-sheet energy
ratios, Fig. 7(b) demonstrates decreasing dependence of
the total energy on inter-sheet energy for xy oriented
networks as sheet separation increases, and increasing
dependence on inter-sheet energy for yz and xz oriented
networks.

C. Network Orientation

Thus far, no significant difference in the predicted me-
chanical properties of yz and xz oriented networks has
been observed. To clarify the relationship between these
network orientations, Fig. 8(a) shows the ratios of the
shear modulus of the xy orientation, Gxy, yz orientation,
Gyz, and xz orientation, Gxz, for increasing filament den-
sity, and Fig. 8(b) shows these same ratios for increasing
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FIG. 8. Ratios of the shear moduli for each of the different
shear directions plotted against (a) filament density per sheet,
N , and (b) sheet separation distance, h.

sheet separation distance h. In no instance do the mod-
uli for the yz and xz orientations exhibit any significant
difference.

IV. DISCUSSION

We first derive approximate expressions for the various
types of elastic energy under different shear orientations,
before using these to aid in the interpretation of data
systematically varying both the intra-sheet fiber density
and the sheet separation.
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A. Energy Scaling

Using arguments given in Appendix C, the expected
number of cross-links within a single sheet is 〈n×〉 ∝ ρ2,
with a numerical prefactor that depends on the bound-
ary conditions. Since ρ = Nℓ/A, we can immediately
infer that 〈n×〉 ∼ N2. The number of connecting cross-
linking filaments between sheets, Ncf , results from a 1-1
mapping between selected cross-links, thus Ncf ∼ 〈n×〉
with some undetermined constant of proportionality. It
follows that Ncf should also scale with N2, as confirmed
by Fig. 13, where a line can be fit to give an exponent
of 2.0078 with an error of 6.7 × 10−3. Assuming the
range for inter-sheet cross-linking ℓinter is relatively only
slightly larger than h, and the connected cross-links min-
imize the distance within the search tolerance (see Ap-
pendix A), the length of cross-linking filaments will be
bounded below by, but close in value to, the separation
distance, h, and generally oriented almost (but not ex-
actly) perpendicular to the Mikado network sheets.
Our goal is to derive approximate expressions for the

magnitudes of the different energy types in each shear
orientation, to allow parameter ranges corresponding to
dominant regimes to be predicted. We assume affine net-
work deformation unless stated otherwise. The stretch-
ing energy of a single filament of length ℓ extending uni-
formly along its length with a total length change δℓ is

Es =
1

2

µ

ℓ
δℓ2, (3)

as immediately inferred from (2). For intra-sheet fil-
aments, we note that our assumption of affinity im-
plies that extension is indeed uniform along the fila-
ment length, up to both end points, and uninterrupted
by crosslinks. For the xy orientation under affine shear,
intra-sheet filaments extend by a length δℓ ∼ γℓ, so that
the energy of the filament scales as

∼
µ

ℓ
(γℓ)2 ∼ µγ2ℓ. (4)

There is no intra-sheet filament extension for the yz or xz
orientations under the assumption of the affinity. Note
this is true for the yz orientation in linear response, as
such sheets only extend to second order in the strain γ,
i.e. in the non-linear response regime. This is a conse-
quence of the symmetry, which requires the same sheet
extension for +γ as for −γ, so any extension must be
even in γ, i.e. quadratic to leading order. To scale the
single-filament stretching energy to the intra-sheet net-
work, we multiply through by the number of intra-sheet
filaments per unit area, N/A, to get

Eaff
in

A
∼

N

A
µγ2ℓ. (5)

Using the definition of filament density ρ = Nℓ/A, this
is equivalent to

Eaff
in

A
∼ ρµγ2. (6)

For inter-sheet cross-linking filaments, we use the sheet
separation distance, h, to approximate their length such
that the spring constant is k ≈ µ/h. As confirmed by
the explicit calculations provided in Appendix D, for all
of the shear orientations considered, the extension under
the assumption of affinity can be no more than ∼ γh,
with a small prefactor as these filaments are almost per-
pendicular to the shear direction. Thus, the per-filament
stretching energy is

∼
µ

h
(γh)2 ∼ µγ2h. (7)

As argued above and confirmed in Fig. 13, the number
of cross-linking filaments per sheet per unit area scales
with 〈n×〉 ∼ ρ2, thus the total inter-sheet energy over all
filaments per unit area scales with

Eaff
out

A
∼

Ncf

A
µγ2h ∼ ρ2µγ2h, (8)

with a small numerical prefactor as noted above.

B. Discussion and Implications

Although the averaged deformation field matches the
macroscopic affine prediction for any material, disordered
media can achieve a lower energy response by deforming
according to a non-affine displacement field, the precise
form of which depends on the specific microstructural
disorder. Nonetheless the affine scaling predictions Eaff

in

and Eaff
out derived above can be used to guide understand-

ing of trends in the results of the numerical experiments.
We first discuss the xy shear orientation before turning
to consider the yz and xz orientations together. As noted
above and confirmed in Appendix D, the inter-sheet con-
necting rods can only stretch, and will do so only weakly
as they lie almost perpendicular to the sheets for all of
the shear orientations considered.
For the xy oriented networks, we observe that Ein

is generally much larger than Eout over the parameter
ranges considered, as demonstrated in Fig. 9(a). This
is expected from the foregoing argument, as Eaff

out has
a very small numerical prefactor reflecting the near-
perpendicularity of filaments to the shear. Consequently
the total energy and total nonaffinity are largely inde-
pendent of h, and follow similar trends to pure 2D sheets
including increasing affinity and stretch-dominated re-
sponse with increasing ρ ∼ N ; see Fig. 9(b) and Fig. 9(c).
Nonaffine displacements reduce Ein and Eout below their
respective affine predictions Eaff

in
and Eaff

out, in a manner
that minimizes the total network energy E = Ein+Eout.
There is no reason to expect the same set of nodal
displacements to maximally reduce both Ein and Eout,
thus intra-sheet and inter-sheet non-affinity will compete,
with an increase in one coming at the expense of a de-
crease in the other. From Eqs. (6) and (8), we note that
Eout ∼ ρhEin. Thus for larger ρ and h, energy mini-
mization will select for a greater reduction in Eout and a
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FIG. 9. Sheet separation distance, h, vs number of filaments per sheet, N , coloured by the ratio of inter-sheet to intra-sheet
energy, Eout/Ein, in the (a) xy and (d) xz shear directions, the proportion of bending energy to total energy, Eb/E, in the (b)
xy and (e) xz shear directions and the energy, E, scaled to the affine prediction in the (c) xy and (f ) xz shear directions.

reduction in the ratio Eout/Ein, as confirmed in Fig. 9(a).
Conversely, node displacements that primarily reduce Ein

are expected for small ρ and/or h. Thus although we still
expect Eout/Ein ≪ 1, it should be higher for low ρ, h, as
confirmed by the figure.
For yz and xz orientations, the affine prediction for

the intra-sheet energy is now zero, Eaff
in

= 0, whereas the
inter-sheet affine energy prediction scales as in Eq. (8)
Eaff

out/A ∼ ρ2µγh. Nonaffine deformations will again act
to minimize the total energy, but in this case will now
increase Ein from zero. For the range of network pa-
rameters considered here, Eout is not expected to be sig-
nificantly reduced from Eaff

out by nonaffine deformations,
and we therefore expect Eout ∼ ρhEin to hold approxi-
mately true, as supported by Fig. 9(d). As with the xy
oriented networks, the degree of affinity of the yz and
xz oriented networks broadly increases with ρ and h as
shown in Fig. 9(f ). This suggests that the increase in
affinity derives from increasing constraints imposed by
the inter-sheet cross-links for increasing ρh, similar to
the increased affinity with ρ in 2D Mikado networks [17–
20].

V. SUMMARY

While many fiber network models consider isotropic
and homogeneous Mikado networks of randomly oriented
fibers, a range of industrial materials can be better mod-
eled as layers of 2D Mikado sheets, with inter-sheet link-
ing fibers providing mechanical integrity. In our inves-
tigation into this form of anisotropy, we generated pre-
dictions for the linear mechanical properties of such net-
works under imposed shear, and clarified the relationship
between yz and xz shear directions. We have identified

the dominant microscopic mechanisms that explain the
measured bulk response by extracting the relevant quan-
tities from our numerical solutions, confirmed by a simple
scaling argument that, with further development, could
be extended to also explain the observed trends in the
ratio of fibre bending to stretching energy. Furthermore,
we see that while the xy oriented networks follow similar
trends to known results for 2D Mikado sheets, the com-
petition between Ein and Eout allows Ein to be reduced
below the affine prediction Eaff

in
in this xy case, and leads

to a reduction in the total energy cost in the yz and xz
oriented networks at the expense of an increase in Ein

from 0.

It would be interesting to see if experiments on mate-
rials with comparable network geometries would exhibit
similar mechanical properties and trends to those pre-
dicted by our numerical model. Both the inter-sheet sep-
aration h and fiber density ρ ∼ N in Figs. 1 and 9 should
be controllable by suitable synthesis methods, and test-
ing for different shear directions presents no fundamental
challenge for characterisation. With validation and fur-
ther model development, this first investigation into the
competition between intra- and inter-sheet energy could
be used to guide the design and manipulation of new
or existing nonwoven fabrics that are bonded through a
mechanical process such as needlepunching. Specifically,
these results could have implications for deciding layer
frequency, separation distance, punch depth, and needle
count, since needleboard design determines fabric cross-
link density [2, p. 404].
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Appendix A: Inter-sheet Cross-linking

Cross-linking between sheets was performed as in
Fig. 10. For every internal node na

i of every filament in
sheet a, and every internal node nb

j of every filament in

an adjacent sheet b = a+1, the closest nb
j to na

i was iden-
tified. If the separation between the two nodes exceeded
a tolerance ℓinter, then na

i was left disconnected to sheet
b, and the next node of sheet a was considered. If the
separation is less than ℓinter, and nb

j has not already been
connected to any other nodes in sheet a, then a short fiber
is added connecting nodes na

i and nb
j . We acknowledge

FIG. 10. An example of 1-1 cross-link mapping between sheets
of a layered network. Each node na

i of sheet a has a conical
search tolerance for finding the closest nb

j of sheet b.

the possibility of introducing a small bias by assigning a
direction to move between sheets (e.g. b = a + 1 rather
than b = a − 1), but expect no significant difference to
the mechanical properties for the networks and shears
considered.

Appendix B: Finite Size Effects

Fig. 11 shows the effects of independently varying the
area of the sheets at fixed line density ρ, and the number
of sheets with fixed inter-sheet spacing h, on the mea-
sured shear modulus G in all 3 shear orientations. In
both cases, any variation was much smaller than the er-
ror bars for the ranges considered, which corresponds to
the parameter ranges investigated in the main text. We
therefore conclude our basic findings are independent of
system size effects. We further note there is no modula-
tion of the shear stress with M , such as a period-4 effect

that might be expected should our results be sensitive to
the rotation of the sheets, as discussed in Sec. II A.

200 300 400 500 600 700 800
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yz
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FIG. 11. Shear modulus, G, vs (a) sheet area quantified by
the number of filaments N with the line density ρ = 99.8
fixed, and (b) the number of sheets with fixed sheet separation
distance h = 0.25.

Appendix C: Cross-linking Density

To derive the cross-link density 〈n×〉 of a 2D network,
we first consider N = 2 filaments of the same length ℓ,
deposited onto a plane with random position and orien-
tation. Denoting the relative angle between the filament
pair θ, the region in which the midpoint of the second fil-
ament must fall to intersect the first filament, and hence
form a single cross-link, is given by the parallelogram in
Fig. 12). The area of this region is A× = ℓ2| sin(θ)|, and
averaging over θ gives

〈A×〉 =
1

π/2
ℓ2

∫ π/2

0

dθ sin θ =
2ℓ2

π
. (C1)

Therefore, the probability of a randomly-deposited fila-
ment being cross-linked with one other filament in a plane
of area A is

p× =
A×

A
=

2ℓ2

Aπ
. (C2)

This assumes either an infinite plane, or one with dime-
nions > ℓ and periodic boundaries. For fixed boundaries
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FIG. 12. Given the relative angle θ between a pair of filaments
of length ℓ, the area in which a cross-link must lie is a parallel-
ogram found by considering filament midpoints. For the red
filament seen here, the midpoint of a second filament must lie
somewhere in the parallelogram for the pair to intersect.

as employed in this manuscript, we expect the same scal-
ing with ℓ and A, but a different numerical prefactor to
2/π.
For N > 2, the expected number of cross-links per

filament for large N ≫ 1 is therefore

Np× =
2Nℓ2

Aπ
=

2

π
ρℓ, (C3)

in terms of the line density ρ = Nℓ/A. Thus the total
number of cross-links, avoiding double counting, is

N

2

(

2

π
ρℓ

)

=
1

π
Nρℓ =

N2ℓ2

πA
, (C4)

and the total number of cross-links per unit area, 〈n×〉,
is (C4) divided by A,

〈n×〉 =
N2ℓ2

πA2
=

ρ2

π
. (C5)

Without the numerical prefactor of 1/π, this is the ex-
pression used in the main text.

Appendix D: Near-perpendicular fibers

Consider first the geometry in Fig. 14, in which an
inter-sheet fibre is aligned almost perpendicular to the
sheets in the xz orientation. In the coordinates indicated,
the fibre has the end-to-end vector (∆x,∆y, h) and initial

length ℓ0 =
√

∆2
x +∆2

y + h2. Note that ∆x = ∆y = 0

corresponds to the exact perpendicular, and ∆x and ∆y

can each be positive or negative.
Suppose an affine shear strain γ is applied as in

the figure. Then the new end-to-end vector be-
comes (∆x + γh,∆y, h), with a new length ℓ0 + δℓ =
√

(∆x + γh)
2
+∆2

y + h2. Expanding this in powers of
γ,

ℓ0 + δℓ = ℓ0

{

1 +
γh∆x

ℓ2
0

+
(γh)2

2ℓ4
0

(

ℓ20 −∆2

x

)

+ . . .

}

,

100 200 300 400 500

N

103

N
c
f

y ∝ x2

FIG. 13. The number of intra-sheet filaments per sheet per
unit area, N , vs the inter-sheet cross-linking filaments per
sheet per unit area, Ncf . The trend is quadratic as verified
by the slope of y ∝ x2. Errors are no larger than the symbols
here and throughout.

γ

x

x

z y
h

γΔ

FIG. 14. Schematic of a single fibre (thick black line) with
end-to-end vector (∆x,∆y, h), aligned nearly perpendicularly
between two parallel sheets separated by a distance h. After
a shear strain γ is applied, the fibre transforms to the vector
(∆x + γh,∆y, h) (thick gray line).

so the linear extension for small strains γ ≪ 1 is δℓ ≈
1

ℓ0
γh∆x, which vanishes for exactly perpendicular fibers

with ∆x = 0. For almost perpendicular fibres with
∆x,∆y ≪ h, ℓ0 ≈ h and δℓ ≈ γ∆x ≪ γh, so the ex-
tension is small, even within the linear response regime.
Since the stretching force is proportional to δℓ, the con-
tribution to the stress tensor due to this fibre will be
similarly small.
The discussion above was presented for sheets in the

xz orientation, for which the end-to-end vector of the
inter-sheet fibre is (∆x,∆y, h) as above. For xy sheet ori-
entations, this vector can be written (∆x, h,∆z), which
becomes (∆x + γ∆z, h,∆z) after shear. Repeating the
calculations then gives the predicted linear extension
δℓ ≈ 1

ℓ0
γ(∆x)(∆z). Finally, for the yz sheet orienta-

tion, the end-to-end vector changes from (h,∆y,∆z) to
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(h + γ∆z,∆y,∆z), with an extension δℓ ≈ 1

ℓ0
γh∆z. In

all cases the same conclusions can be drawn, i.e. that
the linear extension of near-perpendicular fibers is small,
vanishing for exactly perpendicular fibers with all of the
∆’s zero.
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