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ABSTRACT
For 50 years or so, visual search experiments have been used to examine how humans find
behaviourally relevant objects in complex visual scenes. For the same length of time, there has
been a dispute over whether this search is performed in a serial or parallel fashion. In this paper,
we approach this dispute by numerically fitting a serial search model and a parallel search
model to reaction time (RT) distributions from three visual search experiments (feature search,
conjunction search, spatial configuration search). In order to do so, we used a free-likelihood
method based on a novel kernel density estimator (KDE).

The serial search model was the Competitive Guided Search (CGS) model by Moran et al. [(2013).
Competitive guided search: Meeting the challenge of benchmark RT distributions. Journal of Vision,
13(8), 24–24.]. We were able to replicate the ability of CGS to model RT distributions from visual
search experiments, and demonstrated that CGS generalizes well to new data. The parallel
model was based on the biased-competition theory and utilized a very simple biologically-
plausible winner-take-all (WTA) mechanism from Heinke and Humphreys’s [(2003). Attention,
spatial representation and visual neglect: Simulating emergent attention and spatial memory in
the Selective Attention for Identification Model (SAIM). Psychological Review, 110(1), 29–87.]. With
this mechanism, SAIM has been able to explain a broad range of attentional phenomena but it
was not specifically designed to model RT distributions in visual search. Nevertheless, the WTA
was able to reproduce these distributions.

However, a direct comparison of the two models suggested that the serial CGS is slightly better
equipped to explain the RT distributions than the WTA mechanism. The CGS’s success was mainly
down the usage of the Wald distribution which was specifically designed to model visual search.
Future WTA versions will have to find a biologically plausible mechanism to reproduce such a RT
distribution. Finally, both models suffered from a failure to generalize across all display sizes.
From these comparisons, we developed suggestions for improving the models and motivated
empirical studies to devise a stronger test for the two types of searches.
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For the last 50 years or so the visual search task has
been a commonly used experimental procedure to
study human processing of multiple object scenes
(see Eckstein, 2011, for a review). In a standard visual
search task, participants are asked to determine
whether a predefined target item among non-
targets (distractors) on a computer screen is present
or absent. During the course of the experiments, the
number of distractors (display size) is varied. Typically,
the time it takes participants to make this decision
(reaction time; RT) is measured as a function of the
display size (search function). The slope of the search
function is interpreted as an indicator of the search
efficiency for particular target–distractor pairings.

Slopes can range from close to 0 ms/item (highly effi-
cient) to larger than 30 ms/item (highly inefficient).

Examples of highly efficient searches are the search for
a tilted line among vertical lines (Treisman & Gormican,
1988) or for a red among green circles (Egeth, Jonides,
& Wall, 1972). These searches are usually termed
“feature searches” as the target can be distinguished on
the basis of a single feature, e.g., orientation or colour. A
classic example of an inefficient search is when target
and distractor need to be determined based on local fea-
tures within items (“spatial configuration”) e.g., letter T
among Ls (Kwak, Dagenbach, & Egeth, 1991). Somewhat
intermediate efficient searches can often be found in
“conjunction searches” where targets and distractors
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have to be distinguished on the basis of the combination
of twoormore features, e.g., a search for a vertical red bar
amonghorizontal red bars and vertical greenbars (Wolfe,
Cave, & Franzel, 1989).

From the beginning of research into visual search
the results have been discussed in terms of the dichot-
omy of parallel vs. serial search (Treisman & Gelade,
1980). In broad terms, serial search assumes that
items in a search display are attended to one by one
and each examined as to whether it constitutes the
target. In parallel search, all items are examined in par-
allel as towhether they are the target.Moreover, search
resultswith a shallow slopehavebeen considered to be
parallel searches while steeper slopes are interpreted
as evidence for serial search. However, it can be
shown that mean RTs and slopes are not sufficient to
distinguish between serial versus parallel processing
as both types of searches are able to produce efficient
or inefficient searches (Townsend & Ashby, 1984;
Townsend & Nozawa, 1995). A potential solution for
this inability to make this decision may be to consider
RT distributions as they would contain more infor-
mation about the underlying search type (Balota &
Yap, 2011; Ratcliff, 1978; Wolfe, Palmer, & Horowitz,
2010). This paper will fit two computational models to
RT distributions. The two models implement the two
types of search. We will evaluate which of the two
models explains better the two types of search and
consequently this model comparison will allow us to
decidewhich search strategywasmost likely employed
in the given data. At this point it is worth stressing
that this paper focuses on the dichotomy of parallel
vs. serial rather than on how visual features, such as
colour or orientation, influence visual search. In other
words, such perceptual features in this framework
turn into free model parameters rather than explicit
computations.

Probably the most influential serial search theory is
“Guided Search” by Wolfe and colleagues (Wolfe,
1994, 2007; Wolfe et al., 1989). Guided Search posits a
two-stage architecture. The first stage is a parallel pro-
cessing stage and determines a saliencymap of a visual
scene (Koch & Ullman, 1985). This saliency map indi-
cates the conspicuity of items in terms of how distinct
the perceptual properties of an item are compared to
other items’ perceptual properties (see Bruce &
Tsotsos, 2009; Itti, Koch, & Niebur, 1998, for examples
of computational models of saliency maps). The sal-
iency map guides the serial search process in the

second stage. This guidance directs the search along
decreasing item saliencies. This way Guided Search
can explain highly efficient searches such as feature
searches, where targets are highly salient. For highly
inefficient searches, such as the spatial configuration
task, target items are assumed to be not salient
leading to a lack of guidance. Consequently, search
becomes random. Note, however, that Guided Search
also assumes that serial search is not only guided by
such perceptual (i.e., bottom-up) factors but also by
top-down factors such as knowledge about the target
itself (Wolfe, 1998). This way searches like spatial con-
figuration search may be not entirely random.

A recent paper by Moran, Zehetleitner, Mueller, and
Usher (2013) numerically fitted an instantiation of the
Guided Search theory, termed Competitive Guided
Search (CGS), to RT distributions from visual exper-
iments. The data was taken from Wolfe et al.’s (2010)
data set which includes results from the three stan-
dard tasks: a feature search (red vertical bar among
green vertical bars), a conjunction search (red vertical
bar among green vertical bars and red horizontal bars)
and a spatial configuration search (2 among 5s). They
demonstrated that their model can successfully repro-
duce RT distributions from these search tasks. Based
on their success we will use CGS as a reference
model to a parallel search model. Moreover, Moran
et al. (2013) used the best fitting distribution for
Wolfe et al.’s (2010) data, Wald distribution (Palmer,
Horowitz, Torralba, & Wolfe, 2011) as basis for CGS’s
identification stage (see below for details). Hence, it
is questionable whether CGS generalizes to other
data. We will therefore test CGS with our own data
(Lin, Heinke, & Humphreys, 2015).

Probably the most influential parallel search theory
is the Biased Competition Theory (Desimone &
Duncan, 1995; Duncan, Humphreys, & Ward, 1997).
This theory suggests that search items compete for
response, and that reaction times and search efficien-
cies depend on the “amount” of interference between
items during this competition. Analogous to Guided
Search, the competition process is assumed to be
affected by bottom-up and top-down factors (e.g.,
expectations about targets, Anderson, Heinke, &
Humphreys, 2010; or short-term memory, Woodgate,
Strauss, Sami, & Heinke, 2015). Several computational
modelling studies have found that indeed parallel
competition between items can explain search effi-
ciency, most prominently the Selective Attention for
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Identification Model (SAIM; Heinke & Backhaus, 2011;
Heinke & Humphreys, 2003; Mavritsaki, Heinke, Hum-
phreys, & Deco, 2006). SAIM’s competition mechanism
is able to model a broad range of empirical evidence
typically associated with visual selective attention
and its disorders. Its most recent instalment,
VS-SAIM, was able to simulate visual search exper-
iments (Heinke & Backhaus, 2011). However, in this
study SAIM was evaluated in a qualitative way. This
paper aims to rectify this shortcoming by taking
SAIM’s core mechanism, a winner-take-all (WTA)
network, and evaluating it quantitatively with RT distri-
butions taken from Lin et al.’s (2015) data. It is also
worth noting that Bundesen’s (1990) biased-compe-
tition model (TVA) was fitted quantitatively albeit
based on mean RTs. Of course, any parallel search
model is likely to represent a simplification of how
visual search is implemented and a serial component
is certainly part of a fuller picture. For one thing, eye
movements are an obvious candidate for a serial com-
ponent (see Hulleman & Olivers, 2016, on the impor-
tance of eye movements). It is also conceivable that
some serial “internal rejecting” after a parallel search
may take place (see SEarch via Recursive Rejection
SERR, Humphreys & Müller, 1993, for an example). It
is also clear that such serial components are particu-
larly important in target-absent trials (even though
perhaps not in terms of eye movements as discussed
in Wolfe, 2007). Hence, we will focus in this paper on
present trials. Nevertheless, previous studies with par-
allel-only models such as SAIM imply that such a paral-
lel approach may go a long way in explaining visual
search, particularly for target-present trials. Here, we
will follow-up and utilize RT distributions to further
evaluate this approach. Moreover, the direct compari-
son with a serial approach will give us a good insight
intowhatmay bemissing in the parallel-only approach.
In fact, CGS represents a particularly strong challenge
as CGS is developed especially for modelling visual

search while SAIM was developed to account for a
broad range of attentional effects. Another argument
for fitting a simple parallel model comes from the
methodology issue posed by utilizing RT distributions.
In this paper, we will present a novel method of fitting
RT distributions. Such a novel method is better tested
with simple models or models where we already
know that they are successful elsewhere such as CGS.

It is well-known that obtaining veridical estimates
of RT distributions is challenging and standard estima-
tors (e.g., histograms) require thousands of trials (Van
Zandt, 2000). Here we will present a novel version of
the kernel density estimator (KDE) termed on-line
KDE (oKDE; Kristan, Leonardis, & Skočaj, 2011) and
demonstrate that oKDE is suitable to veridically rep-
resent RT distributions for around 100 trials.

The structure of this paper is as follows. We will first
introduce the visual search experiments (feature
search, conjunction search, spatial configuration
search) from which we used the data. Then we intro-
duce the two models and discuss them. As the
biased-competition model uses the WTA mechanism
from SAIM, we termed this model SAIM-WTA. In
Method, we introduce the computational methods
we used to fit the models. In particular, we present a
novel KDE capable of representing RT distribution
with extremely high accuracy using around 100 trials
in each condition. The results section demonstrates
that SAIM-WTA can be fitted well to the visual search
data and that we are able to qualitatively replicate
Moran et al.’s (2013) fits. The comparison of the two
models shows that the serial model fits better to the
data than the parallel model. We round off with a dis-
cussion of the implications of our findings.

Visual search experiment

The data used in this paper was collected as part of Lin
et al.’s (2015) experiments. Details of the design can be

Figure 1. Schematic representation of the tasks. From left to right: feature search, conjunction search, spatial configuration search.
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found in Lin et al. (2015). The search displays were
arranged in a circular layout (see Figure 1) in which
items can be placed in 25 locations. The display size
was 3, 6, 12 or 18 items. Each condition comprised
100 trials. Three different search experiments were
conducted: feature search, conjunction search, spatial
configuration search. In the feature search task, the
target was a dark square while the distractors were
grey squares. In the conjunction search, participants
looked for a vertical dark bar amongst two types of dis-
tractors, vertical grey bars and horizontal dark bars. The
spatial configuration task used two items, digit 2
(target) and digit 5 (distractor). Each search task was
completed by 20 participants; one participant was
removed from feature and conjunction search tasks
due to high error rates. Figure 2 shows the resulting
search functions for the present condition. In addition,
Lin et al. (2015) found that for feature search and con-
junction search the RT distribution’s skewness
increased with increasing display size. For spatial con-
figuration search the relationship between skewness
and display size was more complex. The skewness
first increased over the smaller display sizes (3, 6, 12)
but then decreased from 12 to 18.

The results indicate that the data provides a good
basis for testing the models on a range of search
task difficulties similar to Wolfe et al.’s (2010) data.
However, there is an interesting difference between
their data and our data. In our study, participants
made roughly twice as many as errors as in their
experiments. This difference can be explained
because in Wolfe et al.’s (2010) experiments, partici-
pants completed all three tasks with 500 trials in
each condition. In our study, participants completed

only 100 trials per condition and not all tasks. Thus,
in Wolfe et al.’s (2010) study participants were highly
practiced compared to our study. When we re-ana-
lysed Wolfe et al.’s (2010) data and included only the
first 100 trials of each condition the error rates were
similar to our error rate. Hence our dataset poses the
interesting challenge to CGS whether CGS will also
be able to model less practiced participants.

Computational models

SAIM’s winner-take-all model

The biased competition model is based on SAIM’s
WTA mechanism (Heinke & Backhaus, 2011; Heinke &
Humphreys, 2003; Zhao, Humphreys, & Heinke,
2012). This WTA mechanism uses a single layer of
“neurons” which are connected by a lateral inhibition
(see Figure 3(a)). If the correct parameters are chosen,
the neuron with the highest input is activated while
all other neurons are shut down (see Figure 3(b) for
an exemplar simulation result). In other words, all
neurons compete with each other and the neuron
with the largest input wins the competition. The

Figure 2. Search functions of the three tasks (feature search, con-
junction search, spatial configuration search) used in this study.
The error bars indicate the standard error.
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Figure 3. The graph at the top shows SAIM-WTA’s architecture.
All nodes compete via global inhibitory neuron. The time course
at the bottom shows an example of SAIM-WTA’s output acti-
vation. The line colours correspond to the network’s nodes.
The dotted line indicates the threshold for this particular simu-
lation. The simulation result came from the spatial configuration
search with six search items and the parameters from the 8th
participant (see Appendix I).
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mathematical description of the model as follows:

dxi = −dt
t
xi + dt

t
w

∑n
j=1

yj

( )
+ Ii

( )
+

���
dt
t

√
ji ;

yj = f (xj) = 1
1+ e−m(xj−s) ; j = N(0, s);

where f (x) is a sigmoid function with parameters
slope (m) and intercept (s), t is the accumulation rate
of input activation and w is the strength of the
lateral inhibition, j is Gaussian noise with the variance
(s), Ii is the input to the ith neuron, yi is the output acti-
vation of ith neuron, xi is the internal activation of the
ith neuron. These equations are based on a mathemat-
ical description of neurophysiological processes using
a spiking-rate neuron model. The Gaussian noise takes
into account the randomness of neural processes. The
sigmoid function models the non-linear relationship
between cell activation and output spiking rate. The
differential equation models the leaky accumulation
behaviour of synapses. The summation term realizes
the lateral inhibition within the layer (inhibitory
neuron).

To adapt the model to modelling visual search data,
we made several simple assumptions. Each “neuron” is
assumed to correspond to an item location in the
search display. If a location is empty the input is set
to zero. The neuron for the target location is set to
one while the distractor neurons are set to a saliency
value. To model the reaction time, we introduced a
decision boundary and computed the time it takes
for a neuron to pass this threshold. If it is a distractor
neuron the response is recorded as “target absent”;
if it is a target neuron the response is “target present”.

It is worth noting that SAIM-WTA is similar to the
Leaky Competing Accumulation (LCA) model (Usher
& McClelland, 2001). However, to the best of our
knowledge, LCA has never been applied to visual
search. Moreover and similar to LCA, SAIM-WTA
stands in the tradition of the Parallel Distributed Pro-
cessing (PDP) framework (Rumelhart & McCleland,
1986) in that it draws on principles of neural infor-
mation processing in order to understand phenomena
at the behavioural level (see Mavritsaki, Heinke, Allen,
Deco, & Humphreys, 2011, for a discussion of linking
the neural level with the behavioural level through
means of computational models).

In addition, some mechanisms and conceptualiz-
ations are also similar to stochastic drift diffusion
models (Busemeyer & Diederich, 2010; Ratcliff, 1978).
These models assume that perceptual decision making
is based on an accumulation of perceptual information.
Once this accumulation has reached a certain level (i.e.,
threshold) a decision is made (i.e., a response is gener-
ated). The time it takes for the accumulation to reach
the threshold is interpreted as reaction time. SAIM-
WTA can be framed in terms of these drift diffusion
models in that SAIM-WTA’s model accumulates infor-
mation about the search items (i.e., identifies them)
and once this information has reached a certain level
the model/participant initiates a corresponding
response. However, and different from drift diffusion
models, the accumulators interfere with each other.

SAIM-WTA has seven free parameters. In explora-
tions of the parameter space prior to work presented
here, we found several regions where it was possible
to achieve a similar quality of fit. Subsequently, we
focused on a region where it was possible to reduce
the number of free parameters to the smallest poss-
ible number (i.e., three) while still obtaining the best
fits for all participants (see Appendix I for the values
of the fixed parameters). In addition, the remaining
free parameters (accumulation rate, decision bound-
ary, distractor saliency) allowed us to ask interesting
theoretical questions about the factors which influ-
ence visual search performance. Given the biased-
competition theory’s assumptions, we expect that
the distractor saliency (target–distractor similarity)
increases with task difficulty, but it is not clear if the
distractor saliency is sufficient to explain the differ-
ences between the tasks or is there also a difference
in terms of the difficulty of identifying items (as
expressed by accumulation rate)? In fact, compu-
tational models such as SAIM (and CGS) suggest the
involvement of a separate object identification stage.

Competitive Guided Search (CGS)

Moran et al.’s (2013) CGS implements a serial search
based on Wolfe’s (2007) two stage architecture. The
guidance through the saliency map is implemented
through a probabilistic selection where target item
has the probability to be selected:

ptarget = wtarget

n− 1+ wtarget
.
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and the distractor items:

pdistractor = n− 1
n− 1+ wtarget

.

wtarget is the saliency of the target relative to the dis-
tractor. If the target saliency is smaller than one
there is no guidance; n is the number of items cur-
rently available for selection and is decremented
after each search step. Hence, CGS assumes that
once an item is identified it is not revisited again.
Prior to each search step, CGS decides whether to con-
tinue with the search, or to quit the search and decide
that the target is absent. The probability to quit is cal-
culated in the following way:

pquit = wquit

wquit + n− 1+ wtarget

Again, n is decremented after each search. Hence, the
probability to quit increases with each search step.
This effect is increased further by modifying wquit at
each search step:

wquit, new = wquit, old + Dwquit

Note that the value of wquit is zero at the beginning of
the search.

At each search step, CGS assumes that an item is
identified as to whether it is a target or a distractor.
This identification process is modelled as a drift diffu-
sion process which is also used to describe the behav-
iour of SAIM-WTA’s nodes. However, instead of
simulating the drift diffusion process Moran et al.
(2013) used the Wald distribution to represent the dis-
tribution of the identification time (i.e., passing of
threshold):

pwald(t|a, v, s) =
��������
(a/s)2

2pxt3

√
e

−(a/s)2(t − (a/v))2

2(a/v)2t

with the three parameters identification drift rate (y),
identification threshold (u) and noise level (s). The
noise level was fixed at 0.1 throughout the studies.
The total reaction time is the sum of all identification
times from all search steps. Moran et al. (2013) also
chose this distribution as Palmer et al. (2011) found
this distribution to be the best to describe Wolfe
et al.’s (2010) data.

Note that mathematically the probability distri-
bution of the sum of independent random variables
can be determined by convolving the probability

distributions of the individual random variables.
Hence, CGS’s total reaction time can be described as
multiple convolutions of a Wald distribution where
the number of convolutions depends on the number
of search steps. One consequence of this convolution
is that CGS’s RT distribution is more skewed the more
search steps take place. Hence, CGS should produce
an increase in skewness with increasing display size
(depending on the search task). This relationship
should enable CGS to model RT distributions from
visual search tasks.

CGS also assumes that at the response execution
stage an erroneous response can occur due to a
motor error with a certain probability (m). Since the
identification stage is assumed to be perfect, misses
of targets can only occur through motor errors. It is
also worth noting that motor errors can “correct”
misses as it is possible that search terminates
without finding the target but due to an error the
model still reports “target present”. Finally, a residual
time accounts for the duration of processes which
are outside the actual search process such as encoding
of items, post-decisional processes, response planning
and execution. The residual time is assumed to be dis-
tributed as a shifted exponential distribution with non-
decision shift time (Tmin) and non-decision drift time
(g) as parameters.

Discussion

Apart from implementing two different types of
searches, the models relate differently to the neural
substrate. SAIM-WTA aims to be “biologically-plaus-
ible” while CGC is less rooted in neural processes,
even though the identification stage has a similar
link (drift diffusion model) to neural processes as
SAIM-WTA. Both models assume item identification
plays a critical role in visual search.

The selection process from the saliency map is seen
by CGS’s authors as an approximation of a compe-
tition process (hence competitive Guided Search).
However, the approximation does not involve interfer-
ence between items as SAIM-WTA implements. Hence,
the selection process is probably better understood as
a randomized selection process which is modulated
by item saliency.

However, for the purpose of this paper these differ-
ences and commonalities are less important. More
important is the fact that SAIM-WTA has fewer free
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parameters than CGS. SAIM-WTA absorbs CGS’s stages
(identification stage, encoding stage, etc.) into the
competition process. Hence, a numerical comparison
between the models can look at whether this more
parsimonious model is more successful than a more
complex model.

Method

Both models were fitted to each participant separately.
The resulting quality of fit and parameter settings were
averaged in order to represent the population level.

The best fitting parameter settings were deter-
mined using the maximum likelihood principle
(MLP). MLP allows us to base model fit on RT distri-
butions. To employ MLP, traditionally it is necessary
for models to possess an analytic probability density
function (pdf). However, models such as SAIM-WTA
or GCS don’t possess such pdfs. Recent developments
in model fitting, often termed approximated Bayesian
computation (ABC) or “likelihood-free methods” (see
Beaumont, 2010, for a review) solve this issue by
approximating the model’s pdfs. We utilized a likeli-
hood-free method based on a KDE-approach which
estimates the model’s pdf for a given parameter
setting using Monte Carlo sampling (see Turner &
Sederberg, 2014). In the following section, we will
introduce the KDE-method we used here. After that,
we will discuss the method we used to find the best-
fitting parameters. Since the representation of RT dis-
tributions and the method for parameter search are
different from Moran et al.’s (2013) methods, we
include a brief explanation of why we have chosen
different methods. At the end of this section we will
explain how we removed outlier parameter settings.

Model’s pdf

In this paper, we utilize a novel KDE method, on-line
KDE (oKDE; Kristan et al., 2011). The method was
chosen as it is ideal for approximating RT distributions
even with 100 trials (see Appendix III for a demon-
stration). Originally, the KDE method was proposed
by Silverman (1986). A KDE is based on a sum of distri-
bution kernels (either Gaussian or Epanechnikov distri-
butions). The number of kernels is equal to the
number of data points. The mean of each kernel is
the value of the corresponding data point and the var-
iance for all kernels (bandwidth) is estimated from the

data’s variance (see Van Zandt, 2000, for details). The
oKDE method is more flexible in terms of number of
kernels and their variance. In fact, oKDE optimizes
the number of kernels and their widths (see
Figure 4). Hence, oKDE leads to a more efficient and
more adaptable KDE than the standard KDE method
(Kristan et al., 2011, for detailed discussion). Initially,
the oKDE method assumes a kernel for each data
point (similar to the traditional KDE-approach) and
determines the smallest bandwidth for this initial
KDE using an optimality criterion. Subsequently,
oKDE clusters these kernels to construct kernels with
larger bandwidths (see Kristan et al., 2011, for details).

Parameter search

To find the optimal parameters, we utilized a particular
version of a differential evolution (DE) algorithm (Storn
& Price, 1997; ter Braak, 2006). DE algorithms aim to
implement a near global search through parameter
space by utilizing populations of parameter settings
(rather than a single parameter setting) as the starting
point for the search (see Comparison with Moran
et al.’s [2013] method for more details). The particular
version we used was the probabilistic Markov chain
Monte Carlo (DE-MCMC) extension by Turner, Seder-
berg, Brown, and Steyvers (2013). A main advantage
of the differential algorithms is their natural ability to
deal with correlations between parameters. For
instance, accumulation rate and decision boundary
are correlated as an increase in decision boundary
leads to an increase in reaction times in a similar

Figure 4. An illustrative example of how oKDE decomposes a dis-
tribution in several kernels with varying variance. The example
also shows the location of the sigma points in this KDE which
were relevant for the evaluation of the KDE (see Appendix III
for details).
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way as a decrease in accumulation rate leads to an
increase in reaction times.

Likelihood function

The fit of the model with the data was evaluated with
the likelihood principle using a pdf for mixed data
(Turner & Sederberg, 2014):

L(S|u) =
∏2
j=1

∏X=sj

i=1

P(sj)Mj(xi |u)

where P(s1) is the probability of correct response and
P(s2) is the probability of incorrect response. Mj(x_i|θ)
denotes the model’s pdf for any observation x_i, the
parameters θ and response type (j). As stated earlier,
here the model’s pdf is represented by a KDE.
However, this likelihood function is not fully suitable
for our modelling approach, as we don’t consider
the reaction times for incorrect responses. Therefore,
Turner and Sederberg’s (2014) equation turns into:

L(Xc , Xi|u) = (1− P(Xc))
ni
∏nc
j=1

P(Xc)M(xj|u)

where ni indicates the number of incorrect responses
and nc is the number of correct responses. P(Xc) is
the probability of correct responses in the model.

In addition, we improved the robustness of estimat-
ing the likelihood function at unlikely data points by
introducing a dataset-defined threshold for the
model’s pdf. Note that thresholding very small pdf
values is common practice to avoid numerical issues
(i.e., underflow) in the calculation of likelihood
values. In standard applications, this practice does
not lead to large problems as the model’s pdf is typi-
cally similar to the data (e.g., Weibull distribution as
model of RT distributions) and so small pdf values
relate to rare occurrence of data points. However, in
our modelling enterprise the model’s pdf needs to
be created via Monte Carlo sampling which some-
times leads to a misrepresentation of the model’s
pdf particularly for unlikely simulation outcomes (i.e.,
unlikely data points). In other words, the KDE con-
structed from such a sampling error assigns small
probabilities to these data points; even smaller than
implied by their presence in the dataset. Other
sampling runs with similar parameter settings may
assign reasonable probabilities to these data points.
Such variations in sampling can lead to large problems

in finding optimal parameters during the parameter
search. To stabilize this (i.e., improving the robustness
of estimating the likelihood function), we introduced
this data-defined threshold. In order to determine
this threshold, we fitted a KDE to the dataset. As
stated earlier, initially the oKDE method assumes a
kernel for each data point (similar to the traditional
KDE approach) and determines the smallest band-
width for this initial KDE using optimality criteria.
This bandwidth defines a lower bound for a prob-
ability of a data point. Hence, any pdf constructed
for a model (KDE) should produce at least this prob-
ability for each data point. Therefore, this bandwidth
forms a reasonable threshold for the model’s pdf
(KDE). In other words, if the model is correct, a
failure to produce reasonable probabilities for unlikely
data points has to be due to the sampling error and
thresholding the model’s KDE in this situation corrects
this error. However, sampling error is not the only
reason for failing to produce reasonable probabilities.
Suboptimal parameter settings can lead to model pdfs
which are very different from the data’s pdf. In this
situation, the threshold introduces a bias towards a
better evaluation of the model. To lower this bias,
we reduced the data-driven threshold by 50%:

L(X|u) =
∏n
i=1

max (M(xi|u), N(0, h)/2)

where h is the smallest bandwidth.

Comparison with Moran et al.’s (2013) methods

To fit parameters, Moran et al. (2013) used the popular
algorithm by Nelder and Mead (1965) which is
implemented in MatLab’s fminsearch. This method is
very sensitive to the choice of the starting point of the
parameter search. Our DE-MCMC method reduces this
problem by using a population of starting points.1 More-
over, to estimate the RT distributions Moran et al. (2013)
employed the commonly used Quantile Maximal Prob-
ability (QMP) method by Heathcote, Brown, and
Mewhort (2002). However, Turner and Sederberg (2014)
showed that this method can lead to misleading results.

Thus, given the differences between our approach
and Moran et al. (2013), attempting to replicate
Moran et al.’s (2013) parameter settings is unlikely to
be successful. However, to demonstrate that our
approach is more reliable than Moran et al.’s (2013)
approach, we fitted CGS to Wolfe et al.’s (2013) data

VISUAL COGNITION 313



twice, using different starting points. First, Moran
et al.’s (2013) parameter settings from the individual
participants were used as starting points for the par-
ameter search. Even though these starting points are
unlikely to be the best fits given the differences in
methods, they should at least be close to very good
solutions which DE-MCMC would be able to find.
Second, we used our parameter settings established
by fitting Lin et al.’s (2015) data. Interestingly, the
quality of fit for Moran et al.’s (2013) parameter set-
tings as starting points was not as good as for our par-
ameter settings as starting points. Hence, we conclude
that our parameter settings generalize better across
different datasets while Moran et al.’s (2013) settings
seem very specific to their chosen starting point of
the search.

Removal of outlier parameter settings

It turned out that some participants’ parameter set-
tings were extreme. We therefore applied an outlier
elimination method, the median absolute deviation
(MAD; Leys, Ley, Klein, Bernard, & Licata, 2013), to
each parameter in each task. As criterion for an
outlier we used five standard deviations. A participant
was identified as outlier if at least one parameter value
was considered to be an outlier. This participant was
removed from the further analysis.

Results and discussion: SAIM-WTA

We fitted SAIM-WTA with three free parameters (distrac-
tor saliency, decision boundary, accumulation rate) to
Lin et al.’s (2015) 58 datasets from three visual search
experiments (feature search, conjunction search,
spatial configuration search). Hence, we obtained 58
parameter settings (see Appendix II for values), 19 par-
ameter settings (participants) for feature search, 19 set-
tings (participants) for conjunction search and 20
settings (parameters) for spatial configuration. Eyebal-
ling the parameter settings, we noticed that there
were a few settings which could be considered as out-
liers. Our outlier detection procedure led to the
removal of two participants from feature search, three
settings from conjunction search and no participant
from spatial configuration search.

To assess the overall fit for each participant we calcu-
lated the log likelihood ratios (log likelihood value from
the model divided by the log likelihood value of the

KDE’s dataset; see Figure 5 for the results).We compared
ratios from the different tasks with the Wilcoxon rank-
sum test and found a significant decline of ratios
between feature search and conjunction search
(z = 2.36; p = .018); and feature search and spatial con-
figuration (z = 2.85; p = .004). There was no signifi-
cant difference between conjunction search and
spatial configuration search (z = 0.14; p = .886). To
illustrate the quality of fit (likelihood ratio), Figure 6
shows the outcome from three participants. Note that
the choice of these participants was made randomly
by MatLab to avoid an author bias. The likelihood ratio
was −46.32 for feature search, −61.10 for conjunction
search and −71.98 for spatial configuration search. The
graphs indicate that SAIM-WTA was able to produce
an increased skewness with increased display size. This
increase broadly matched the increase of skewness in
the data, but not to the same degree. The failure to
match skewness is particularly pertinent in spatial con-
figuration search for display size 18. This effect is illus-
trated in Figure 10 where the likelihood ratio declined
with increasing display size. Nevertheless, it is important
to note that the only source of this effect is the increase
of number of distractors in the input of the model since
all parameters are kept constant. In other words, the
competition between items due to lateral inhibition is
able to explain the skewness found in the visual search.

Figure 5 shows how the three free parameters (dis-
tractor saliency, decision boundary, accumulation rate)
changed across the three tasks. The parameters were
entered intoaWilcoxon rank-sum test. For accumulation
rate, there was significant difference between feature

Figure 5. Results of fitting SAIM-WTA. The top-left graph shows
the mean log-likelihood ratios (quality of fit) for the different
tasks. The remaining graphs show the mean parameters. The
error bars indicate the standard error.
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search and conjunction search (z = 4.845, p < .001) as
well as between conjunction search and spatial con-
figuration search (z = 4.056, p < .001). For distractor sal-
iency, the difference between feature search and
conjunction search was significant (z =−2.684,
p = .007) and so was the comparison between conjunc-
tion search and spatial configuration (z =−3.659,
p < .001). For decision boundary, both comparisons

were also significant (z =−3.368, p < .001; z =−4.619,
p < .001). Hence all comparisons were significant. As
expected, the distractor saliency increased with increas-
ing task difficulty. However and interestingly, the other
two parameters were also related to task difficulty.
Accumulation rate decreased with increasing task diffi-
culty, i.e., framed in terms of drift diffusion models, dis-
cussed earlier, the accumulation of perceptual
information about items was more and more difficult.
Finally, it is worth noting that the level of decision
boundary increased with task difficulty. A closer inspec-
tion of this finding showed that it is a by-product of the
increase of competition leading to higher activations of
distractors requiring higher decision boundaries to
avoid response errors.

On the whole, SAIM-WTA exhibited a reasonable fit
with three search tasks. In particular, it was able to
model the increasing skewness with increase in display
size. However, the quality of fit decreased with task dif-
ficulty. In particular, SAIM-WTA was not able to match
the increase in skewness with increased display size.

The three free parameters (distractor saliency,
accumulation rate, decision boundary) were different
for the three tasks. Distractor saliency increased
across tasks as predicted by all major theories on
visual search. Importantly, SAIM-WTA identifies distrac-
tor saliency as an important source for the increase in
skewness across display sizes. The results also identify

Figure 6. SAIM-WTA. KDE-based illustration of RT distributions and response errors. Note that these graphs show the RT distributions
for three participants.

Figure 7. Results of fitting CGS. The top-left graph shows the
mean log-likelihood ratios (quality of fit) for the different tasks.
The remaining graphs show the means of CGS’s seven par-
ameters for the three tasks (Feature Search = FS; Conjunction
Search = CS; Spatial configuration search = SC). Note, for the
purpose of a better illustration the target saliency parameter
was scaled logarithmically. The results replicate Moran et al.’s
(2013) findings. The error bars indicate the standard error.
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an increase of accumulation rate with task difficulty. As
discussed in the introduction of WTA-SAIM, accumu-
lation rate can be linked with object identification. In
other words, SAIM-WTA indicates that not only does
selection of target get more difficult across the three
tasks, but also object identification gets harder. This is

consistent with other theories on visual search, such
as biased-competition theory, and with computational
models such Moran et al.’s model and SAIM.
However, both models consider object identification
as a separate processing stage. Moreover, this offers
an interesting explanation for findings that responses
in pop-out searches can be speeded up even further
by additional manipulations such as priming (Maljkovic

Figure 8. CGS. KDE-based illustration of RT distributions and response errors. Note that these graphs show the RT distributions for three
participants.

Figure 9. Comparison of mean log likelihood ratios from SAIM-
WTA and CGS for the three tasks (feature search, conjunction
search, spatial configuration). The graphs indicate the contri-
butions from the different display size to the overall log likeli-
hood ratios. The error bars indicate the standard error without
within-participant variance (Cousineau, 2005). The graphs
demonstrate that CGS was better at explaining the data than
SAIM-WTA. However, they also show that the performance of
both models is best at display size 6 and worse at all other
display sizes (see main text for more discussion).

Figure 10. Comparison of BIC scores and AIC scores from SAIM-
WTA and CGS for the three tasks (feature search, conjunction
search, spatial configuration search). The error bars indicate the
standard error without within-participant variance (Cousineau,
2005). BIC and AIC penalize the quality with the model complex-
ity as measured with the number of parameters. The graphs indi-
cate that CGS performed better than SAIM-WTA despite SAIM-
WTA being the simpler model.
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& Nakayama, 2000; Woodgate et al., 2015). SAIM-WTA
suggests that the speed-ups are due to improved
target identification. Fitting SAIM-WTA to data from
priming experiments should support this prediction.

Finally, the increase of the decision boundary
makes an interesting prediction for an application of
the Speed–Accuracy Tradeoff (SAT) procedure in
visual search experiments. In a SAT procedure, partici-
pants’ response time is controlled by requiring them
to respond within a set time window (Wickelgren,
1977; Zhao et al., 2011). For early time windows
where participants sacrifice accuracy for speeded
responses, SAIM-WTA should detect lower decision
boundaries, but distractor saliency and accumulation
rate remain unchanged.

Results and discussion: Competitive Guided
Search

We fitted CGS with seven free parameters (target sal-
iency, identification drift, identification threshold, quit
weight increment, non-decision time shift, non-
decision time drift, motor error) to Lin et al.’s (2015)
58 datasets from three visual search experiments,
feature search, conjunction search and spatial configur-
ation search. Thus we obtained 58 parameter settings
(see Appendix II for values), 19 parameter settings (par-
ticipants) for feature search, 19 settings (participants)
for conjunction search and 20 settings (parameters)
for spatial configuration. Our outlier removal procedure
detected no outlier for feature search, two outliers for
conjunction search and two outliers for spatial configur-
ation. It is also worth noting that the parameter search
revealed that there are good fits for conjunction search
and feature search where the saliency values are
implausibly high. This is not very surprising as fast
target searches can be executed with arbitrarily high
saliency value. To solve this problem, we first fitted
spatial configuration and used these resulting par-
ameter values as starting point for fitting the other
searches. This way the best fits produced saliency
values which were relatively small (see note 1).

To assess the overall fit for each participant, we
calculated the log likelihood ratios, i.e., log likelihood
value from the model divided by the log likelihood
value of the KDE’s dataset. We compared ratios from
the different tasks with the Wilcoxon rank-sum test and
a significant difference was found between feature
search and conjunction search (z = 2.92; p = .004);

and feature search and spatial configuration search
(z = 3.11; p = .002). And there was no significant
relation between conjunction search and spatial con-
figuration search (z = 0.25; p = .81). Figure 7 shows
that the quality of fit declined with task difficulty. To illus-
trate the quality of fit, Figure 8 shows the outcome from
three participants. Note that the choice of these partici-
pants was made randomly by MatLab to avoid an
author bias. The likelihood ratio was –18.44 for feature
search; −38.82 for conjunction search and −44.10 for
spatial configuration search. The graphs illustrate that
CGS’s distributions nicely overlap with the RT distri-
butions from the respective tasks. Hence, we were able
to qualitatively replicate Moran et al.’s (2013) results.

Interestingly, we were also able to replicate the
qualitative relationship of parameter values with the
search tasks (see Figure 7 and Moran et al. (2013);
Appendix C). The parameters accounting for encoding
and post-decisional process showed longer delay
(non-decision shift) and more variance (non-decision
drift) with increasing task difficulty. Motor error
increased with task difficulty. The identification drift
showed slower accumulation rate with increasing
task difficulty. The identification threshold decreased
with task difficulty (albeit counterintuitively). The like-
lihood to stop scanning the search display (wquit)
increased less the more difficult the task was. Finally,
the guidance (target saliency) was smaller the harder
the task was. Interestingly, and similar to Moran
et al.’s (2013) findings, there was still residual guidance
in the spatial configuration search task. In fact, there
was no significant difference between our guidance
parameters and Moran et al.’s (2013) parameters (see
Table II.1 for a comparison using Wilcoxon rank-sum
test). These findings question Moran et al.’s (2013)
explanation for their result. They stipulated that gui-
dance may be possible due to the fact that participants
were highly practiced in Wolfe et al.’s (2010) dataset.
However, in Lin et al.’s (2015) experiment the partici-
pants were not practiced and CGS still suggests that
there is guidance involved. Since our numerical
methods were different from Moran et al.’s (2013)
methods, as discussed earlier, we also fitted CGS to
Wolfe et al.’s (2010) dataset using our numerical
methods. Again, we found no significant difference
between the saliency values for Wolfe et al.’s (2010)
dataset and for Lin et al.’s (2015) dataset. Since practice
effects go beyond the topic of the present paper we did
not follow this up any further.
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Comparison of SAIM-WTA and CGS

Figure 9 compares SAIM-WTA and CGS in terms of log-
likelihood ratio. Overall, it demonstrates that CGS
explained the visual search data better than SAIM-
WTA. The only exception is conjunction search where
CGS and SAIM-WTA showed similar results. Figure 9
also breaks down to the results in terms of how well
the two models explained the data for the different
display sizes. Figure 9 gives us an insight into why
SAIM-WTA is worse than CGS and highlights a
problem with both models. The graphs show that, irre-
spective of display size, SAIM-WTA performed worse
than CGS. Hence, SAIM-WTA failed to replicate the RT
distributions with the same precision as CGS.
However, both models showed their best fit with
display size 6 and then a decline in quality for larger
and smaller display sizes. In other words, their ability
to explain the influence of display size and their
effect on RT distributions does not generalize to all
display sizes equally well. Hence, both models need
to be improved in this respect.

The log-likelihood ratio does not take into account
the complexity of models. This difference of complexity
(as measured in terms of number of parameters) is par-
ticularly marked between CGS and SAIM-WTA. Normally,
model complexity is included in a model comparison by
using the Akaike information criterion (AIC) and/or the
Bayesian information criterion (BIC). Both criteria pena-
lize the quality of fit by the number of parameters
needed to achieve this quality, whereby BIC penalizes
the quality more than AIC. Also note that the smaller
the AIC/BIC scores, the better the model. Figure 10
shows the results for AIC and BIC. Since the results for
the two models are quite close we also entered the
AIC values into a Wilcoxon sign-rank test (see Table 1).
The results show that, apart from conjunction search,
CGS performs better than SAIM-WTA. However, the
difference in the range of 2 and 3.82 for AIC and the
range of 2.29 and 3.58 for BIC is not very large.

General discussion

This paper aimed to contribute to the long-standing
dispute on parallel versus serial search. In order to
do so, we numerically fitted two computational
models to RT distributions from three visual search
experiments (feature search, conjunction search,
spatial configuration search). The two computational
models, CGS (Moran et al., 2013) and SAIM-WTA
(Heinke & Backhaus, 2011) implement a serial and par-
allel search respectively. The comparison of the two
models’ success to explain the RT distributions is
expected to advance our understanding of visual
search in humans. It also allows us to demonstrate
how RT distributions can contribute to this enterprise.

In order to fit the models to the RT distributions, we
employed a novel KDE which allowed us to base
evaluations of the fits on the maximal likelihood cri-
teria. We used the differential evolution Markov
chain Monte Carlo (DE-MCMC) method to find the
best fit. The paper demonstrated that these methods
can successfully fit computational models to RT distri-
butions from the visual experiments. We also showed
that the KDE is an excellent method to represent RT
distributions.

The results with SAIM-WTA showed for the first time
that a biased-competition model is able to reproduce
RT distributions from visual experiments, in particular
the increased skewness linked with increased display
size. The results with CGS demonstrated that the
model generalized well to new data. This success
also highlights the validity of our new model fitting
method. However, a direct comparison between
SAIM-WTA and CGS revealed that CGS fits better to
RT distributions than SAIM-WTA. This is the case
even if the evaluation takes into account that CGS is
a more complex model than SAIM-WTA. In other
words, GCS’s Wald distribution modelling the item
identification at search step constitutes a better
description of search behaviour than the RT distri-
bution generated by SAIM-WTA’s competition
process. The addition of identification times by the
way of serial search scans (mathematically the mul-
tiple convolutions of Wald distributions) represents
fairly well the increase of mean RTs and their increased
skewness. However, it is notable that both models
don’t generalize well across different display sizes as
the quality of fit for both models decreases with
increasing display size. It is also worth pointing out

Table 1. Comparison of BIC scores and AIC scores from SAIM-
WTA and CGS for the three tasks (feature search, conjunction
search, spatial configuration search) using Wilcoxon sign-rank
test.
z-value, p-value AIC BIC

Feature 3.62, <0.001 2.29, 0.022
Conjunction 3.82, <0.001 3.58, <0.001
Spatial 3.55, <0.001 2.95, 0.003

Note: All comparisons were significant. For all comparisons CGS showed
better results than SAIM-WTA.
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that we fitted CGS and SAIM-WTA to Wolfe et al.’s
(2010) data. As this data set does not contain as
many participants as Lin et al.’s (2015) dataset, the
results were not as statistically conclusive as the
ones presented here. Also, some parameter settings
were statistically different than ones presented here.
These differences are certainly due to methodological
differences, some of which we discussed in the section
about Lin et al.’s (2015) dataset. Since these differ-
ences go beyond the scope of this paper we have
not included reports of those results. However and
importantly, the overall findings presented here, that
CGS is slightly better than SAIM-WTA in explaining
visual search experiments, was replicated. In other
words, we can be quite confident that our results are
valid for these three visual experiments irrespective
of the methodological details, such as display geome-
try and practice effects.

What are the lessons from this model comparison
for SAIM-WTA and CGS? It shows that SAIM-WTA pro-
duced excellent fits, but CGS produced slightly better
fits. This is probably due to the fact that Moran et al.
(2013) chose to model the identification of each
item with a Wald distribution which in turn was motiv-
ated by Palmer et al.’s (2011) finding that the Wald dis-
tribution is the best distribution compared to other
skewed distributions such as ex-Gaus or Weibull.
Hence, it will be important for the progress of SAIM-
WTA to find a way to produce more Wald-like distri-
butions. A possible solution is to add an identification
stage. Such an identification stage would lead to more
skewed RT distributions, possibly enabling SAIM-WTA
to produce better fits for larger display sizes. Finally,
it is also worth noting that SAIM-WTA was not specifi-
cally designed to model visual search and instead
aimed to capture a broad range of experimental evi-
dence typically associated with visual selective atten-
tion. Hence, matching CGS’s performance or even
surpassing it was always a difficult goal to achieve.

In addition, SAIM-WTA (and CGS: see below) will
have to improve on how the display size influences
its reaction times. It is interesting to note that on the
whole the quality of fit decreases increased with
increasing display size. This may point to a possible
cause of this problem. Of course, with increased
display density the spatial proximity between items
increases. Hence, it is conceivable that perceptual
grouping (Wertheimer, 1923) plays an increasing role
in higher display sizes. Hence, a sensible extension

of SAIM-WTA may be to integrate a grouping mechan-
ism into the competition process. For instance, at
present the inhibitory connections are homogenous
independent of an item’s position. An extension of
SAIM-WTA may modulate these weights depending
on the distance between items. A corollary of this
line of argument is that perceptual similarities
between items may also play a role in visual search.
Of course, this is not a new idea and there is already
evidence for this, in particular from the seminal
paper by Duncan and Humphreys (1989) (see also
Müller-Plath & Elsner, 2007, for a systematic variation
of spatial proximity and item similarity). In any case,
this extension of SAIM-WTA will have to be tested
with a series of studies manipulating grouping in
visual search possibly along the lines of Müller-Plath
and Elsner’s (2007) work.

Obviously, an integration of a grouping mechanism
into CGS’s saliency map along similar lines is also poss-
ible, and this modification may lead to the desired
effect of improving the fit with higher display sizes.
However, such a modification would not improve
CGS’s serial process as such. Instead, a simple modifi-
cation of CGS consistent with its serial tenet could be
to let the parameters of the identification stage
depend on at which point in the serial search scan
the items are identified. This additional mechanism
could slow down identification ormake RT distributions
more skewed the later an item is selected, possibly
improving CGS’s performance for larger display sizes.
This modification can be seen as some sort of inhibition
effect on the identification stage (object-based inhi-
bition, Egly, Driver, & Rafal, 1994; Heinke & Humphreys,
2003, Study 5). However, it is highly questionable
whether this new mechanism can successfully explain
the potential influence of perceptual grouping as dis-
cussed earlier since it does not consider spatial proxi-
mity of items or item similarity. On a more general
note, it is worth pointing out that it is difficult to
imagine how CGS’s slow serial identification process
can model perceptual grouping in a plausible way (seri-
ally scanning through some items and making them a
group if they are the same would be far too slow).
Hence, these difficulties of CGS with perceptual group-
ing suggest that the series of visual experiments
manipulating grouping, as suggested earlier, can
produce data which allow for a stronger comparison
between serial and parallel models where even the par-
allel approach may win the competition.

VISUAL COGNITION 319



In conclusion, we have demonstrated that it is poss-
ible to constrain computational models of visual
search with RT distributions. We were also able to
replicate findings from a serial model of visual
search (CGS; Moran et al., 2013). In addition, we suc-
cessfully fitted a parallel (biased competition) model
of visual search (SAIM-WTA; Heinke & Backhaus,
2011) to RT distributions for the first time. When the
two models were compared, the serial model was
able to explain better RT distributions from three
visual search tasks. However, both models exhibited
deficits in how they dealt with different display size.
From the discussion of possible mechanisms to iron
out this problem, we inferred that a series of visual
experiments manipulating perceptual grouping
should lead to a stronger test for the models.

Note

1. This sensitivity to the starting point of a search is because
complex models like the ones used here have many local
solutions. These local solutions are the best solutions in
particular areas of the parameter space, but it is not
clear whether a particular local solution is the overall
best solution (global solution). Most, if not all, methods
for parameter search find (get trapped in) local solutions
and cannot guarantee that this is the global solution.
Amongst other factors the starting point of the search
is critical for which local solution is found. Broadly speak-
ing, search algorithms tend to find local solutions near
the starting point.
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Appendices

Appendix I

SAIM-WTA

The gamma-parameter in DE-MCMC was set to 2.38/
���
2d

√
where d refers to the number of free parameters. A constant random noise was set to all

parameter proposals of 0.001.

Constant parameters Noise Sigmoid slope Sigmoid shift Inhibitory weight

0.1 50 0.5 −1

Feature Search Participant Decision Boundary Accumulation Distractor Saliency Outlier

1 0.5128 0.0019 0.6642 No
2 0.5214 0.0018 0.6537 No
3 0.5020 0.0017 0.6196 No
4 0.5067 0.0018 0.6381 No
5 0.5276 0.0016 0.0635 Yes
6 0.5011 0.0018 0.6672 No
7 0.5035 0.0019 0.6849 No
8 0.5079 0.0019 0.7145 No
9 0.5190 0.0020 0.6636 No
10 0.5297 0.0020 0.6413 No
11 0.5249 0.0016 0.5686 No
12 0.5221 0.0018 0.6756 No
13 0.5068 0.0020 0.6695 No
14 0.5184 0.0019 0.2815 Yes
15 0.5503 0.0018 0.6467 No
16 0.5047 0.0020 0.6612 No
17 0.5412 0.0017 0.6884 No
18 0.5058 0.0021 0.5642 No
19 0.5075 0.0019 0.6968 No

Conjunction Search Participant Decision Boundary Accumulation rate Distractor Saliency Outlier

1 0.5762 0.0015 0.7192 No
2 0.5709 0.0017 0.7067 No
3 0.5056 0.0015 0.6181 No
4 0.5503 0.0014 0.7780 No
5 0.7373 0.0012 0.6394 Yes
6 0.5228 0.0013 0.6968 No
7 0.5226 0.0014 0.8034 No
8 0.5927 0.0013 0.7208 No
9 0.5177 0.0015 0.6557 No
10 0.8288 0.0043 0.8395 Yes
11 0.5326 0.0013 0.6682 No
12 0.5696 0.0014 0.6703 No
13 0.5260 0.0015 0.6937 No
14 0.5445 0.0016 0.5276 Yes
15 0.6008 0.0014 0.6723 No
16 0.5666 0.0014 0.6761 No
17 0.5499 0.0012 0.6795 No
18 0.5120 0.0015 0.6671 No
19 0.6416 0.0014 0.7351 No
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Spatial Configuration Search Participant Decision Boundary Accumulation rate Distractor Saliency Outlier

1 0.7613 0.0013 0.7352 No
2 0.7843 0.0014 0.7419 No
3 0.6618 0.0013 0.7079 No
4 0.7788 0.0012 0.7797 No
5 0.5340 0.0012 0.7579 No
6 0.7609 0.0011 0.7613 No
7 0.7340 0.0012 0.7292 No
8 0.7389 0.0013 0.7465 No
9 0.7639 0.0011 0.7918 No
10 0.7017 0.0012 0.7877 No
11 0.6516 0.0014 0.7788 No
12 0.7391 0.0010 0.7551 No
13 0.7196 0.0011 0.7632 No
14 0.7221 0.0011 0.7393 No
15 0.6336 0.0011 0.8028 No
16 0.6639 0.0012 0.7321 No
17 0.6368 0.0013 0.7043 No
18 0.7149 0.0014 0.7519 No
19 0.6088 0.0012 0.8059 No
20 0.7118 0.0014 0.7651 No

Appendix II

Competitive Guided Search (CGS)
To fit CGS we followed the same procedure as in SAIM-WTA, except DE-MCMC was initialized with Moran et al.’s (2013) parameters rather than

randomly.

Feature Search Participant wtarget y u Dwquit Tmin g m Outlier

1 509.73 0.9012 0.1936 87.46 0.1750 59.309 0.0679 No
2 601.31 0.9948 0.2353 92.20 0.1632 53.809 0.0671 No
3 427.05 1.3736 0.2190 138.58 0.2381 45.042 0.0586 No
4 414.69 0.8981 0.1497 51.52 0.2202 41.927 0.0627 No
5 703.09 0.9442 0.2183 10.79 0.2367 66.394 0.0030 No
6 519.11 0.8869 0.1715 83.47 0.1964 64.822 0.0687 No
7 470.43 1.0780 0.1787 57.55 0.2049 38.983 0.1109 No
8 603.56 0.7128 0.1240 77.35 0.2003 53.991 0.0978 No
9 541.55 0.9225 0.1748 78.00 0.1883 76.430 0.0726 No
10 522.10 0.7007 0.1310 123.69 0.1514 28.384 0.0871 No
11 374.24 1.1795 0.2349 75.31 0.2422 38.389 0.0187 No
12 313.05 0.7203 0.1452 53.64 0.1854 24.450 0.0690 No
13 566.21 0.6860 0.0867 95.44 0.2251 49.145 0.0855 No
14 486.48 0.7606 0.1221 81.15 0.2149 34.367 0.0306 No
15 383.20 0.6314 0.0997 26.61 0.2311 42.630 0.0433 No
16 539.41 0.8274 0.0964 116.18 0.2310 63.428 0.0852 No
17 323.05 0.7722 0.2064 34.15 0.1694 47.416 0.0596 No
18 651.63 0.7536 0.0746 1.12 0.2386 46.928 0.0399 No
19 482.04 1.0000 0.2288 101.74 0.1539 60.497 0.0657 No
Mean 496.42 0.8813 0.1627 72.93 0.2035 49.281 0.0628
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Conjunction Search Participant wtarget d u Dwquit Tmin g m Outlier

1 2.6567 0.7215 0.0385 0.0296 0.3235 22.987 0.0670 No
2 3.9355 0.7221 0.0385 0.0062 0.3076 21.287 0.1006 No
3 5.3075 0.4667 0.0243 0.0236 0.3804 38.041 0.0606 No
4 3.8513 0.8845 0.0538 0.0886 0.3268 8.6027 0.2885 Yes
5 1.4917 0.5548 0.0287 0.0047 0.4121 7.3934 0.0148 No
6 5.6134 0.6043 0.0414 0.0093 0.3641 15.702 0.0720 No
7 6.2059 0.8420 0.0540 0.0387 0.3214 13.922 0.2933 Yes
8 3.3363 0.6934 0.0436 0.0094 0.3609 10.769 0.1021 No
9 3.3293 0.6954 0.0367 0.0323 0.3248 19.404 0.0334 No
10 0.9580 0.8742 0.0439 0.0590 0.2298 12.375 0.1097 No
11 4.0060 0.5743 0.0337 0.0028 0.3974 11.466 0.0452 No
12 4.9320 0.6380 0.0422 0.0078 0.3572 14.878 0.0547 No
13 4.4002 0.6305 0.0319 0.0242 0.3430 21.556 0.1323 No
14 3.2589 0.6728 0.0362 0.0048 0.3081 24.146 0.0208 No
15 3.9908 0.5219 0.0323 0.0011 0.3907 20.714 0.0419 No
16 4.9043 0.6137 0.0369 0.0024 0.3598 17.587 0.0550 No
17 4.5750 0.6768 0.0459 0.0222 0.3855 12.596 0.0588 No
18 4.3901 0.7781 0.0400 0.0236 0.3163 18.593 0.0940 No
19 2.6121 0.8141 0.0519 0.0128 0.3034 7.3051 0.1020 No
Mean 3.8818 0.6831 0.0397 0.0212 0.3428 16.807 0.0919

Spatial Configuration Search Participant wtarget y u Dwquit Tmin g m Outlier

1 0.7808 0.6625 0.0535 0.0002 0.4152 13.623 0.0143 No
2 0.8427 0.4798 0.0383 0.0016 0.3729 13.779 0.0567 No
3 2.4182 0.5085 0.0385 0.0119 0.4176 17.661 0.0993 No
4 0.5615 0.6705 0.0627 0.0021 0.4086 15.636 0.0821 No
5 2.9063 0.4395 0.0232 0.0132 0.4108 13.377 0.1779 No
6 1.3379 0.5003 0.0644 0.0122 0.4648 17.407 0.0370 No
7 0.8685 0.5045 0.0382 0.0002 0.4322 31.391 0.0369 Yes
8 1.9042 0.6199 0.0474 0.0120 0.3735 7.285 0.1433 No
9 1.1208 0.6009 0.0767 0.0279 0.4161 9.546 0.1216 No
10 2.0736 0.6429 0.0778 0.0436 0.4443 17.560 0.1167 No
11 2.6494 0.6500 0.0492 0.0319 0.3630 9.308 0.1728 No
12 1.5317 0.4810 0.0501 0.0211 0.4816 3.984 0.1087 No
13 1.8925 0.6139 0.0776 0.0288 0.4324 7.596 0.0944 No
14 1.3086 0.5378 0.0489 0.0109 0.4229 9.263 0.0551 No
15 3.2230 0.6341 0.0829 0.0324 0.3912 15.537 0.1257 No
16 2.2699 0.4245 0.0418 0.0304 0.4431 14.322 0.0563 No
17 2.3946 0.6768 0.0406 0.0047 0.3850 14.435 0.0559 No
18 0.8305 0.6198 0.0395 0.0040 0.4052 26.181 0.0837 No
19 4.0731 0.7604 0.0932 0.0554 0.3875 18.036 0.3250 Yes
20 2.2644 0.5925 0.0691 0.0225 0.3915 27.515 0.0630 No
Mean 1.8438 0.5659 0.0537 0.0176 0.4142 13.932 0.0917

Table II.1 Comparison between Moran et al.’s (2013) parameters and our parameters using Wilcoxon sum-rank test.
z-value, p-value wtarget y u Dwquit Tmin g m

Feature −0.84, 0.403 3.15, 0.002 3.00, 0.003 −3.84, <0.001 −1.13, 0.258 −4.18, <0.001 4.18, <0.001
Conjunction −1.35, 0.176 3.74, <0.001 3.38, <0.001 −2.59, 0.010 −0.89, 0.371 0.85, 0.396 4.02, <0.001
Spatial 0.87, 0.383 4.22, <0.001 3.32, <0.001 −0.35, 0.724 0.92, 0.358 −4.22, <0.001 4.22, <0.001

Note: Results in bold font indicate a significant difference.

324 V. NARBUTAS ET AL.



Appendix III

Evaluation of the on-line kernel density estimator (oKDE)
We used a novel powerful KDE method, oKDE, to determine the likelihood function of the model. However, to illustrate the success of oKDE we

first demonstrate the suitability of oKDE for describing RT distributions from visual search experiments. This demonstration will assess how many
trials are needed to achieve veridical estimates of RT distributions. This evaluation is a well-known challenge for distribution estimators (Van
Zandt, 2000) and it is also well known that current estimators, including standard KDE methods, require a large number of trials (e.g., 10,000).
The standard KDE method in the psychology literature is based on Silverman’s (1986) method (see Turner & Sederberg, 2014, for a recent
example). In this method, KDE is based on a sum of distribution kernels (either Gaussian or Epanechnikov distributions). The number of kernel is
equal to the number of data points. The mean of each kernel is the value of the corresponding data point and the variance for all kernels (bandwidth)
is estimated from the data’s variance (see Van Zandt, 2000, for details).

oKDE is more flexible in terms of number of kernels and their variance because oKDE optimizes the number of kernels and their widths
(see Figure 4). Hence, oKDE leads to a more efficient and more adaptable KDE than the standard KDE method (see Kristan et al., 2011, for detailed
discussion).

To demonstrate oKDE’s success to represent RT distributions from visual search experiments, we conducted a simulation study inspired by Van
Zandt’s (2000) work. Van Zandt (2000) assessed the quality of a KDE by first testing whether the peaks of the kernels are significantly different from a
target distribution and then calculating the percentage of non-significant kernels. In other words, she determined how well a KDE followed the shape
of the target distribution. To examine the reliability of these fits, several samples were created using bootstrap. The quality of fit of each sample were
determined and an average quality was determined.

The target distribution was based on Wolfe et al.’s (2010) dataset as it contains a good number of trials in each condition (500). From this dataset
we used the data from the conjunction search, Participant 1, display size 3. Since oKDE varies the number of kernels, we had to modify Van Zandt’s
(2000) procedure. In order to find an appropriate comparison, we used an important property of oKDE. It is possible to characterize an entire KDE (and
consequently the target distribution) by a series of “sigma points”. Hence, if another KDE has similar probability values at these sigma points, this new
KDE represents a similar distribution (see Figure 4 for an illustration of sigma points; see Kristan et al., 2011, for details on sigma points). In order to
determine these sigma points we fitted a KDE to Wolfe et al.’s (2010) dataset. This fit resulted in 13 kernels and 39 sigma points (see Figure 5). To test
whether a KDE based on fewer data points still follows the shape of the distribution of the larger dataset, we also conducted a statistical test at each
sigma point similar to Van Zandt (2000). Note that this is a somewhat more stringent test than Van Zandt’s (2000), as these sigma points represent a
more complete description of the data than the peaks of kernels. Thus we first established the variation of probabilities (confidence interval) at the
sigma points by employing a bootstrap method. We bootstrapped 1000-times the large dataset and fitted a KDE to each sample. We used these KDE
to determine the confidence intervals at each sigma point (see Figure 5). These confidence intervals were used to determine whether a KDE from a
smaller dataset is significantly different from the target distribution at these points. Subsequently, we created smaller datasets (Size: 10, 20, 30, etc.)
by sampling from Wolfe et al.’s (2011) data set with replacement. For each data set size, we repeated this 1000 times and fitted a KDE to the smaller
data set. Finally, we determined the percentage of values that fell into the confidence intervals at the sigma points. Figure III.1 shows the result of this
assessment for different confidence intervals. With a data set size of 50, all KDEs fall into the 95% confidence interval. If a more conservative criterion
is applied (i.e., a narrower confidence interval such as a 70% confidence interval) then 120 trials are needed to match the target distribution. These
results suggest that oKDE is more powerful as the Silverman-KDE, as Van Zandt (2000) found only an around 80% match for 10,000 trials with the
Silverman-KDE. However, given the methodological difference the results are difficult to compare directly. A more detailed comparison goes beyond
the scope of this article. Nevertheless, our results indicate that oKDE is highly suitable for representing the dataset (100 trials per condition) used here.

Figure III.1. The graph on the left shows the KDE of the original data with 70% confidence intervals (CI) at the sigma points. The graph
on right shows the percentage of KDEs from different dataset sizes falling into the confidence intervals. The results indicate that for a
95% CI, data sets as small as 50 data points produce a 100% accurate representation of the original distribution.
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