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This paper develops a duopolistic discounted marketing model with linear advertising
costs and advertised prices for mature markets still in expansion. Generic and predatory

advertising effects are combined together in the model. We characterise a class of adver-
tising models with some lowered production costs. For such a class of models, advertising

investments have a no-free-riding strict Nash equilibrium in pure strategies if discount
rates are small. We discuss the entity of this efficiency at varying of parameters of our
advertising model. We provide a computational framework in which market shares can be
computed at equilibrium, too. We analyse market share dynamics for an asymmetrical
numerical scenario where one of the two firms is more effective in generic and preda-
tory advertising. Several numerical insights on market share dynamics are obtained. Our
computational framework allows for different scenarios in practical applications and it
is developed thanks to Mathematica software.
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1. Introduction

Advertising expenditures for companies may be generally viewed as a form of in-

vestment and the main thrust of the advertising literature is to examine optimal

strategies which maximise the net present value of future cash flows. When adver-

tising is aimed at increasing product sales, then it is called generic or informative

advertising, whilst when advertising is aimed at gaining market shares, it is called

brand advertising. When brand advertising is devoted to stealing customers from

competitors, it is called predatory advertising. Many advertising models have been

built to provide solutions in monopolistic, duopolistic and oligopolistic environments

(Vidale and Wolfe, 1957; Sethi, 1973; Deal, 1979; Little, 1979; Sethi, 1983) for many

decision variables. a Distinct dynamic advertising strategies were never developed

prior to the model developed in (Bass et al., 2005, Table 1) for brand and generic

advertising respectively. Even the deep dynamic analysis provided in (Bass et al.,

2005) suggests that generic advertising expenditures must be highly resolved sepa-

rately from its brand advertising ones in order to halt suboptimal advertising. How-

ever externalities from simple generic advertising may become significant and may

modify brand preferences, as market demand becomes more informed (Kinnucan,

1996; Norman et al., 2008; Rutz and Bucklin, 2011; Brahim et al., 2014). The main

controversial economic issue is that generic advertising may redistribute market

shares, especially in markets that have become strongly differentiated(Chakravarti

and Janiszewski, 2004; Brady, 2009; Espinosa and Mariel, 2001; Piga, 1998; Fried-

man, 1983). In the current paper, predatory and generic advertising expenditures

are combined together.

The analysis provided in (Espinosa and Mariel, 2001) deals with a duopoly where

generic and predatory advertising are present but separately analyzed. The authors

argue that static strategies do not internalise any variations of market shares if

firms play a game with time-invariant market shares. Therefore it is expected that

Nash equilibria are neither efficient if the advertising is predatory (too high expen-

ditures), nor efficient if advertising is generic (too low expenditures). In the current

paper we face a more complex scenario than the static one analysed in (Espinosa

and Mariel, 2001). In fact, generic and brand/predatory advertising are unified and

their effect on market shares cannot be distinguished at any time for an infinite time

aFor a complete review of the literature on advertising models before 1995 see (Erickson, 1995). The
more recent classification of advertising models consists of six categories (Huang et al., 2012); the
Nerlove-Arrow model and its extensions, the Vidale-Wolfe model and its extensions, the Lanchester

model and its extensions, the diffusion models, dynamic advertising-competition models with other
attributes, and (vi) empirical studies for dynamic advertising problems.
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horizon. Strategic generic advertising interactions between firms may cause short-

run bubble effects but similar predatory effects may cause long-run lowering effects

on market shares, especially for asymmetrical market conditions. For instance, dif-

ferent investment strategies may generate different market share dynamics, which

yield the same discounted profit to one of the firms. To some extent, the efficiency

of such equilibria is not so intuitive. For instance, in (Espinosa and Mariel, 2001)

closed-loop equilibria are more efficient than open-loop equilibria if the advertising

is only generic while open-loop are more efficient than closed-loop if the advertis-

ing is only predatory. Very little attention has been devoted to the efficiency and

stability of Nash equilibria in the game theory of advertising. The simple concept

of strong Nash equilibria, which incorporates a strong form of efficiency, may be

useful to be analysed in a duopolistic model such as this. By being complementary

to the dynamic analysis in (Espinosa and Mariel, 2001), we restrict optimal anal-

ysis to static expenditure strategies. The stability we require is the following: if a

firm unilaterally changes its strategy from Nash equilibrium strategies, then such a

firm has to be strictly worse. We fill the gap in this literature and we investigate

the existence of strict Nash equilibria in a context of generic and brand advertising

models.

2. Results

In the current paper, we initially develop a duopolistic discounted advertising model

for mature markets in expansion. Generic and predatory advertising effects are

combined together. We model generic advertising by adopting a diffusion model

and we model predatory advertising by adopting the Lanchester model of combat.

For the sake of simplicity we allow firms to advertise prices even if we do not model

the latter as a decision variable. In fact, prices may be announced before marketing

campaigns (Jiang et al., 2014; Grewal et al., 1998; Tenn and Wendling, 2014; Lu

et al., 2016). b We define a class of advertising models where production costs are

lowered by marketing parameters, being inspired by an economic analysis between

advertising and quality of products suggested in (Bagwell, 2007).

We obtain payoffs in a closed-form using tools from the theory of linear differential

systems. Significantly, payoffs are continuous but they are not quasi concave on

non-compact subsets. Our method provides for an algebraic analysis of best reply

correspondences. We find out that a strict Nash equilibrium in pure strategies exists

for the class of advertising games with low costs. Interestingly, our equilibria are

not free-riding and they cannot be conceptually compared to the ones found in (Kr-

ishnamurthy, 2000). The existence of equilibria is not surprising for small discount

bWe prefer to characterise our model in terms of advertised prices to make our results comparable
to another literature stream, i.e. optimal pricing in markets with sticky prices (Gorodnichenko and

Weber, 2016; Piga, 2000). Our model is comparable to a limit case in this literature, i.e. the rate
of price readjustment is null. Recently, static optimal solutions are also provided in advertising
models subject to interferences (Baggio and Viscolani, 2014; Viscolani, 2012).
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rates by taking into account Folk theorem in game theory. However, the efficiency of

such equilibria is not so intuitive. Our strict equilibria are not obtained for any level

of production costs, as it has been found in the static model provided in (Espinosa

and Mariel, 2001). Unfortunately, due to the lack of a closed form expression of pure

strategy Nash equilibria we cannot analytically discuss the influence of the param-

eters on optimal investments strategies. However our algebraic method provides a

computational framework in order to integrate such optimal investment strategies

(Deal, 1979; Erickson, 1985).

As a further investigation, we focus on market share dynamics generated by our

strict Nash equilibria in pure strategies. Since generic advertising supports the gen-

eral standard of the product category, it brings advantages to firms in the market

regardless of whether or not they contributed to advertising campaigns (Han et al.,

2017; Shapiro, 2018). In the duopolistic model analysed in (Bass et al., 2005), when

the asymmetries between the firms increase, there is a larger difference between their

generic advertising contributions. However, the weaker firm always invests a not null

amount of money and, then, cheaply but not freely rides the market(Krishnamurthy,

2000). In our numerical scenario we assume the similar scenario adopted in (Bass

et al., 2005). One firm is stronger if it is endowed with more favourable competitive

and generic advertising parameters. Interestingly, we find out that the weaker firm

is not a cheap rider. We believe that this does not happen because our advertising

expenditure are combined together for brand and generic advertising. As an ex-

pected result, the weaker firm enlarges its market share due to generic advertising

while its market share is affected by the long run effect of predatory advertising from

its competitor. Our results support those obtained in (Bass et al., 2005). Thanks

to our numerical framework we are numerically able to integrate the time at which

the weaker firm achieves its maximum market share, if the market in itself is not

initially saturated. Similar insights cannot been replicated from the results in (Bass

et al., 2005) because the two models are similar but different.

The rest of the paper is organised as follows. In Section 3 we provide modelling back-

ground from the literature of advertising models. In Section 4, we provide details

of our advertising model. In Section 5 we prove the existence of proper invest-

ment equilibria in pure strategies. In Section 6 we provide an asymmetric numerical

scenario for our model and we illustrate market share dynamics if pure strategy

strict Nash equilibria investments are implemented. Our proofs are provided in the

Appendix.

3. Modelling background

Firms sell their heterogenous goods in a specific product category. Each firm satis-

fies a portion of demand, i.e. its market share xi(t) ≥ 0 for time t ≥ 0. The sum of

market shares is x(t) = x1(t)+x2(t). The market is still in expansion and the whole

demand is finite and unitary. The sum of market shares x(t) = x1(t)+x2(t) and the

remaining portion of the demand is 1−x(t), i.e. the potential demand. Potential de-
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mand is the demand which has unrevealed wish for the product category. However,

the potential demand is not already contained within market shares of any firm and

it is uninformed on the product category. Generic advertising is only directed to the

potential demand through diffusion models. Diffusion models are used to capture the

life cycle dynamics of new products or to forecast the demand on markets(Fisher and

Pry, 1971). Originally, diffusion models do not incorporate any advertising effort and

one of the main challenge is to add exogenous influences, most importantly the influ-

ence of advertising efforts (Bass et al., 1994). A generic functional form for diffusion

advertising models for firm i is ẋi(t) = f(xi(t), ui(t), t) where ui(t) is the advertising

effort and ẋi(t) is the change in market share for firm i (Dockner and Jørgensen,

1988). For instance, a diffusion model is ẋi(t) = αui(t)[1− xi(t)] + γ xi(t)[1− x(t)]

for a monopolistic firm i where α > 0 is the advertising effectiveness of the firm

and γ represents the effectiveness of word-of-mouth advertising in (Jørgensen et al.,

2006). With respect to generic advertising, we symmetrically adopt this diffusion

model with γ = 0 and α = 1 for both firms in our duopoly. The Lanchester model

has been often used to model competitive advertising (Fruchter and Kalish, 1997).

The Lanchester dynamics capture the competitive market shares’ shifts of firms

i, j due to investments in advertising by the two market rivals, (Chintagunta and

Vilcassim, 1992). The Lanchester model is ẋi(t) = ρixj(t)ui(t)−ρjxi(t)uj(t) where

ρi, ρj ∈ [0, 1] are the effectiveness of brand advertising for firms i, j (Little, 1979).

In particular, here we assume that ρi, ρj > 0 for both firms.

4. Our advertising model

We adopt some modifications to the models in the previous Section. We assume

that the advertising strategy variable ui ∈ [0,∞[ is time-invariant. Moreover we

do not adopt a linear form for investment variable ui. In spite of mathematical

simplifications we add a level of complexity and we shape advertising returns as a

functional form ai, bi : [0,∞[→ [0,∞[ for generic and brand advertising expendi-

tures respectively. We assume these functions satisfy a law of diminishing returns

on the investment for both generic and brand advertising (Hanssens et al., 2003;

Freimer and Horsky, 2012). It thus follows that

- ai(ui) =
ui

ui+αi
: R+ → R

+ is the generic advertising return for i. The coefficient

αi ∈ R
+ \ {0} is called ineffectiveness of generic advertising return.

- bi(ui) =
ui

ui+βi
: R+ → R

+ is the brand advertising return for i. The coefficient

βi ∈ R
+ \ {0} is called ineffectiveness of brand advertising return.

Functions ai(·), bi(·) are increasing and concave and approximate 1 for large invest-

ments. The lower αi and bi’s values are, the more profitable advertising investments

are. Summing up all these features of the diffusion model and of the Lanchester

model, the derivative in primary demand ẋi is modelled by the following differen-

tial system with initial conditions
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{
ẋi(t) = [ai (ui) + aj (uj)][1− (xi(t) + xj(t))] + ρixj(t)bi (ui)− ρjxi(t)bj (uj)

xi(0) = x0
i

(1)

where ui ∈ R
+ is the advertising expenditure of firm i, xi (t) : R+ → [0, 1] is the

market share of firm i at time t and x0
i = xi(0) are the initial market shares. We

assume linear advertising costs that are, traditionally, used in the Nerlove-Arrow

model (Gould, 1976). In the literature, it is widely accepted that firms have different

discount rates. Here firms adopt a unique positive discount rate ρ 6= 0 (Jørgensen,

1982). Therefore, the discounted flow of profits is

πi (ui, uj) =

∫
∞

0

e−ρ t

(
ri xi (t)− ui

)
dt. (2)

where ri = pi−ci. The quantity pi > 0 is the advertised price pi for the good i. The

quantity ci > 0 is the marginal cost for good i. We assume that marginal profits ri
are positive. We say that G = ([0,+∞[2, πi) is a non-cooperative advertising game.

Classical solution concepts are defined below.

Definition 1 (Nash equilibria, market shares at equilibrium). Let (û1, û2)

be a strict Nash equilibrium in pure strategies for G. Let us substitute (û1, û2) in

(1). A solution x̂i(t) of the first order differential system (1) is the associated market

share of firm i at equilibrium. A pure strategy profile is free-riding if one strategy

is null and the remaining strategy is non-null. A pure strategy profile is null when

both strategies are null. We say that a pure strategy profile is proper if it is neither

null nor free-riding.

4.1. Advertising games with low costs

We characterise advertising games which have lower costs (or higher profits) by

considering that prices are advertised in our marketing model.

Definition 2. The following inequality is satisfied

ci + cshi < pi (3)

where

cshi =
(ρj + ρi)

2ρi
αi +

ρj
ρi

βi. (4)

We say that G = ([0,+∞[2, πi) is the advertising game with low costs if the above

conditions are satisfied. We say that cshi > 0 is the marketing incentive for firm i.

Marketing incentives need to be smaller than the advertised price in order to satisfy

inequality (3). For instance, if firm i has a brand advertising effectiveness extremely

lower than its competitor’s counterpart ρj , inequality (3) is not satisfied. The mar-

keting incentive cshi is increasing with respect to ρj , αi, βi. The latter means that

firm i has lower costs if the effectiveness of the brand advertising of the competitor
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increases or if its advertising returns are marginally worse. The marketing incen-

tive cshi is decreasing with respect to ρi. The latter means that firm i may have

higher costs if the effectiveness of own brand advertising increases. If ρ1 = ρ2, then

cshi = αi + βi. If αi = βi, then cshi = αi
(3ρj+ρi)

2ρi
.

5. Existence of a strict Nash equilibrium in pure strategies

In this section, we find sufficient conditions which guarantee the existence of static

advertising expenditures equilibria for our advertising model. Let Ûi : [0,+∞[→

2[0,+∞[ be the best reply correspondence for firm i. The set Ûi (uj) collects firm i’s

best replies to a strategy uj . We transform system (1) through a change of variables

into
{
ẋ = 2 {a1 (u1) + a2 (u2)} (1− x)

ẇ = ρ1b1 (u1) (x− w)− ρ2b2 (u2) (x+ w)
(5)

where x = x1 + x2 and w = x1 − x2.

Proposition 1. The solution for system (5) is given by the following formulae
{
x (t) = 1−

(
1− x0

1 − x0
2

)
e−2At t ≥ 0

w (t) = B−

B+ + B−

(B+
−2A)

(
x0
1 + x0

2 − 1
)
(e−2At − e−B+t) + e−B+tCu

where Cu is a constant depending on

A = a1 (u1) + a2 (u2) , B
+ = ρ1b1 (u1) + ρ2b2 (u2) , B

− = ρ1b1 (u1)− ρ2b2 (u2) .

Here, we provide the following result in which market shares and payoffs are ob-

tained in closed formulas.

Proposition 2. Assume ρ 6= 0. Then market shares and payoffs are

xi (t) =
ρibi (ui)

B+

(
1− e−B+t

)
+

(
x0
i + x0

j − 1
)
(ρibi (ui)−A)

(B+ − 2A)

(
e−2At − e−B+t

)

+ x0
i e

−B+t. (7)

πi (ui, uj) =
ri

(B+ + ρ)

(
ρibi (ui)

ρ
+

(
x0
i + x0

j − 1
)
(ρibi (ui)−A)

(2A+ ρ)
+ x0

i

)

−
ui

ρ
. (8)

for i, j = 1, 2, respectively.

Each payoff on its own variable is defined on a non-compact set [0,∞[ and may lack

quasi-concavity. Therefore, we cannot apply classical results for the existence of pure

strategy Nash equilibria. We prefer to follow a different approach to the problem

of whether a strict Nash equilibrium exists in pure strategies. First we identify an
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algebraic structure for firms’ best reply strategies, i.e. best reply strategies are zeros

of a polynomial equation.

Proposition 3. Assume ρ 6= 0. The payoff π1 (u1, u2) is rational in u1 and can be

calculated as follows

π1 (u1, u2) = −
hu3

1 + (b− r1d)u
2
1 + (c− r1f)u1 − r1g

ρ (hu2
1 + bu1 + c)

where

b = (α1 + β1)
(
ρ2 + (θ + 2ϑ) ρ+ 2θϑ

)
+ 2β1 (ρ+ θ) + ρ1α1 (ρ+ 2ϑ)

c = α1β1

(
ρ2 + (θ + 2ϑ) ρ+ 2ϑθ

)

d = x0
1ρ

2 +
(
(ϑ+ 1)

(
1 + x0

1 − x0
2

)
+ ρ1

(
x0
1 + x0

2

))
ρ+ 2ρ1 (ϑ+ 1)

f = x0
1 (α1 + β1) ρ

2 +
(
α1ρ1

(
x0
1 + x0

2

)
+ ((α1 + β1)ϑ+ β1)

(
1 + x0

1 − x0
2

))
ρ+ 2ρ1α1ϑ

g = α1β1ρ
(
x0
1ρ+ ϑ

(
1 + x0

1 − x0
2

))

h = (ρ+ 2ϑ+ 2) (ρ+ ρ1 + θ)

θ = ρ2
u2

u2 + β2
, ϑ =

u2

u2 + α2
.

Proof. The proof follows from a direct calculation.

Proposition 4. Assume ρ 6= 0. Let u2 ≥ 0 be a strategy of firm 2. Assume that a

best reply to strategy u2 exists, i.e. u1 > 0. Then, u1 is a root of

h2u1
4+2hbu1

3+
(
r1fh− r1db+ 2hc+ b2

)
u1

2+

+(2bc− 2r1dc+ 2r1gh)u1+
(
r1gb− r1fc+ c2

)
= 0 (11)

Proof. Let û2 be an investment of firm 2. By simple calculation, we have

∂π1 (u1, û2)

∂u1
= −

h2u4
1 + 2hbu3

1 +
(
r1fh− r1db+ 2hc+ b2

)
u2
1

ρ (hu2
1 + bu1 + c)

2 +

+
(2bc− 2r1dc+ 2r1gh)u1 +

(
r1gb− r1fc+ c2

)

ρ (hu2
1 + bu1 + c)

2 . (12)

If there exists a best reply in u1, trivially u1 is a root of above equation.

We conventionally rank the coefficients on the left side of equation (11) by decreasing

order. The first two Lemmas are preliminary to the fundamental Lemma 3.

Lemma 1. If ρ 6= 0, ρ ≈ 0 and r1 >
(ρ2 + ρ1)

2ρ1
α1+β1

ρ2
ρ1

then the fourth coefficient

is strictly negative, for any u2 ≥ 0.

Lemma 2. If ρ 6= 0, ρ ≈ 0 and r1 > β1
ρ2
ρ1

, then the fifth coefficient is strictly

negative for any u2 ≥ 0.
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Lemma 3. If ρ 6= 0, ρ ≈ 0 and r1 >
(ρ2 + ρ1)

2ρ1
α1 +β1

ρ2
ρ1

then there exists a unique

best reply u1 > 0 for any strategy u2 ≥ 0.

A fundamental property of best reply correspondences is presented below.

Lemma 4. Under the hypothesis of Lemma 3, best reply correspondences Ûi are

continuous functions. In addition, limuj→∞ Ûi(uj) < ∞.

By a classical fixed-point argument, we prove the existence of a strict Nash equilib-

rium in pure strategies.

Theorem 1 (Main Existence Result). Assume that G = ([0,+∞[2, πi) is an

advertising game with low costs. Assume that the discount rate satisfies the following

properties: ρ 6= 0 and ρ ≈ 0. Then, a strict Nash equilibrium in proper pure strategies

exists for G.

Proof. The thesis of Lemma 4 is satisfied by hypotheses. By coercivity conditions

the image of Û2 is a bounded subset in [0,+∞[. LetK1 = Cl(Û2([0,+∞[)) ⊂]0,+∞[

be the closure of the image values of Û2. Let Û1|K1
: K1 →]0,+∞[ be the restricted

function to the compact subset K1. In addition Û1|K1
(K1) is a compact subset in

]0,+∞[ because K1 is compact and Û1|K1
is continuous. By definition of K1, it

follows that Û1 ◦ Û2|K1
: K1 → K1. In addition, the above function is continuous

because it is a composition of continuous functions and K1 is a compact in ]0,+∞[.

By Brower’s fixed point Û1◦Û2|K1
admits a fixed point. Then there exists a strategy

û1 ∈ K1 ⊂]0,+∞[ such that Û1(Û2(û1)) = û1. We define û2 := Û2(u1). By Lemma

3, we have that û2 6= 0. It is straightforward to prove that (Û2(Û1))(û2) = û2. By

definition, û = (û1, û2) is a Nash equilibrium in pure strategies. By construction

we have that û is a strategy profile with ûi 6= 0. Therefore û is a proper strategy

profile. By Lemma 3 again, û is a strict Nash equilibrium in pure strategies.

6. Market shares at equilibrium for an asymmetric advertising

situation

In this section we provide a numerical example under some asymmetric conditions

for two firms. We assume that firm 1 has higher investment returns for both generic

and predatory advertising. Further, we assume that firm 1 is more effective at cap-

turing demand belonging to the market share of the competitor, ceteribus paribus

their investments. Table 1 contains the numerical parameters for the simulation of

our model. Values of parameters of our model are listed in Table 1. It is straight-

forward to verify that our game is an advertising game with low costs. Using best

reply equation (11), we obtain implicit formulae for best reply functions. We numer-

ically integrate their intersection points, i.e. strict Nash equilibria in proper pure

strategies. Interestingly, we find that a strict Nash equilibria is unique and equal to

(5.23, 7.24) which is not free-riding. Moreover, the weaker firm invests more than
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ineffectiveness of generic advertising return α1 = 5, α2 = 10

ineffectiveness of brand advertising return β1 = 5, β2 = 15

effectiveness of brand advertising ρ1 = 1/50, ρ2 = 1/100

marketing incentive csh1 = 25/4, csh1 = 45

advertised marginal prices p1 = 75, p2 = 60

marginal cost c1 = 25, c2 = 10

discount rate ρ = 0.000001

Table 1. Parameters of the model are listed. Then we compute marketing incentives. We set
advertised marginal prices and marginal costs for both firms. In addition, the discount factor is

non-null and it is extremely small.

its opponent. Therefore, the weaker firm does not cheaply ride the market (Kr-

ishnamurthy, 2000). c By replacing Nash equilibrium strategies in formula (7), we

compute firms’ market shares. Figures 1–5 describe market shares dynamics. The

red, blue and green lines represent the dynamics of market shares of the stronger

firm (firm 1) and of weaker firm (firm 2) and of the whole market demand, respec-

tively. If the market is initially not saturated, firms invest in marketing advertising

Fig. 1. x0

1
= 1

10
, x0

2
= 1

5
. Firm 1 is initially weaker in the market. The market is initially not

saturated.

cWe consider the same values of ρi, βi, αi, ri in Table 1 and we choose higher discount rates.
From our numerical implementation, it follows that pure strategy Nash equilibria fail to exist if ρ
approximatively becomes higher than a threshold value equal to 0.040821.
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Fig. 2. x0

1
= x0

2
= 1

10
. Firm 1,2 equally share the market. The market is initially not saturated.

Fig. 3. x0

1
= x0

2
= 1

2
. Firm 1,2 equally share the market. The market is initially saturated.

and they improve their market positions. The weaker firm, i.e.firm 2, initially in-

creases its market position (blue line) and its market share reaches its maximum
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Fig. 4. x0

1
= 9

10
, x0

2
= 1

10
. Firm 1 is initially much stronger on the market. The market is initially

saturated.

Fig. 5. x0

1
= 3

5
, x0

2
= 2

5
. Firm 1 is initially stronger on the market. The market is initially saturated.

at time t ≈ 2 and, then it decreases because of predatory effects. In Figure 1 the

stronger firm’s market share is initially smaller than the opponent’s one and mar-

ket shares become equal at t ≈ 16. If the market size is saturated, then any generic
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marketing effort is uninfluential in extending the market. Although firm 1 is more

effective in marketing campaigns and its initial market position is very dominant, its

market share decreases (Figure 5). The latter happens when the difference between

two initial market shares is high. If this difference is not high enough, then firm

1 keeps on improving its market share by making the opponent’s market position

weaker (Figures 3–4).

7. Conclusions, limitations and future work

We develop a novel duopolistic advertising model describing changes to the market

shares in a duopoly caused by strategic investments in generic and predatory ad-

vertising. We provide the existence of optimal investment strategies for firms with

lower production costs due to marketing incentives. We discuss marketing incentives

due to advertising by varying the parameters of the model. We provide numerical

insights on market share optima in an asymmetrical marketing scenario. We pro-

vide rational insights on how competing firms might ultimately reduce the quality

of manufactured goods when they publish the prices at the beginning of marketing

campaigns. Our work has some limitations. Optimal advertising investments are not

in a closed-form formula. Due to the lack of a closed form expression of these equi-

libria, we cannot study the sensitivity of optimal strategies to a change in marketing

parameters. Our main existence result lies in the assumption that the unique dis-

count rate is small. A natural question arising from this paper is, if firms are given

different discount rates, can we extend our main existence result? Future research

should consider parameterising this model using advanced econometric models in

order to estimate marketing incentives in our model. The latter will help to measure

the quality of products provided by firms competing during informative marketing

campaigns.
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Appendix: Proofs

Proof of Proposition 1. Analysing the first equation of system (5) we can see

that it is possible to separate the variables and integrate it as follows

dx

dt
= 2A (1− x)

x (t) = 1− Cxe
−2At.

If at t = 0 we have x (0) = x0
1 + x0

2, then Cx = 1− x0
1 − x0

2, and hence

x (t) = 1 +
(
x0
1 + x0

2 − 1
)
e−2At.

For the function w (t) we have

dw

dt
= ρ1 b1 (u1) (x− w)− ρ2b2 (u2) (x+ w) = B−x (t)−B+w (t) .

It is a linear equation of the first order. We integrate it using the standard approach

and obtain that the exact solution is given as

w (t) = e−B+t

∫
eB

+tB−x (t) dt+ e−B+tCu.

Therefore, for the function w (t) we have

w (t) = e−B+t

∫
eB

+tB−x (t) dt+ e−B+tCu

= e−B+t

∫
eB

+tB−
((
1 +

(
x0
1 + x0

2 − 1
)
e−2At

))
dt+ e−B+tCu

= e−B+t

(
B−

∫
eB

+tdt+B−
(
x0
1 + x0

2 − 1
) ∫

e(B
+
−2A)tdt

)
+ e−B+tCu

= e−B+t

(
B−

B+
eB

+t +
B−

(
x0
1 + x0

2 − 1
)

(B+ − 2A)
(e(B

+
−2A)t − 1)

)
+ e−B+tCu

=
B−

B+
+

B−
(
x0
1 + x0

2 − 1
)

(B+ − 2A)
(e−2At − e−B+t) + e−B+tCu.

Proof of Proposition 2. Since x1 = x+w
2 and x2 = x−w

2 we obtain

x1 (t) =
x (t) + w (t)

2
=

=
1

2

(
1 +

(
x0
1 + x0

2 − 1
)
e−2At +

B−

B+
+

B−
(
x0
1 + x0

2 − 1
)

(B+ − 2A)
(e−2At − e−B+t) + e−B+tCu

)

=
1

2

(
B+ +B−

B+
+

(
x0
1 + x0

2 − 1
)
(B+ +B− − 2A)

(B+ − 2A)
e−2At + (Cu −

(
x0
1 + x0

2 − 1
)
(B−)

(B+ − 2A)
)e−B+t

)

=
ρ1b1 (u1)

B+
+

(
x0
1 + x0

2 − 1
)
(ρ1b1 (u1)−A)

(B+ − 2A)
e−2At +

Cu

2
e−B+t.
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Let us now substitute the initial condition and find the constant Cu. If x1 (0) = x0
1

then

Cu/2 = 2

(
x0
1 −

ρ1b1 (u1)

B+
−

(
x0
1 + x0

2 − 1
)
(−2ρ1b1 (u1) + 2A+B−)

2 (B+ − 2A)

)

Therefore,

x1 (t) =
ρ1b1 (u1)

B+
+

(
x0
1 + x0

2 − 1
)
(ρ1b1 (u1)−A)

(B+ − 2A)
e−2At

+

(
x0
1 −

ρ1b1 (u1)

B+
−

(
x0
1 + x0

2 − 1
)
(2ρ1b1 (u1)− 2A)

2 (B+ − 2A)

)
e−B+t =

=
ρ1b1 (u1)

B+

(
1− e−B+t

)
+

(
x0
1 + x0

2 − 1
)
(ρ1b1 (u1)−A)

(B+ − 2A)

(
e−2At − e−B+t

)
+ x0

1e
−B+t.

For x2 (t) we have a similar result.

x2 (t) =
ρ2b2 (u2)

B+
+

(
x0
1 + x0

2 − 1
)
(ρ2b2 (u2)−A)

(B+ − 2A)
e−2At

−

(
−x0

2 +
ρ2b2 (u2)

B+
+

(
x0
1 + x0

2 − 1
)
(ρ2b2 (u2)−A)

(B+ − 2A)

)
e−B+t

=
ρ2b2 (u2)

B+

(
1− e−B+t

)
+

(
x0
1 + x0

2 − 1
)
(ρ2b2 (u2)−A)

(B+ − 2A)

(
e−2At − e−B+t

)
+ x0

2e
−B+t.

We therefore have obtained the formulae for the evolution of market shares given

the investment rates of firms 1,2. We have

π1 (u1, u2) = lim
T→∞

∫ T

0

e−ρt (r1x1 (t)− u1) dt

= lim
T→∞

∫ T

0

(
r1ρ1b1 (u1)

B+
− u1

)
e−ρtdt

+

∫ T

0

r1
(
x0
1 + x0

2 − 1
)
(ρ1b1 (u1)−A)

(B+ − 2A)
e−ρte−2Atdt

−

∫ T

0

r1

(
ρ1b1 (u1)

B+
+

(
x0
1 + x0

2 − 1
)
(ρ1b1 (u1)−A)

(B+ − 2A)
− x0

1

)
e−ρte−B+tdt

=
1

ρ

(
r1ρ1b1 (u1)

B+
− u1

)
+

r1
(
x0
1 + x0

2 − 1
)
(ρ1b1 (u1)−A)

(2A+ ρ) (B+ − 2A)

−
r1

(B+ + ρ)

(
ρ1b1 (u1)

B+
+

(
x0
1 + x0

2 − 1
)
(ρ1b1 (u1)−A)

(B+ − 2A)
− x0

1

)

=
r1

(B+ + ρ)

(
−ρ1b1(u1)

ln β
+

(
x0
1 + x0

2 − 1
)
(ρ1b1 (u1)−A)

(2A+ ρ)
+ x0

1

)
−

u1

ρ
.
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The expression of π2 (u1, u2) can be obtained in the same way. So we have derived

explicit formulae for payoffs.

Proof of Lemma 1. We assume that ρ 6= 0. Consider the exact form of the fourth

coefficient and substitute the values for

θ = ρ2
u2

u2 + β2
and ϑ =

u2

u2 + α2
.

Multiplying the fourth coefficient by (u2+α2)
2(u2+β2)

2

α1β1
and representing the expres-

sion P (u2) =
(u2+α2)

2(u2+β2)
2

α1β1
(2bc− 2r1dc+ 2r1gh) as a polynomial in u2, we find

that the sign of P (u2) is equal to the sign of the fourth coefficient. We have the

following polynomial expression

P (u2) = 2α2
2ρ

2β2
2

(
− 2r1ρ1

(
1− x0

1

)
+ o (ρ)

)

+ u2

(
2α2ρβ2

(
− 2ρ1r1

(
β2

(
1− x0

1 + x0
2

)
+ α2ρ2

)
+ o (ρ)

))

+ u2
2

(
− 8r1ρ1α2ρ2β2 + o (ρ)

)

+ u3
2

(
8ρ2

(
β1α2ρ2 − r1ρ1α2 + ρ1α1β2 − 2r1ρ1β2

)
+ o (ρ)

)

+ u4
2

(
8ρ2

(
2ρ2β1 + α1ρ2 + ρ1α1 − 2r1ρ1

)
+ o (ρ)

)

where f(ρ) = o (ρ) is such that limρ→0
f(ρ)

ρ
= 0. By hypothesis we know that ρ ≈ 0,

then o (ρ) does not contribute to the signs of coefficients. If the following system of

equations
{
8ρ2 (β1α2ρ2 − r1ρ1α2 + ρ1α1β2 − 2r1ρ1β2) < 0

8ρ2 (2ρ2β1 + α1ρ2 + ρ1α1 − 2r1ρ1) < 0

or, in equivalent way,




r1 >
β1α2ρ2 + ρ1α1β2

ρ1 (α2 + 2β2)

r1 >
ρ2
ρ1

β1 +
ρ2 + ρ1
2ρ1

α1.
(19)

is satisfied, then the number of sign alterations of polynomial equation P (u2) = 0

is zero. Since

ρ2
ρ1

β1+
ρ2 + ρ1
2ρ1

α1−
β1α2ρ2 + ρ1α1β2

ρ1 (α2 + 2β2)
=

1

2

4β2ρ2β1 + α2ρ1α1 + α2α1ρ2 + 2β2α1ρ2
ρ1 (α2 + 2β2)

> 0

then we conclude that the second condition is stronger than the first in (19). By

hypothesis the second condition in (19) is satisfied. Then the first condition in (19)
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is satisfied. It thus follows there are no positive roots for the equation P (u2) = 0. It

is straightforward to verify that P (0) < 0. By continuity argument, it thus follows

that P (u2) < 0 for any u2 ≥ 0. Then the third coefficient is strictly negative for

any u2 ≥ 0.

Proof of Lemma 2. Arguing as in the proof of Lemma 1,we consider

P (u2) =
(u2 + α2)

2
(u2 + β2)

2

α1β1

(
r1gb− r1fc+ c2

)
.

Here

P (u2) = ρ3α2
2β

2
2

(
−r1

(
α1ρ1x

0
2 − β1x

0
2 + β1 − β1x

0
1

)
+ o (ρ)

)
+ u2ρ

2β2α2

+
[
−r1

[
α2β1ρ2

(
1− x0

1 − x0
2

)
+ β2ρ1α1

(
1− x0

1 + 3x0
2

)
+ α1α2ρ2ρ1

(
x0
1 + x0

2

)]
+ o (ρ)

]

+ u2
2ρ
(
−2ρ1α1r1β2

(
β2

(
1− x0

1 + x0
2

)
+ α2ρ2

(
1 + x0

1 + x0
2

))
+ o (ρ)

)

+ u3
2

(
−4r1ρ2α1ρ1β2 + o (ρ)

)

+ u4
2

(
−4α1ρ2 (r1ρ1 − β1ρ2) + o (ρ)

)
.

Therefore we impose the set of following conditions




−r1
(
α1ρ1x

0
2 + β1

(
1− x0

1 − x0
2

))
< 0

−r1
(
α2β1ρ2

(
1− x0

1 − x0
2

)
+ β2ρ1α1

(
1− x0

1 + 3x0
2

)
+ α1α2ρ2ρ1

(
x0
1 + x0

2

))
< 0

−2ρ1α1r1β2

(
β2

(
1− x0

1 + x0
2

)
+ α2ρ2

(
1 + x0

1 + x0
2

))
< 0

−4r1ρ2α1ρ1β2 < 0

−4α1ρ2 (r1ρ1 − β1ρ2) < 0

which is trivially equivalent to r1ρ1−β1ρ2 > 0. If r1 > β1
ρ2
ρ1

then the fifth coefficient

is negative for any non negative value of û2.

Proof of Lemma 3. Let û1 be a best reply to û2. Then û1 > 0 is a positive

root of equation (11). According to the Descartes’s rule of sign alterations, if the

number of sign alterations in the sequence of the coefficients of equations of a

polynomial equation is equal to 1, then there exists exactly one positive root of the

equation (Korn and Korn, 1968). Since the first and the second coefficients in left-

side of equation (11) are positive, we obtain the different cases in Table 2. Cases

are reduced by assuming that the third coefficient is not null in Table 2. If this

happens the number of sign alterations may be just lower to the previous case, i.e.

the third coefficient is not null. This happens since the first two coefficients of (11)

are not strictly negative. We clarify this ambiguity for the first four rows of Table

2. Let us suppose that the third coefficient is null then, the second coefficient is

positive. If it is strictly positive the number of alterations does not decrease. If the

second coefficient is null, then the first coefficient of (11) is strictly positive, i.e.

h2 > 0, since ρ1 > 0. Then, one of the first three coefficients is at least not null.
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Therefore The four rows of Table 2 do not present any change of the number of

sign alterations if the third coefficient is null. For the remaining last four rows of

Table 2, it is straightforward to prove that the number of sign alteration may be

lower if the third coefficient is null. In particular the number of sign alterations is

0 in the row 5 and it is 1 in the row 6. Table 2 fully represents the number of sign

alterations of (11).

Third coefficient Fourth coefficient Fifth coefficient Sign alterations

> 0 > 0 > 0 0

> 0 > 0 < 0 1

> 0 < 0 > 0 2

> 0 < 0 < 0 1

< 0(= 0) > 0 > 0 2 (0)

< 0(= 0) > 0 < 0 3 (1)

< 0 < 0 > 0 2

< 0 < 0 < 0 1

Table 2. Number of sign alterations in equation (11)

Taking into account our hypothesis, theses of Lemmas 1, 2 hold. Therefore the fourth

and the fifth coefficients are strictly negative. It follows from Table 2 that û1 > 0 is

the unique best reply to û2. If there is exactly one positive root of the numerator

of (12), and since the denominator is positive for any u1 > 0, the derivative of

payoffs takes negative values for u1 > û1 and positive values for u1 < û1. This

proves that û1 is a maximum point of π1 (u1, û2) .

Proof of Lemma 4. By hypothesis, the thesis of Lemmas 3 is satisfied. Therefore,

best reply multifunctions Ûi are functions. In addition, Û1 are continuous since

payoffs in (8) are continuous. The rest of the proof is just technical and we leave it

to the reader. The proof is simply based on convergence properties of ai, bi when u

converges to ∞. In fact, we have limu2→∞ θ(u2) = ρ2 and limu2→∞ ϑ(u2) = 1.
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