# UNIVERSITY OF LEEDS

This is a repository copy of *Tuning the Radiative Lifetime in InP Colloidal Quantum Dots by Controlling the Surface Stoichiometry*.

White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/168514/

Version: Supplemental Material

#### Article:

Rodosthenous, P, Gómez-Campos, FM and Califano, M orcid.org/0000-0003-3199-3896 (2020) Tuning the Radiative Lifetime in InP Colloidal Quantum Dots by Controlling the Surface Stoichiometry. Journal of Physical Chemistry Letters, 11. pp. 10124-10130. ISSN 1948-7185

https://doi.org/10.1021/acs.jpclett.0c02752

© 2020 American Chemical Society. This is an author produced version of an article published in Journal of Physical Chemistry Letters. Uploaded in accordance with the publisher's self-archiving policy.

#### Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

#### Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.



eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

## Supporting Information for: Tuning the Radiative Lifetime in InP Colloidal Quantum Dots by Controlling the Surface Stoichiometry

Panagiotis Rodosthenous,<sup>†</sup> Francisco M. Gómez-Campos,<sup>‡, $\mathbb{I}$ </sup> and Marco

Califano\*,†,§

+ Pollard Institute, School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom

‡ Departamento de Electrónica y Tecnología de Computadores, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain

¶ CITIC-UGR, C/ Periodista Rafael Gómez Montero, n 2, Granada, Spain § Bragg Centre for Materials Research University of Leeds, Leeds LS2 9JT, United Kingdom

E-mail: m.califano@leeds.ac.uk

#### Passivation procedure and parameters

The unsaturated bonds at the dot surface are passivated here using pseudo-hydrogenic, short-range potentials with Gaussian form,

$$v(\mathbf{r}) = \alpha e^{-(|\mathbf{r} - \mathbf{R}(\gamma)| / \sigma)^2}$$
(S1)

Each passivant is therefore characterized by (i) the amplitude  $\alpha$  and (ii) the width  $\sigma$  of the Gaussian potential, and by (iii) the distance  $\gamma d$  from the surface atom along the ideal bond line connecting it with the missing atom (*d* is the bond length and  $\mathbf{R}(\gamma)$  is the ligand position).<sup>1–3</sup> As the electronic structure calculations are performed in reciprocal space, Eq. (S1) needs to be Fourier transformed into<sup>3</sup>

$$v(\mathbf{q}) = \alpha \pi^{1.5} \sigma^3 e^{i\mathbf{q} \cdot \mathbf{R}} e^{-(\sigma |\mathbf{q}|/2)^2}$$
(S2)

to obtain the relationship between real-space parameters and q-space ones (which are the actual input to the calculations):  $a = \alpha \pi^{1.5} \sigma^3$ ,  $b = \sigma/2$ , and  $c = \gamma$ .

Table S 1: Passivation parameters used to passivate surface In and P atoms in this work compared with the parameters used by Fu and Zunger<sup>2</sup> and Graf *et al.*<sup>3</sup>

|                        | cation |        |                   |                               |      |      |       |         | an               | ion                           |      |      |
|------------------------|--------|--------|-------------------|-------------------------------|------|------|-------|---------|------------------|-------------------------------|------|------|
| Passivation            | 1 dar  | ngling | bond <sup>+</sup> | 2 dangling bonds <sup>†</sup> |      |      | 1 dan | gling b | ond <sup>†</sup> | 2 dangling bonds <sup>†</sup> |      |      |
|                        | а      | b      | С                 | а                             | b    | с    | а     | b       | С                | а                             | b    | С    |
| This work              | 1.18   | 0.40   | 0.55              | 1.40                          | 0.55 | 0.65 | -1.20 | 0.40    | 0.25             | -0.78                         | 0.75 | 0.25 |
| Fu & Zunger [2]        | 1.18   | 0.45   | 0.25              | 1.90                          | 0.70 | 0.50 | -0.93 | 0.50    | 0.25             | -0.78                         | 0.75 | 0.25 |
| Graf <i>et al.</i> [3] | 1.68   | 0.80   | 0.35              | 1.68                          | 0.64 | 0.25 | -1.68 | 0.33    | 0.25             | -1.05                         | 0.80 | 0.25 |

<sup>+</sup> Surface atoms with 3 dangling bonds were removed as they are unstable for dissociation.

## Electronic configuration of the outer shell of the anions most

## commonly found in semiconductor NCs

| Table S 2:  | Electronic | configuration | of th | e outer | shell | of the | anions | most | common | ly |
|-------------|------------|---------------|-------|---------|-------|--------|--------|------|--------|----|
| found in se | emiconduct | or NCs        |       |         |       |        |        |      |        |    |

| Element | Electronic Configuration |
|---------|--------------------------|
| Р       | $3s^23p^3$               |
| As      | $3d^{10}4s^{2}4p^{3}$    |
| Sb      | $4d^{10}5s^25p^3$        |
| S       | $3s^23p^4$               |
| Se      | $3d^{10}4s^24p^4$        |
| Te      | $4d^{10}5s^25p^4$        |

### **Radiative lifetimes for different surface stoichiometries**



Figure S 1: Comparison between radiative lifetimes calculated in NCs with P-rich (red circles) and In-rich (black circles) surfaces.

#### **Calculated Auger Cooling times**



Figure S 2: Auger Cooling lifetimes as a function of QD radius. The red circle represents the result obtained after the addition of 6 P atoms, one on each of the equivalent (100) facets of the NC. The error bars are obtained using a procedure similar to that followed in ref. [4], by varying the s-p splitting in the conduction band over a range of energies corresponding to a 10% size distribution.

#### References

- Wang, L.-W.; Zunger, A. Pseudopotential calculations of nanoscale CdSe quantum dots. *Phys. Rev. B* 1996, 53, 9579.
- (2) Fu, H.; Zunger A. InP quantum dots: Electronic structure, surface effects, and the redshifted emission. *Phys. Rev. B* 1997, *56*, 1496-1508.

- (3) Graf, P.A.; Kim, K.; Jones, W.B.; Wang, L.W. Surface Passivation Optimization Using DIRECT. J. Comput. Phys. 2007, 224, 824-835.
- (4) Sills, A.; Harrison, P.; Califano, M. Exciton Dynamics in InSb Colloidal Quantum Dots. *J. Phys. Chem. Lett.* 2016, 7, 31-35.