

This is a repository copy of Breakfast on-the-go: Evaluating the nutritional content of supermarket products.

White Rose Research Online URL for this paper: <u>https://eprints.whiterose.ac.uk/168585/</u>

Version: Accepted Version

Article:

Yip, YL and Ensaff, H orcid.org/0000-0003-4582-5244 (2021) Breakfast on-the-go: Evaluating the nutritional content of supermarket products. Nutrition, 84. 111098. ISSN 0899-9007

https://doi.org/10.1016/j.nut.2020.111098

© 2020, Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can't change the article in any way or use it commercially. More information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

1 Breakfast on-the-go: Evaluating the nutritional content of supermarket products

2 Abstract

Objective: Breakfast consumption on-the-go is becoming an established food habit; this has been
accompanied by a growing number of related products. Given the limited research on these
products, and the growing trend in breakfast consumption away from home and on-the-go, the aim
of this cross-sectional study was to survey and scrutinise the nutritional composition of breakfast
on-the-go products available in the UK.

Research Methods & Procedures: Field visits to supermarkets of the top seven grocery retailers
(accounting for 88% of the UK market) were conducted in a large city in the UK. Breakfast on-the-

10 go products (n=128) were identified, and data (including price, energy and nutrients) were

11 collected. Products were categorised according to food format (breakfast biscuits, breakfast drinks,

12 high protein breakfast drinks and porridge pots). Products were profiled according to front-of-pack

13 (FoP) nutrition labelling (low, medium, high) for fat, saturated fat, total sugars and salt content.

14 Nutrient content and profiles were examined across categories.

Results: Significant associations were revealed between product type and nutrient profiles for total fat, saturated fat, and salt. Total sugar content varied from 11.8g per portion observed in biscuits, to high protein breakfast drinks, which contained almost double this level (20.0g). Notably, six out of ten breakfast on-the-go items (60.2%) were profiled as high for total sugars (according to FoP criteria). Most items were medium in total fat (87.5%), and low in saturated fat (61.7%) and low in salt (56.3%).

Conclusion: Reformulation of breakfast on-the-go products, principally with respect to sugar
 content, is warranted. This is particularly relevant given the growing role of breakfast consumption
 on-the-go, and ongoing developments in the sector as new product ranges and formats are
 introduced.

26 Highlights

- Changing breakfast habits are driving a sector of breakfast on-the-go products.
- Most breakfast on-the-go products (60.2%) were profiled as high for total sugars.
- Sugar content varied, e.g. 11.8g (breakfast biscuits), 20.0g (high protein drinks).
- As the popularity and relevance of these items increases, there is need to reformulate to
- 31 improve their nutrient profile.

32 Introduction

33

Most of the UK population regularly consume breakfast¹, and some 51% consume breakfast away 34 from home sometimes²; this has been attributed to time constraints and the accelerating pace of 35 36 everyday life^{2,3}. Notably, almost a third of breakfast consumption away from home is on-the-go², 37 previously estimated at 205 million occasions⁴. Breakfast on-the-go is fast becoming an established food habit⁵, and similar trends have been reported in the US⁶ and Australia⁷. This has been 38 39 accompanied by a fast-moving market in associated breakfast on-the-go (OTG) items. These are 40 packaged products (with a shelf life) specifically targeting breakfast as an eating occasion, and in a 41 format convenient to be eaten on the move or away from home, e.g. in the workplace. These items 42 have gained popularity in the UK, with breakfast biscuits first introduced in 2010⁸, quickly followed by breakfast drinks and porridge pots. In 2016, breakfast drinks and breakfast bars 43 44 accounted for 7% and 22%, respectively, of new breakfast products launched⁹. Interestingly, breakfast drinks also had the largest increase in new product development (2% to 11%) between 45 2012 to 2015⁹, with sales exceeding £14 million in 2016, a 74% growth from the previous year¹⁰, 46 47 while the market leader of breakfast biscuits reported sales of more than £70 million¹⁰. Further, in 2018, the total value of the UK breakfast occasion was estimated at £11.6 billion, with the top 48 49 breakfast categories reported to include breakfast biscuits and cereal bars¹¹. Interestingly, key 50 consumers for these OTG products are young adults who are most likely to consume breakfast while at work¹², the so-called 'deskfast'. 51

52

53 While breakfast consumption has been supported as a simple nutrition recommendation¹³,

54 associated with diet quality¹, wellbeing and a healthy lifestyle¹⁴, as well as reduced risks of type 2 55 diabetes¹⁵, metabolic syndrome¹⁶, and obesity^{16,17}, limited research exists on the nutritional quality 56 of breakfast OTG products. An Australian study⁷ reported that breakfast drinks had higher energy, 57 sugar and sodium, while breakfast bars had more total and saturated fat, and sugar (both compared to an alternative of cereal with whole milk). Another Australian study¹⁸ found breakfast drinks to
have high energy density and similar sugar content to energy drinks and sugar sweetened beverages.

Given the limited research on breakfast OTG products and the growing trend in breakfast
consumption away from home and on-the-go, the aim of this cross-sectional study was to survey
and scrutinise the nutritional composition of these products.

64

65 Materials and methods

66 The top seven grocery retailers in the UK were identified; these accounted for 88% of the UK 67 market¹⁹. Supermarkets for these retailers (in one large city in England) were selected as the sites 68 for data collection. Ethical approval for this study was granted through the faculty research ethics 69 committee.

70

71 A comprehensive survey of breakfast OTG products was conducted in November 2016 in these 72 supermarkets. In order to ensure that all relevant products available in the supermarkets were 73 included in the study, two visits to each supermarket site were undertaken. For each set of visits, a total of 339 OTG products were identified across the seven data collection sites. In this study, 74 75 breakfast OTG products were defined as packaged convenience foods identified as breakfast items 76 and available at ambient temperature. These criteria were pre-defined prior to initial reconnaissance conducted at the supermarket retailers, and refined prior to data collection visits. Products not 77 78 meeting this definition were excluded, as were 'specialist' items such as baby breakfast foods. Data 79 recorded from products were: brand and product name, energy, nutrient content, ingredients, price and portion size. All data were checked and inspected for inconsistencies, unexpected or missing 80 81 values, and any anomalies were rectified. Details for the products were cross-checked using retailer 82 and manufacturer websites, wherever possible. In addition, 5% of data (corresponding to 17 cases) 83 were randomly selected and verified to check that the data entry corresponded with the original

84 source. Many OTG products were available at more than one supermarket, i.e. the total of 339 OTG products across the seven supermarkets corresponded to 128 unique OTG products. Therefore, the 85 final dataset was aggregated (with 211 duplicates removed), and the OTG products in the final 86 87 dataset (n=128) were categorised according to food format and content. In accordance with the 88 non-normal distribution of the data, data were described as medians and interquartile ranges (25th 89 and 75th percentiles). Nutrient content across different categories was examined using Kruskal-90 Wallis tests, followed by pairwise comparisons to determine differences between categories. For all 91 items in the final dataset (n=128), levels of fat, saturated fat, total sugars and salt were considered 92 against criteria for the UK's front-of-pack (FoP) nutrition labelling system²⁰, and assigned low, 93 medium or high, corresponding to a colour code of green, amber or red, respectively. This system 94 was used to assess the fat, saturated fat, total sugars and salt content of the products and was a 95 means of categorising foods based on their nutritional quality²¹. The relationships between product 96 types and FoP categories, were examined using Fisher exact tests. Data analysis was performed 97 using SPSS Statistics Version 23.0 (IBM), and significance was set to p<0.05.

99 **Results**

100

- Across the seven retailers, 339 OTG products were identified; these corresponded to 128 unique
 OTG products, with the majority, i.e. 80 of the 128 products, available in multiple retailers. The
 items were categorised as: breakfast biscuits (including breakfast bakes and breakfast bars), (n=44);
 porridge pots (oats typically combined with dried milk powder, sugar and flavouring), (n=68);
 breakfast drinks (n=8); high protein breakfast drinks (n=8). Data for these were compiled, Table 1.
- Table 1 Portion size, price, energy and nutrient content (all per portion) across breakfast on-the go items (medians and interquartile ranges (IQR))

	Breakfast biscuits	Porridge pots	Breakfast drinks	High protein breakfast drinks
n	44	68	8	8
Portion size	50 (40-50) g	60 (55-70) g	250 (250-250) ml	330 (275-330) ml
per portion				
Price (£)*	0.39 (0.35-0.54) ^a	0.99 (0.85-1.20) ^b	1.37 (1.34-1.39) °	1.43 (1.38-1.57) ^c
Energy (kJ)	838.9 (692.5-929.9) ^a	918.4 (857.7-1049.1) ^b	798.1 (713.9-881.8) ^a	830.5 (786.6-881.8) ^{ab}
Protein (g)	3.3 (2.6-3.8) ^a	8.4 (7.1-10.9) ^b	9.2 (8.6-9.5) bc	20.0 (20.0-21.0) °
Fat (g)	6.5 (4.5-7.5) ^a	3.2 (2.7-3.9) ^b	4.4 (2.5-7.0) ^{ab}	0.6 (0.4-3.1) bc
Saturated fat (g)	1.1 (0.7-1.9) ^a	0.6 (0.5-0.8) ^b	2.3 (0.3-4.3) ^{ab}	0.3 (0.2-2.0) ^b
Carbohydrate (g)	31.6 (27.0-34.3) ^a	37.4 (34.2-41.7) ^b	25.0 (25.0-26.0) ^a	24.0 (22.0-24.0) ^a
Sugar (g)	11.8 (9.5-13.2) ^a	14.1 (10.8-16.5) ^b	19.3 (18.5-20.0) ^c	20.0 (12.0-20.0) ^{bc}
Salt (g)	0.2 (0.2-0.3) ^a	0.1 (0.1-0.2) ^b	0.4 (0.4-0.4) ac	0.5 (0.5-0.6) °
Fibre (g)	2.3 (1.6-2.8) ^a	4.0 (3.2-4.7) ^b	5.5 (5.3-5.8) ^c	3.2 (3.0-6.3) ^{bc}

110 * an average price was calculated for each product to address any price variation between

supermarkets; categories with an unlike superscript letter within a row indicate a significant difference for that variable.

113

114 Breakfast OTG items ranged in price from 11p to £1.58 per portion. Price per portion varied

significantly across product types $\chi^2(3) = 87.32$, p < 0.001, with a mean rank of 26.25 for biscuits

116 the least expensive (median=39p), and 119.50 for high protein breakfast drinks the most expensive

117 (median=£1.43). Energy median values were relatively low, ranging from 798.1kJ (drinks) to

118 918.4kJ per portion (porridge pots). Notably, there was a large variation in protein content per

119	portion, exemplified by median levels of 3.3g and 20.0g, for biscuits and high protein breakfast
120	drinks, respectively. Protein content varied significantly across product type $\chi^2(3)=89.26$,p<0.001,
121	as did energy content $\chi^2(3)=23.49$,p<0.001. Median fibre content of products was in the range of
122	2.3g (breakfast biscuits) to 5.5g per portion (breakfast drinks). High protein breakfast drinks had the
123	lowest fat content per portion (median=0.6g). The highest fat content was seen in breakfast biscuits
124	(median=6.5g per portion), while breakfast drinks contained most saturated fat (median=2.3g per
125	portion). Both fat and saturated fat content varied significantly across product type,
126	$\chi^2(3)=47.33$,p<0.001; $\chi^2(3)=15.41$,p<0.001, respectively. The lowest carbohydrate content was
127	found in breakfast drinks and high protein breakfast drinks (median=25.0g per portion,
128	median=24.0g per portion, respectively), with porridge pots having the highest levels
129	(median=37.4g). Sugar content varied from 11.8g per portion observed in biscuits, to high protein
130	breakfast drinks, which contained almost double this level (20.0g per portion); total sugar content
131	varied significantly across product types $\chi^2(3)=31.21$,p<0.001. Likewise, salt content varied
132	significantly $\chi^2(3)=61.09$, p<0.001, with a mean rank of 42.71 for porridge pots containing the least
133	salt per portion (median=0.1g), and 121.94 for high protein breakfast drinks (median=0.5g). Fibre
134	content varied significantly across product type $\chi^2(3)=51.73$, p < 0.001; lowest in biscuits with a
135	mean rank of 34.31 (median=2.3g per portion) and highest in breakfast drinks with a mean rank of
136	113.88 (median=5.5g per portion), reflecting the addition of fibre (e.g. soluble wheat fibre, inulin)
137	to drinks. Significant differences were found between some pairs of product types for certain
138	nutrients, and these are highlighted in Table 1. Notably, breakfast biscuits were significantly
139	different to porridge pots.
1.40	

141 The percentage of items assigned to FoP categories (high, medium and low) with respect to fat, 142 saturated fat, total sugars and salt is shown in Figure 1. Notably, most items (60.2%) and 143 specifically all breakfast drinks and more than half of biscuits, high protein breakfast drinks and 144 porridge pots, were profiled as high for total sugars. No association between product type and FoP

145 categories for total sugars (p=0.118) was found. When considering fat, most were medium in total 146 fat and low in saturated fat (87.5% and 61.7%, respectively). Significant associations were revealed between product type and FoP categories for fat (p<0.001), with biscuits having the highest 147 148 proportion of items medium or high, whereas all high protein breakfast drinks were low in total fat. 149 Likewise a significant association between product type and saturated fat was found (p < 0.001). 150 Breakfast drinks and biscuits displayed the most adverse saturated fat profile with 50.0% and 13.6%, respectively exceeding the thresholds for high saturated fat. Conversely, the majority of 151 152 high protein breakfast drinks (87.5%) and porridge pots (80.9%) were low in saturated fat. All items were low or medium in salt. There was a significant association between product type and FoP 153 154 categories for salt (p<0.001), and although all drinks were 'low' in salt, most biscuits (93.2%) 155 exceeded the cut-off for low salt labelling.

- 159 Figure 1 Percentage of breakfast OTG products classified as low, medium and high (according to front-
- 160 of-pack nutrition labelling²⁰) for levels of fat, saturated fat, total sugars and salt
- 161 (colour figure)

163 Discussion

This overview has revealed breakfast OTG products to be high in total sugar, medium in total fat, low in saturated fat, and low in salt content. Differences across product type (breakfast biscuits; porridge pots; drinks; and high protein breakfast drinks) were found. Notably, differences in sugar content, exemplified by 20g per portion in high protein breakfast drinks, almost twice as much as breakfast biscuits (11.8g per portion) were revealed. This variation in sugar across product types corresponds with previous research from Australia⁷.

170

Most OTG products were assigned 'high' in total sugars, according to FoP nutrition labelling. This included almost two thirds of breakfast biscuits and more than half of porridge pots, all breakfast drinks and most high protein breakfast drinks. In contrast, salt levels were low in most products, including all drinks and most porridge pots, potentially reflecting the UK's salt reduction strategy which began in 2004²², and is credited with reducing the population's mean salt intake.^{23,24}

177 The energy content of breakfast OTG items ranged from 798.1kJ for breakfast drinks to 918.4kJ per 178 portion for porridge pots; this was relatively low compared to conventional recommendations for 179 breakfast, i.e. 1.7 MJ, based on a woman's average energy requirements²⁵. This is relevant since it 180 is unclear whether these items are generally consumed as part of a breakfast meal (which should account for approximately 20% of daily dietary intake²⁶) or are the sole component. Further work 181 182 examining the contribution of breakfast OTG to the nation's diet, and how these items are 183 consumed including their consumption outside the breakfast setting, would be valuable. This would 184 also enable these items (taking into account their use, e.g. in combination with other breakfast 185 components) to be compared with the average breakfast intake for UK adults, reported as 1425kJ 186 Energy, 24g total sugars, 11g fat, and 5g saturated fat¹. The trend for breakfast consumption away 187 from home and on-the-go is part of our changing foodscape of how we access, consume and relate

to food. Other meals are also adjusting and this is reflected in the rapid and substantial growth in
 food delivery apps²⁷.

190

191	The fibre content of OTG products varied; some of the highest levels were observed in breakfast
192	drinks, and are attributed to the inclusion of soluble wheat fibre, inulin, fruit puree and oat flour.
193	With a median value of 5.5g for breakfast drinks, this in itself looks favourable when considering
194	the recommendation for fibre of 30g/day ²⁸ and the approximate 20% that breakfast should
195	contribute ²⁶ , as well as the nation's current fibre intake which fails to meet recommendations ²⁹ .
196	

197 Most breakfast OTG products did not stand up to scrutiny, particularly with respect to sugar and 198 less so, total fat. Interestingly, this conflicts with consumers' perceptions of OTG products as a 199 healthier alternative to flavoured breakfast cereals which are perceived as high in sugar³. This 200 perception has also lead to the consumption of breakfast OTG products outside breakfast, e.g. breakfast biscuits as an alternative to regular biscuits³⁰. There is a need to raise public awareness of 201 202 the nutrient content in OTG products, and to challenge perceptions relating to their 'healthiness'. 203 This could complement action from consumer organisations and charities in the UK and beyond^{31–} ³³, highlighting sugar levels in breakfast biscuits³², and breakfast drinks³³. Further, evidence has 204 205 suggested the value of messages emphasising variations of breakfast foods internationally, and the 206 arbitrariness of breakfast traditions (and the foods typically consumed for breakfast)³⁴. Such messages may have a role in improving consumers' food choice habits for breakfast, as well as 207 208 initiating development in the sector as other breakfast OTG product ranges and formats are 209 introduced.

210

This study's findings also point to the need to reformulate breakfast OTG products, specifically
with respect to sugar content. Reformulation appears feasible given the 47% decrease in salt content
of UK breakfast cereals between 1995 and 2015³⁵, whilst sugar content in breakfast cereals

214 remained high, attributed to a lack of a sugar reduction strategy³⁵. Since 2017 the UK has been 215 undertaking a sugar reduction programme to "remove sugar from everyday products"³⁶. Current 216 efforts focus on specific food types including biscuits, morning goods such as croissants, and 217 breakfast cereals³⁷; given the continuing demand for the OTG format from breakfast consumers³⁸, 218 further emphasis should be placed on these items. With new product ranges entering the 219 marketplace³⁹, reformulation is warranted. Considering the level of progress to date with the UK's 220 sugar reduction programme (2.9% overall reduction in average sugar content between 2015 and 221 2018), then this may be a challenge – although more progress was evident for breakfast cereals specifically (reduction of 8.5%)⁴⁰, and there are indications of further reductions, including across 222 223 different formats. Reformulation efforts to increase dietary fibre in breakfast cereals is also likely to 224 become more important⁴¹, particularly as the low national levels of fibre intake²⁹ attract more attention. Interestingly, inclusion of dietary fibre in some of the OTG products in this study was 225 226 evident, and this may point to further developments to come.

227

228 Previous research indicates that FoP labelling could convey substantial improvements to energy 229 and nutrient intakes⁴². Most breakfast OTG products did not utilise such labelling; this is pertinent, 230 as most would have a 'red light' for total sugars; and consumers are more likely to avoid products profiled with 'red lights'⁴³. FoP labelling may also challenge consumers' perception of items as a 231 232 healthy alternative and support better consumer decisions as levels of nutrients varied across products. There has been growing pressure for manufacturers to adopt FoP labels, and interestingly, 233 234 a large breakfast cereal manufacturer announced that it would introduce FoP labels for the majority of its breakfast cereals in the UK⁴⁴. 235

236

237 The data collected provide a valuable record of breakfast OTG products and their nutritional

238 composition. They also offer a reference point against which subsequent data may be compared, to

239 indicate improvements (or otherwise) in the extent and nutritional composition of products. There is

240 however, limited potential for the data to be used in, for example dietary assessment, given the 241 extent of nutrients considered. Data were collected in-store, and from retailers and manufacturers' websites, and it is important to note that results of this study are reliant on their accuracy and 242 products available at the time of the study. Total sugar, and not free sugar content, was considered 243 244 in this work. Given that some manufacturers are taking action to reduce free sugar content in products to accommodate the dietary guidelines around free sugars²⁸, research is recommended to 245 examine this further. This study was limited to packaged products and did not include for example 246 247 freshly bakery items such as croissants. Further, data collected relate to products available in one 248 city and do not account for regional differences, nor own-label products from smaller supermarkets. 249

250 Conclusions

Most breakfast OTG products were high in total sugar, medium in total fat, low in saturated fat, and low in salt content. Nutritional composition of breakfast OTG products varied significantly between product types. Reformulation to reduce sugar content in breakfast OTG products is needed; indications are that this is feasible and should be embraced within the current sugar reduction programme in the UK. Likewise, efforts to promote better food choice by consumers should be pursued. Given the growing role of breakfast on-the-go, there is now the opportunity for new product development to contribute to a reduction in the population's sugar intake.

259 **References**

- Gaal S, Kerr MA, Ward M, McNulty H, Livingstone MBE. Breakfast Consumption in the
 UK: Patterns, Nutrient Intake and Diet Quality. A Study from the International Breakfast
 Research Initiative Group. *Nutrients*. 2018;10(8). doi:10.3390/nu10080999
- 263 2. Mintel. Breakfast Eating Habits UK July 2018. London: Mintel; 2018.
- 264 3. Mintel. *Breakfast Cereals*. London: Mintel; 2015.
- 265 4. North A. Pace of life pushes breakfast on the go occasions up 13%. *The Grocer*. 2015.
- 266 5. Key Note. *Cooking & Eating Habits*. London: Key Note; 2015.
- Flanigan E, Maimone M. Uncommon Sense: The Global State of Breakfast? What the
 Consumer Wants, and How You Can Provide It. Nielsen Insights.
 https://www.nielsen.com/uk/en/insights/article/2016/uncommon-sense-the-state-of-breakfastwhat-the-consumer-wants-and-how-to-provide-it/. Published 2016. Accessed October 1,
 2020.
- Woods J, Walker K. Choosing breakfast: How well does packet information on Australian
 breakfast cereals, bars and drinks reflect recommendations? *Nutr Diet*. 2007;64(4):226-233.
 doi:10.1111/j.1747-0080.2007.00150.x
- 8. Hoşafçi P. Is This the Beginning of the End for Breakfast Cereals? Euromonitor
 International. https://blog.euromonitor.com/is-this-the-beginning-of-the-end-for-breakfastcereals/. Published 2014. Accessed October 1, 2020.
- 278 9. Mintel. Breakfast Eating Habits UK 2016. London: Mintel; 2016.
- 10. North A. Along for the ride: Breakfast Category Report 2016. August 6, 2016: The Grocer,
 41-58.
- Lovell C. Breakfast on the rise, as Brits eat £11.6bn worth annually. Kantar Group and
 Affiliates. https://kantar.com/uki/inspiration/consumer/breakfast-on-the-rise-as-brits-eat- over-11-billion-pounds-worth-annually. Published 2018. Accessed October 1, 2020.
- 12. Juliano L. *The Grocer : Breakfast Research on Behalf of The Grocer*. Manchester, UK:
 Harris Interactive; 2018. https://harris-interactive.co.uk/wpcontent/uploads/sites/7/2018/09/Breakfast-Grocer-Report.pdf. Accessed October 1, 2020.
- Bohan Brown MM. Digging into breakfast: serving up a better understanding of the effects
 on health of the "most important meal of the day." *Am J Clin Nutr*. 2019;110(1):4-5.
 doi:10.1093/ajcn/nqz068
- Reeves S, Halsey LG, McMeel Y, Huber JW. Breakfast habits, beliefs and measures of
 health and wellbeing in a nationally representative UK sample. *Appetite*. 2013;60(1):51-57.
 doi:10.1016/j.appet.2012.09.024
- Bi H, Gan Y, Yang C, Chen Y, Tong X, Lu Z. Breakfast skipping and the risk of type 2
 diabetes: a meta-analysis of observational studies. *Public Health Nutr.* 2015;18(16):30133019. doi:10.1017/S1368980015000257
- 296 16. Odegaard AO, Jacobs DR, Steffen LM, Van Horn L, Ludwig DS, Pereira MA. Breakfast
 297 frequency and development of metabolic risk. *Diabetes Care*. 2013;36(10):3100-3106.
 298 doi:10.2337/dc13-0316
- 299 17. Szajewska H, Ruszczyński M. Systematic Review Demonstrating that Breakfast
 300 Consumption Influences Body Weight Outcomes in Children and Adolescents in Europe.

301		Crit Rev Food Sci Nutr. 2010;50(2):113-119. doi:10.1080/10408390903467514
302 303	18.	Yang C-S, Ford P, Liu X, Leishman S, Schubert L. Ready-to-drink non-alcoholic beverages. <i>Nutr Food Sci.</i> 2016;46(3):396-411. doi:10.1108/NFS-09-2015-0117
304 305 306	19.	Kantar Worldpanel. Great Britain Grocery Market Share (12 weeks ending 06.11.16). https://www.kantarworldpanel.com/en/grocery-market-share/great-britain/snapshot/. Published 2016.
307 308	20.	Department of Health. Guide to Creating a Front of Pack (FoP) Nutrition Label for Pre- Packed Products Sold through Retail Outlets. London, UK: Department of Health; 2013.
309 310	21.	Lobstein T, Davies S. Defining and labelling 'healthy' and 'unhealthy' food. <i>Public Health Nutr</i> . 2008;12(3):1. doi:10.1017/S1368980008002541
311 312	22.	Public Health England. Salt Targets 2017: Progress Report. London, UK: Public Health England; 2018.
313 314 315	23.	He FJ, Brinsden HC, Macgregor GA. Salt reduction in the United Kingdom: A successful experiment in public health. <i>J Hum Hypertens</i> . 2014;28(6):345-352. doi:10.1038/jhh.2013.105
316 317 318	24.	Public Health England. National Diet and Nutrition Survey - Assessment of Dietary Sodium in Adults (Aged 19 to 64 Years) in England, 2014. London, UK: Public Health England; 2016.
319 320	25.	Public Health England. A Quick Guide to the Government's Healthy Eating Recommendations. London, UK: Public Health England; 2018.
321 322	26.	Public Health England. <i>Healthier and More Sustainable Catering: Nutrition Principles</i> . London, UK; 2017.
323 324	27.	App Annie. The State of Mobile 2019: Restaurants & Food Delivery. San Francisco, CA; 2019.
325 326	28.	Scientific Advisory Committee on Nutrition (SACN). <i>Carbohydrates and Health</i> . London, UK: The Stationery Office; 2015.
327 328 329	29.	Public Health England. <i>Statistical Summary: National Diet and Nutrition Survey: Results from Years 7 and 8 (Combined) of the Rolling Programme (2014/15-2015/16).</i> London, UK: Public Health England; 2018.
330	30.	Mintel. Biscuits, Cookies and Crackers - UK. London, UK: Mintel; 2016.
331 332 333	31.	CHOICE. Liquid breakfasts - food and drink. https://www.choice.com.au/food-%ADand-%ADdrink/drinks/juices-%ADand-%ADsmoothies/articles/liquid-%ADbreakfasts. Published 2014. Accessed October 1, 2020.
334 335 336 337	32.	Action on Sugar. Healthy Breakfast Biscuits? You Might As Well Have a Bowl of Coco Pops New Study Reveals. http://www.actiononsugar.org/news-centre/surveys/2016/healthy- breakfast-biscuits-you-might-as-well-have-a-bowl-of-coco-pops-new-study-reveals.html. Published 2016. Accessed October 1, 2020.
338 339 340	33.	Donnelly M. Cereal killers: the stealth sugars lurking in breakfast drinks. Gulp. http://www.giveuplovingpop.org.uk/cereal-killers-the-stealth-sugars-lurking-in-breakfast- drinks/. Published 2015. Accessed October 1, 2020.
341 342	34.	Bian L, Markman EM. Why do we eat cereal but not lamb chops at breakfast? Investigating Americans' beliefs about breakfast foods. <i>Appetite</i> . 2020;144:104458.

- 343 doi:10.1016/j.appet.2019.104458
- 344 35. Pombo-Rodrigues S, Hashem KM, He FJ, MacGregor GA. Salt and sugars content of
 breakfast cereals in the UK from 1992 to 2015. *Public Health Nutr*. 2017;20(8):1500-1512.
 doi:10.1017/S1368980016003463
- 347 36. Public Health England. *Sugar Reduction: Achieving the 20%*. London, UK: Public Health
 348 England; 2017.
- 349 37. Public Health England. Sugar Reduction and Wider Reformulation Programme: Report on
 350 Progress towards the First 5% Reduction and next Steps. London, UK: Public Health
 351 England; 2018.
- 352 38. Mintel. Breakfast Cereals UK August 2018. London: Mintel; 2018.
- 353 39. O'Mahony A. Cereal brands lose ground, as well as sugar. *The Grocer*. 2018.
- 40. Public Health England. Sugar Reduction: Report on Progress between 2015 and 2018.
 London, UK; 2019.
- Munday HS, Bagley L. The contribution of food science to nutrition science through
 reformulation in the last 50 years and into the future. *Nutr Bull*. 2017;42(4):321-330.
 doi:10.1111/nbu.12286
- Emrich TE, Qi Y, Lou WY, L'Abbe MR, Garcia R, Cavalcanti R. Traffic-light labels could
 reduce population intakes of calories, total fat, saturated fat, and sodium. *PLoS One*.
 2017;12(2):e0171188. doi:10.1371/journal.pone.0171188
- 362 43. Scarborough P, Matthews A, Eyles H, et al. Reds are more important than greens: how UK
 363 supermarket shoppers use the different information on a traffic light nutrition label in a
 364 choice experiment. *Int J Behav Nutr Phys Act*. 2015;12(1):151. doi:10.1186/s12966-015365 0319-9
- Kelloggs Company. Kellogg in the UK and Ireland to adopt "TRAFFIC LIGHT" labelling.
 https://www.kelloggs.co.uk/en_GB/kelloggsstories/storiesbrands/traffic-light.html. Published
 2018. Accessed October 1, 2020.
- 369

LOW MED HIGH