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Mixtures of Variational Autoencoders

Fei Ye and Adrian G. Bors

Department of Computer Science, University of York, York YO10 5GH, UK

Abstract—In this paper, we develop a new deep mixture
learning framework, aiming to learn underlying complex data
structures. Each component in the mixture model is implemented
using a Variational Autoencoder (VAE). VAE is a well known deep
learning model which models a latent space data representation
on a variational manifold. The mixing parameters are estimated
from a Dirichlet distribution modelled by each encoder. In order
to train this mixture model, named M-VAE, we derive a mixture
evidence lower bound on the sample log-likelihood, which is
optimized in order to jointly estimate all mixture components. We
further propose to use the d-variables Hilbert-Schmidt Indepen-
dence Criterion (dHSIC) as a regularization criterion in order
to enforce the independence among the encoders’ distributions.
This criterion encourages the proposed mixture components to
learn different data distributions and represent them in the latent
space. During the experiments with the proposed M-VAE model
we observe that it can be used for discovering disentangled data
representations which can not be achieved with a single VAE.

Index Terms—Mixture models, Variational autoencoder,
Hilbert-Schmidt Independence Criterion.

I. INTRODUCTION

Deep generative models have emerged as an efficient arti-

ficial intelligence computational framework. Generative Ad-

versarial Network (GAN) [1] is one of the most popular

generative models which can directly yield new images from

passing noise through their structure. Nevertheless, GANs

do not have appropriate inference mechanisms and therefore

have a limited capacity for representation learning. Variational

Autoencoders (VAEs) represent another kind of generative

models, which are trained for optimizing the evidence lower

bound (ELBO) on the data’s log-likelihood. During VAE’s

training, the parameters of the generative model are updated

based on sampling from the latent variable space, while the in-

ference model learns the posterior in order to approximate the

prior data distribution. VAE was shown to be able to provide

an approximate inference mechanism that would benefit many

down-stream tasks such as semi-supervised classification [2],

[3], and attribute manipulation, [4], among others.

Although the VAE yields promising results in various ap-

plications, it tends to ignore the complexity of the latent space

when using a powerful decoder. On the other hand, VAEs use

a simple prior distribution such as a Normal distribution while

aiming to minimize the Kullback-Leibler (KL) divergence

between a prior and its posterior, which prevents it from

capturing complex underlying structures behind data. In this

paper, we develop a new deep latent generative model, namely

the Mixture of Variational Autoencoders (M-VAE), which is

built from a mixture of VAEs. We propose to maximize a lower

bound on the sample log-likelihood as the objective function,

which is used to train jointly all components. The goal of

the resulting mixture model is to learn a rich data represen-

tation while also enforcing the separability between different

encoding distributions, each modelled by a component using a

d-variables Hilbert-Schmidt Independence Criterion (dHSIC).

dHSIC can be easily incorporated into the objective function

to encourage each component to capture data in different

ways. We perform a series of experiments to demonstrate that

the proposed mixture model not only learns several distinct

clusters in the latent space but can also enhance the generative

ability of the model. In the rest of the paper, in Section II

we discuss the related research approaches. In Section III we

discuss the proposed Mixture of Variational Autoencoders (M-

VAE) model while in Section IV we present its regularization

mechanism. In Section V we provide the experimental results

and in Section VI we draw the conclusions of this study.

II. RELATED RESEARCH WORK

In this section, we provide a brief review of relevant

methods, starting with the classical Gaussian Mixture Models

(GMM), and then following with discussing deep learning

models, such as the Variational Autoencoder (VAE).

A. The Gaussian Mixture Model (GMM)

Gaussian Mixture Models (GMMs) have been shown to

approximate any continuous probability density function (pdf)

by using a mixture of Gaussian functions, [5], [6]. They can

also be seen as an extension of kernel density estimation (kdf)

nonparametric modeling. GMMs have been embedded into

Radial Basis Functions (RBF) networks [7], which are shallow

two-layer networks, with each neuron from the first layer

implementing a Gaussian function, while the second layer has

fully connected linear processing units. The processing units

from the first layer represent a localized data space within

an elliptically defined region characterized by a center and a

covariance matrix, while the second layer would map together

multiple distinct regions in the feature space. Backpropagation

algorithm was used for training RBF networks in [7], while

variational expectation maximization was employed for mod-

elling of uncertainty in GMMs in [8]–[10].

There have been some attempts to extend the GMM model

into the deep learning framework. The Gaussian mixture

variational autoencoder which considers mainly unsupervised978-1-7281-8750-1/20/$31.00 ©2020 IEEE



clustering problems was proposed in [11]. The Infinite Vari-

ational Autoencoder, which consists of a collection of VAEs,

where each VAE is treated as a distinct component, was

proposed in [12]. The output of the mixture model combines

the generative results of all VAEs with the mixing parameters

sampled from a Dirichlet process where additional VAEs can

be added when appropriate.

B. The Variational Autoencoder

The variational autoencoder (VAE) was proposed in [13]

and consists of two networks which work in tandem with each

other: Encoder and Decoder. Let us consider a data vector

x and a vector of stochastic latent variables z. The learning

goal of a VAE is to maximize the average marginal log-

likelihood for the given observations. However, optimizing this

objective function is challenging because of the intractability

of its marginal distribution which is integrated on the entire

latent variable space. Variational inference was then proposed,

resulting in the following objective function :

LELBO =
1

N

N
∑

i=1

E
xi∼q(z|x)[log p(xi|z)]−DKL(q(z|x)||p(z))

(1)

where the two conditional distributions p(·) and q(·), char-

acterizing the decoder and the encoder, respectively, are pa-

rameterized by convolution neural networks (CNNs), while N

represents the size of the data. The objective function LELBO

from equation (1) has two components, with the first term

corresponding to the expectation of the negative reconstruc-

tion error which is obtained by sampling from the encoder

distribution. A latent representation is sampled from the char-

acteristic distribution of the Encoder, considered as Gaussian,

by using the reparametrization trick. The reconstruction term

encourages the decoder to learn how to reconstruct the data.

A VAE can also be seen as a standard autoencoder (AE) if

we would only optimize the first term from (1). Meanwhile,

the second term from (1) corresponds to the Kullback-Leibler

(KL) divergence between the prior and the distribution of the

encoder. This term is also called the regularization term which

encourages the posterior to match the prior distribution p(z).
The prior is usually modelled by a multi-dimensional Gaussian

distribution with the covariance matrix as the identity matrix.

III. THE MIXTURE OF VAES (M-VAE) MODEL

The proposed M-VAE mixture model is made off a collec-

tion of Variational Autoencoder components. The generation

process for M-VAE is defined as:

wi ∼ Dir (a) (2)

zi ∼ N (µi(x; δi), σ
2
i (x; δi)) (3)

x
′
i ∼ N (µi(z; θi), σ

2
i (z; θi)) (4)

where wi, for i = 1, . . . ,K, is the mixing parameter for

the i-th VAE, where K represents the number of mixture’s

components. wi is sampled from its characteristic Dirichlet

distribution Dir(a), which is modelled by the parameter

vector a. Meanwhile, each entry ai from the vector a =
{a1, . . . , aK} is estimated by its corresponding encoder. zi is

the latent vector sampled from the Gaussian distribution whose

mean and variance are given by the i-th encoder, i = 1, . . . ,K.

The reconstructed data x
′
i is also sampled from the Gaussian

distribution modelled by the i-th decoder. Finally, the outputs

of all decoders are multiplied by the associated weights wi,

i = 1, . . . ,K, resulting in :

E(x′) =

K
∑

i=1

pδi(wi|x)Epδi(zi|x)qθi(x|zi), (5)

K
∑

i=1

wi = 1, (6)

where qθi(·) represents the approximate posterior characteriz-

ing the decoder of the i-th VAE component.

In the following we derive the optimization function for

training the M-VAE model. In order to maximize the sample

log-likelihood we derive a lower bound, called the Mixture

Evidence Lower Bound Optimization (MELBO) :

log p(x) = log

∫ ∫

p(x,w, z)dwdz

≥Eq(z,w|x) log

[

p(x, z,w)

q(z,w|x)

]

= LMELBO

(7)

This can be rewritten as:

LMELBO =
K
∑

i=1

pδi(wi|x)Epδi(zi|x)(qθi(x|zi))

− 1
K

K
∑

i=1

Di
KL(pδi(zi|x)||p(zi))−

−DKL(pδi,i=1,...,K(w|x)||π(w)),

(8)

where the first term represents the reconstruction error and the

following terms are the KL divergence between the prior and

posterior. This loss function is used to jointly train all mixing

components.

IV. KERNEL BASED INDEPENDENT ESTIMATION FOR

REGULARIZATION

If the optimization function is defined as in equation (8),

the result can be that each component from the mixture model

captures identical data structures. This would lead to overlaps

between the latent spaces of different mixture components,

making them redundant. In this section, we propose to add

an additional penalty term to the objective function LMELBO

from equation (8) in order to enforce the independence of the

mixing components :

LObj = −LMELBO + βr(z), (9)

where r(z) represents the penalty term and β is the parameter

controlling the significance of the regularization.

In the following we use a regularization function depending

on the kernel-based distance between two distributions cal-

culated over the latent space z. This distance, defined via

the canonical distance characterizing the Hilbert space H



embeddings, is similar to the maximum mean discrepancy,

[14]. The inner product between the latent space features is

calculated by a kernel function:

k(z1, z2) = 〈θ(z1), θ(z2)〉 (10)

where θ(zi) is a feature mapping on zi. The joint distribution

P (z1, z2) is represented using the covariance operator Cz1z2 :

Cz1z2 := Ez1z2 [(θ1(z1)− µz1)⊗ (θ2(z2)− µz2)] (11)

where µzi = Ezi [θi(zi)], and θi(·) represent feature mappings,

i = 1, 2, while ⊗ denotes the tensor product. This represents

the generalization of the covariance matrix between random

vectors, [15], in the tensor space. The largest eigenvalue of

the operator Cz1z2 measures the dependence between two data

distributions. We want this eigenvalue to be zero in order to

achieve the independence between the mixing components. Let

zi = {zi1 , zi2 , . . . , ziK} be a set of iid random vectors i =
1, . . . , n. We can derive a measure of independence using the

Hilbert-Schmidt norm of the cross-covariance operator. This

criterion is called the Hilbert-Schmidt Independence Criterion

(HSIC) :

HSIC(z) = 1
n2

n
∑

ij

k(zi, zj)l(z
′
i, z

′
j)+

n
∑

i,j,k,l

k(zi, zj)l(z
′
k, z

′
l)−

2
n3

n
∑

i,j,k

k(zi, zj)l(z
′
i, z

′
k)

(12)

where z
′
i are independent and identical distributed (iid) copies

of zi, and l(·, ·) is a kernel defined on H, similarly to k(·, ·).
Similarly to (12), the definition of the cross-covariance

operator can be extended into the dHSIC criterion for assessing

the independence of d variables, [16], [17]. For the M-VAE

model, we consider all possible pairs of distributions associ-

ated with the M-VAE’s components. dHSIC is null only if the

components of the random vector z are mutually independent.

The K components are mutually independent if their joint

distribution is equal to the tensor product of their marginal

distributions, [18]. dHSIC is defined as:

dHSIC(z) = 1
n2

∑

M2(n)

K
∏

j=1

kj(zji1 , z
j
i2
)

+ 1
n2K

∑

M2K(n)

K
∏

j=1

kj(zji2j−1
, z

j
i2j

)−

− 2
nK+1

∑

MK+1(n)

K
∏

j=1

kj(zji1 , z
j
ij+1

)

(13)

where M2(n), M2K(n) and MK+1(n) represent the sums of

kernel products for the given n variables.

The objective function, when considering dHSIC as the

regularization is then defined as :

Lobj = −LMELBO + β dHSIC(z). (14)

By employing the dHSIC measure as a regularizer has many

advantages. Firstly, dHSIC is a positive measure, which can

be easily incorporated into the objective function, still repre-

senting a lower bound on the sample log-likelihood. Moreover,

dHSIC can be easily optimized in the low-dimensional latent

space. Finally, we estimate dHSIC by using the mini-batch

learning procedure, where the latent variables are sampled

from various components of the mixture model.

V. EXPERIMENTAL RESULTS

In the following we evaluate the feature learning capabilities

and generative performance for the proposed Mixture of VAEs

(M-VAE) model on various image databases. All encoders and

decoders are implemented using parameterized convolution

neural networks (CNNs). The number of convolution layers

and that of the fully connected layers are chosen depending

on the complexity and the size of each database. The prior

for each component is considered as the Gaussian distribution

N (0, I) while each encoder represents the hyperparameters

corresponding to a Gaussian distribution. We set β = 1 in

the objective function from equation (14) for all experiments.

We have used Tensorflow platform and Python programming

language.

(a) Randomly selected images. (b) Reconstructed results by M-VAE.

Fig. 1. Image reconstruction results by M-VAE for the MNIST dataset.

A. Results on image databases showing digits

In this section, we evaluate the performance of the proposed

M-VAE mixture model on the MNIST database [19]. We

consider contains 60,000 and 100,000 of training and testing

images from MNIST database, respectively. Each image has a

size of 28× 28 pixels and represents examples of handwritten

digits. In the experiments we consider four VAE components

for the mixture model. We use 2 fully connected layers to

create the networks for the encoder and decoder while the

number of neurons on each layer is set to 500. The softplus

activation function is used in the encoder in order to estimate

the hyperparameters corresponding to a Gaussian function

and one of the parameters for the Dirichlet distribution. We

consider 20 dimensional latent codes for learning the data

representation. We use the Adam optimization algorithm with

a learning rate of 0.001 to train the M-VAE model on the

MNIST database and the number of epochs is set to 100.

Randomly selected images from the MNIST database are

shown in Figure 1a while their corresponding reconstructions

by the M-VAE model are shown in Figure 1b. We observe

that the proposed mixture model can reconstruct well simple

images of handwritten digits. The results for each component

of the mixture are shown in Figure 2, where Figure 2a



shows random test images from the MNIST database, and

Figures 2b-e provide the reconstructed results provided by

each of the mixture components iin{1, 2, 3, 4}, by setting the

mixing parameters to 1 for each component while the others

are zero. The bottom row from Figure 2f shows the results

provided by the M-VAE model. From these results we can

find that the M-VAE model can yield better results than any

of the individual VAE components. Table I summarizes the

reconstruction error, calculated as the mean square error for

the proposed M-VAE approach and for a single VAE. As it

can be seen, the reconstruction error for M-VAE is reduced

when increasing the number of mixture components.

(a) Real test samples.

(b) Results of component 1.

(c) Results of component 2.

(d) Results of component 3.

(e) Results of component 4.

(f) Results of mixture model.

Fig. 2. The reconstructed results by the proposed approach on the MNIST
database.

TABLE I
RECONSTRUCTION ERROR ON THE MNIST DATABASE.

Model No. of MSE
Components

M-VAE 7 11.54
M-VAE 8 10.20
M-VAE 10 9.17

VAE 1 13.44

In the following we also assess the variability in the

information captured by the M-VAE model from the data.

We train the mixture model in order to learn two-dimensional

latent representations which can be easily analyzed through

graphic projections of the latent space modelled by the encoder

components. We project the resulting latent space variables

corresponding to each VAE component onto a 3D space repre-

sentation and the results are shown in Figure 3, where different

colors identify the digit classes 1-9 from the MNIST database.

We observe that the latent variables learned by each individual

VAE component would capture specific characteristics of the

digit images. The reason for this is that the dHSIC, used as

the regularization in the loss function from (14), encourages

each VAE component to learn various characteristics of data in

different ways. Consequently, each mixture component learns

a specific region from the latent space for each data class.

Then the output of the M-VAE represents the combination of

all such regions resulting in a complete overall model.

B. Testing the representation ability of the features inferred

by the M-VAE encoders

In this section, we investigate the usefulness of the repre-

sentation learned by M-VAE. We show that the proposed M-

VAE mixture model can capture aspects of data in different

ways when compared to what it can be achieved when using

a single VAE. Firstly, by using a single VAE has limitations

when capturing the details of images due to its simple poste-

rior and prior assumptions. Moreover, different components

in the proposed M-VAE mixture model are encouraged to

learn different aspects of the images, according to the dHSIC

criterion, as explained in Section IV, thus providing a powerful

latent representation. In the following we train the proposed

M-VAE model considering four encoders. We consider the

codes produced by the encoders as features for a series of

simple classifiers, such as: Multi-Layer Perceptron (MLP),

Linear Support Vector Machine (SVM) and the k-nearest

neighbours (KNN). We train these classifiers considering the

latent variables produced by the encoders. For the M-VAE

model, we combine all the latent variables corresponding to

the four VAE components as a vector of 80 dimensions. The

classification results on the MNIST database are presented

in Table II where Ci denotes the classification accuracy for

the classifiers trained on the latent variables learned and

represented by the i-th VAE component. From this table we

observe that when combining the latent variables sampled

from all four components, we achieve better results than when

using any of the VAE components, by any of the classi-

fiers considered. This demonstrates that the mixture model

can provide more powerful latent representations. We also

investigate the relationship between the performance and the

complexity of the mixture model. We train the M-VAE model

considering different number of components, while the KNN

is considered on the latent variables produced by the encoders.

The classification results when increasing the number of VAE

components from 4 to 10, are provided in the plot from

Figure 4. From this plot we observe that the performance

is improved when increasing the complexity of the M-VAE

model. Each VAE component capture characteristics of the

data in different ways, by using the regularization as explained

in Section IV, resulting in comprehensive data representations.

When combining different regions of the latent variable’s

manifold, we provide additional useful information for the

classifiers, improving their performance.

TABLE II
RESULTS ON THE MNIST DATABASE CONSIDERING A 20 DIMENSIONAL

LATENT SPACE AND SIMPLE CLASSIFIERS.

Classifier Mixture C1 C2 C3 C4 VAE
MLP 96.59 95.15 94.67 94.68 94.30 95.35

Linear SVM 93.37 90.78 90.11 89.83 89.72 90.23
KNN 97.17 96.56 96.39 96.63 96.45 96.34



(a) Component 1. (b) Component 2. (c) Component 3. (d) Component 4. (e) VAE.

Fig. 3. The representation of the latent spaces produced by each of the four encoders of the M-VAE mixture are shown in (a)-(d), while that corresponding
to a single VAE is provided in (e), when considering MNIST database for training. Each colour represents the class associated with a specific digit 1-9.

Fig. 4. The classification accuracy on the MNIST database, when increasing
the number of components.

C. Results on the CIFAR10 database

In this section, we evaluate the generative performance

on CIFAR10 database [20], which contains 50,000 images

representing a variety of complex scenes. We consider 10,000

images for training and the same number for testing. Each

image from this database is 32 × 32 pixels in size, labelled

in 10 classes. We consider five convolution layers with 3× 3
kernels for each mixture’s encoder and decoder, respectively.

The dimension of the latent variables is considered as 256 and

we use the softplus activation function in order to estimate the

variance of the Gaussian distribution and the parameter of the

Dirichlet distribution, produced by each encoder. We consider

K = 4 VAE components for the mixture model. The Adam

optimization algorithm with a learning rate of 0.001 is used to

train this mixture model using the backpropagation algorithm

with batch normalization. A random selection of images from

CIFAR10 database and its reconstruction by the proposed M-

VAE model are shown in Figures 5a and 5b, respectively.

D. Assessment of the quality of generated images

We consider the Inception score (IS), which was proposed

in [21], in order to assess the quality of generated images :

IS = exp (Ex[DKL(p(y|x)||p
∗(y))]) (15)

where x denotes the given image, p(y|x) is the probability

represented by the output of the softmax layer of the trained

classifier which indicates the ability to generate distinct im-

ages, while p∗(y) is the overall label distribution and measures

the ability to generate diverse classes of images. IS was pro-

posed for measuring how realistic are the images generated by

Generative Adversarial Networks (GANs) and assesses both

the quality of the generated images as well as their diversity

[22]. The Inception scores for the images generated by the

proposed M-VAE and the results are shown in Table III, where

we also provide the root mean square error (RMSE) evaluation.

The results from Table III indicate that the generated image

quality for the M-VAE model is better than that provided

by the GAN based models, considered for comparison. M-

VAE can yield realistic images demonstrating that the mixture

model not only benefits representation learning, but also has

a good generative performance.

TABLE III
INCEPTION SCORE FOR VARIOUS DEEP LEARNING MODELS ON CIFAR10

DATABASE.

Model RMSE Inception score
MIX+Wasserstein GAN [23] - 4.04
DCGAN [24] in [25] - 4.89
ALI [26] in [25] 14.53 4.97
PixelCNN++ [27] in [25] 3.289 5.51
WGAN [23] - 3.82
M-VAE 3.17 5.96

VI. CONCLUSION

In this paper, we propose a new deep learning model, called

M-VAE, which is built using a mixture of VAEs. During the

training, each VAE component is guided to capture different

aspects of the data. In order to achieve this we consider a

regularization term in the objective function enforcing the

independence between the latent spaces represented by the

mixture components. The experimental results show that the

proposed mixture model can learn a rich data representation

and can improve the quality of generated images when

compared with that yielded by a single VAE model. In future

research we will aim to determine the optimal number of

VAE components to be used in the mixture when solving a

given task or when learning a series of different tasks.
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(a) Randomly selected images. (b) Reconstructed results by M-VAE.

Fig. 5. Qualitative results of the proposed M-VAE model for CIFAR10 dataset.
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