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Channel Estimation for MmWave Massive MIMO

with Hybrid Precoding Base on Log-Sum Sparse

Constraints
Aihua Zhang, Member, IEEE, Wenzhou Cao, Pengcheng liu, Member, IEEE, Jun Sun, and Jianjun Li

Abstract—Channel estimation is essential for millimeter-wave
(mmWave) multiple-input multiple-output (MIMO) systems with
hybrid precoding. However, accurate channel estimation is a
challenging task as the number of antennas is huge, while
the number of RF chains is limited. Traditional methods of
compressed sensing for channel estimation lead to serious loss
of accuracy due to channel angle quantization. In this paper,
we propose a new iterative reweight-based log-sum constraint
channel estimation scheme. Specifically, we exploit the structure
sparsity of the mmWave channels by formulating the channel
estimation problem as an objective optimization problem. We
utilize the log-sum as a constraint, via optimizing an objective
function through the gradient descent method, the proposed
algorithm can iteratively move the channel estimated angle-of-
arrivals (AOAs) and angle-of-departures (AODs) towards the
optimal solutions, and finally improve the angle estimation
performance significantly. In addition, to ensure the accuracy of
channel estimation, we introduce a dynamic regularization factor
to control the tradeoff between the channel sparsity and the
data fitting error. Numerical experiments demonstrate that the
proposed algorithm achieves better convergence behavior than
conventional sparse signal recovery solutions.

Index Terms—Channel Estimation, mmWave, MIMO, Hybrid
Precoding, Log-Sum, AOAs, AODs.

I. INTRODUCTION

M ILLIMETER-wave (mmWave) massive MIMO has

been considered as a dominant technology for wireless

communications in recent years [1]. By utilizing hundreds

or even thousands of antennas at the base station (BS), the

mmWave massive MIMO systems can provide very wide

spectrum bandwidths and achieve large capacity and high

throughput. In practical mmWave massive MIMO systems, a

large number of antenna arrays are driven by a corresponding

number of radio-frequency (RF) chains that consist of digital-

to-analog/analog-to-digital converters, mixers etc. This will

bring unaffordable hardware cost and energy consumption.

To reduce the power consumption and hardware cost, hybrid

precoding architecture with much smaller number of RF

chains has been considered [2]. However, the digital baseband

cannot directly access all antennas with limited RF chains [3].

Therefore, it is difficult to obtain the high-dimensional channel

state information accurately.
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Recently, several channel estimation algorithms were pro-

posed for mmWave massive MIMO systems with hybrid

precoding [4]-[9]. X. Li et al. proposed a two-stage CS

scheme, which utilize the sparse and low-rank properties of

the angular spreads domain [4].M. J. Azizipour et al. proposed

a new greedy-based algorithm for sparse channel estimation

in [5], and the authors assumed that the massive channel is

totally unknown and then exploited the inherent property of

the correlation between the measurements and the sensing

matrix to estimate the channel. To recover accurate channel

state information for wideband mmWave MIMO system, a

novel framework jointly exploiting the channel’s low-rank

and the angular information was proposed by E. Vlachos et

al. in [6]. Due to the beam squint of the mmWave MIMO

system, M. Wang et al. utilized the shift-invariant block

sparsity of the resulting nonstandard channel model to design

a compressive sensing-based channel estimation algorithm [7].

The work in [8] exploited the block sparsity of massive

MIMO channels, and calculated the channel autocorrelation

matrix by investigating the channel prior information based

on compressive sensing (CS) theory. Then, the L.Ge et al.of

[8] used regularized method to treat the channel estimation

as a convex optimization problem. S. Rao et al. established

performance bounds on the channel estimation of one-bit

mmWave massive MIMO receivers for different types of

channel models, and considered the structured of the channel

model [9]. However, these kinds of estimation algorithms that

employed the AoAs/AoDs of the paths, usually assumed the

angle of the AoAs/AoDs is discrete. They are continuously

distributed in practice, and the assumptions of the AoAs/AoDs

creat power leakage problem which will lead to a certain loss

of channel estimation performance.

To solve this accurate limitation caused by discrete angle

distributed, in this paper, we propose an iterative reweight

based on the log-sum constrained algorithm. Specifically, we

take advantage of the limited scattering of the millimeter

wave propagation paths, and formulate the channel estimation

problem as a sparse signal optimization problem. Then we

move the estimates of the AoAs/AoDs towards the optimal

solution through gradient descent method. In addition, each

iteration generates a suitable weight value to control the trade-

off between the sparsity and the data fitting error. To reduce

the computational complexity, we utilize the singular value

decomposition (SVD)-based preconditioning method. At last,

the novel scheme shows superior performance in comparison

with the state-of-art methods through the simulation results.
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The main contributions of this paper are summarized as

follows. We propose a new log-sum constrained channel

estimation algorithm for mmWave massive MIMO with hy-

brid precoding. Comparing with the IR-based scheme [12],

we can achieve better estimation performance. Moreover,

we introduce a dynamic regularization factor to control the

tradeoff between the channel sparsity and the data fitting error,

which can guarantee the potential estimation accuracy of the

proposed algorithm.

The rest of the paper is organized as follows. In Section

II, the system model of mmWave massive MIMO with hybrid

precoding is introduced. In section III, the theoretical details

of the proposed scheme are analyzed. In section IV, several

experiments provided to prove the excellent performance of

the proposed algorithm. Section V is the conclusion.

N NN N
N N

Fig. 1. Hybrid-precoding mmWave massive MIMO system

model.
II. SYSTEM MODEL

In this section, we consider a hybrid-precoding mmWave

massive MIMO system model that was proposed in [10]. As

shown in Fig.1, NT, NR, NRF
T and NRF

R indicate the number

of the base station (BS) antennas and the mobile station (MS)

antennas, the transmitter RF chains, and the receiver RF chains

respectively. The BS communicates with MS through Ns data

streams,such that NRF
T < NT, NRF

R < NR. The size of the

baseband precoder FBB is NRF
T ×Ns, and the corresponding

RF precoder FRF is NT ×NRF
T . The received signal by MS

can be expressed as

R = HFTs+ n , (1)

where R is the NR × 1 received signal, H is the NR × NT

channel matrix, FT=FRFFBB, s is the Ns × 1 transmitted

symbol vector, n is the additive white Gaussian noise vector.

In (1), supposing X=FTs is the transmitted signal. We

assume that the transmitter sends CX (CX < NT) pilot se-

quences x1,x2, · · · ,xCX . Since the number of chains is much

smaller than the dimension of the received pilot signals,

we divide the CY-dimensional received signal into T time

intervals (CY=TNRF
R ). At t0 (0 < t0 ≤ T ) time intervals,

for each transmission sequence xm (1 ≤ m ≤ CX ), the

corresponding reception sequence ym,t0 can be expressed as

ym,t0 = WH
mHxm + nm,t0 , (2)

where Wm is the combining matrix that is consisted of

the RF combining matrix WRF and the baseband combiners

WBB. nm,t0 represents the noise signal at time t0. After

T time intervals, ym = WH
mHxm + nm. nm still repre-

sents the noise at the m transmission sequence. Defining

X = [x1,x2, · · · ,xCX ], Y = [y1,y2, · · · ,yCX ], W =
[W1,W2, · · · ,WT], No = [n1,n2, · · · ,nCX ]. we obtain

Y = WHHX+No . (3)

The channel model can be expressed as

H =

L∑

l=1

αlaR(θ
r
l , φ

r
l )a

H
T (θtl , φ

r
l ) . (4)

The mmWave channel model as (4) is expected to have

a geometric structure with limited scatters [11]. Where L de-

notes the number of propagation paths. αl is the complex gain,

θrl (φ
r
l ) and θtl (φ

t
l) represent for the received and transmitted

azimuth (elevation) angles of departure or arrival of the lth
path, respectively. aR(θl) and aT(φl) are the steering vector

at the MS and BS respectively, which depend on the array

geometry. They have two common array structures uniform

linear arrays (ULA) and uniform planar arrays (UPA) [12].

For an N -element ULA steering vector, the elevation do-

main is invariant, so the response vector of the ULA can be

expressed as

aULA (θ) = [1, ej2πd sin θ/λ, · · · , ej2π(N−1)d sin θ/λ]T . (5)

The UPA steering vector with N1 ×N2 can be written as

aUPA (θ, φ) = [1, ej2πd sin θ sinφ/λ, · · ·
, ej2π(N1−1)d sin θ sinφ/λ]T

⊗ [1, ej2πd cosφ/λ, · · · , ej2π(N2−1)d cosφ/λ]T ,
(6)

where ⊗ denotes the Kronecker product. d is the inter-element

spacing, and λ is the wavelength.

The channel H in (3) can be also written as

H = AR(θR)diag(α)AH
T (θT) , (7)

where α = [α1, α2, · · · , αL]
T ,

θR = [θr1, φ
r
1, θ

r
2, φ

r
2, · · · , θ

r
L, φ

r
L]

T
,

θT = [θt1, φ
t
1, θ

t
2, φ

t
2, · · · , θ

t
L, φ

t
L]

T
,

AR(θR) = [aR(θ
r
1, φ

r
1),aR(θ

r
2, φ

r
2), · · · ,aR(θ

r
L, φ

r
L)],

AT(θT) = [aT(θ
t
1, φ

t
1),aT(θ

t
2, φ

t
2), · · · ,aT(θ

t
L, φ

t
L)].

From (7), we find that the channel H is related to path gains

α and (θR,θT). The angle-domain sparsity of the channel

matrix, that is, the sparse channel estimation problem can be

formulated as

min
α̂,θ̂R,θ̂T

‖α̂‖0, s.t.
∥∥∥Y −WHĤX

∥∥∥
F
≤ σ , (8)

where ‖·‖0 denotes the l0 norm. (θ̂R, θ̂T), α̂ and Ĥ are the

estimate values corresponding to the original terms, and σ is

the error tolerance parameter.

III. THE PROPOSED ITERATIVE REWEIGHT BASED

LOG-SUM CONSTRAINT CHANNEL ESTIMATION

A. Model optimization method

Equation (8) is an NP-hard problem, which means that the

l0-norm cannot find an efficient optimal solution in terms

of computation. Alternative method such as l1-norm can be

utilized to replace the l0-norm to achieve a sparse optimal

solution. We consider log-sum item as sparsity-promoting
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functional. It has been proven that the log-sum penalty func-

tion has more sparsity-encouraging than the l1-norm in [13].

Equation (8) can be written as

min
α,θR,θT

F (α)
∆
=

L∑
l=0

log
(
ε+ |αl|

2

η

)

s. t.
∥∥∥Y −WHĤX

∥∥∥
F
≤ σ,

(9)

where ε and η are positive constants to ensures that the log-

arithmic function is well-defined. To realize an unconstrained

optimization, we add a regularization parameter λ0. Equation

(9) can be expressed as

min
α,θR,θT

G (α,θR,θT)
∆
=

L∑
l=1

log
(
ε+ |αl|

2

η

)

+ λ0

∥∥∥Y −WHĤX

∥∥∥
2

F

= L0(α) + λ0

∥∥∥Y −WHĤX

∥∥∥
2

F
.

(10)

where L0(α) =
L∑

l=1

log
(
ε+ |αl|

2

η

)
. We now utilize an

iterative reweighted algorithm to solve the optimization (10).

The main idea is to find a suitable surrogate function for (10).

Obviously, the log-sum item can be replaced by

J(α|α̂(t))
∆
=

L∑

l=1




ε+ |αl|
2

η

ε+

∣∣∣α̂(t)
l

∣∣∣
2

η

+ log


ε+

∣∣∣α̂(t)
l

∣∣∣
2

η


− 1


 ,

(11)

where α̂
(t) ∆

=
[
α̂
(t)
1 , α̂

(t)
2 , · · · , α̂

(t)
L

]T
is an estimate of α at

iteration t. It can be easily proven that J(α|α̂t)−L0(α) ≥ 0 ,

and the equality hold when α = α̂
(t). As a result, the surrogate

function for (10) can be expressed as

Z(α,θR,θT) = J(α|α̂t) + λ0

∥∥∥Y −WHĤX

∥∥∥
2

F
. (12)

Consequently, the solution to (10) can be transformed into

minimizing the surrogate function iteratively. Further, (12) is

simplified as in [12] that

Z(t)(α,θR,θT)
∆
= λ−1

0 α
HK(t)

α+
∥∥∥Y −WHĤX

∥∥∥
2

F
,

(13)

where K(t) is given as

K(t) ∆
= diag




1

ε+

∣∣∣α̂(t)
1

∣∣∣
2

η

,
1

ε+

∣∣∣α̂(t)
2

∣∣∣
2

η

, · · · ,
1

ε+

∣∣∣α̂(t)
L

∣∣∣
2

η


 .

(14)

Then, we can optimize (13) with respect to the path gains

α, that is

min
α,θR,θT

Z(t)(α,θR,θT)
∆
= λ−1

0 α
HK(t)

α+
∥∥∥Y −WHĤX

∥∥∥
2

F
.

(15)

We can ignore the superscript (t) of Z(t) and K(t) in

(15), and simplify AR(θR) and AT(θT) with AR and AT

respectively. The objective function Z can be expressed as

Z(α,θR,θT) = λ−1
0 α

H
Kα

+
CX∑
m=1

∥∥ym −WHARdiag(α)AH
T xm

∥∥2
2

= λ−1
0 α

H
Kα

+
CX∑
m=1

(ym −Pmα)
H
(ym −Pmα)

= λ−1
0 α

H
Kα + α

H

(
CX∑
m=1

PH
mPm

)
α

− α
H

(
CX∑
m=1

PH
mym

)
−

(
CX∑
m=1

yH
mPm

)
α

+
CX∑
m=1

yH
mym ,

(16)

where Pm = WHARdiag(A
H
T xm), then the partial deriva-

tive of (16) can be expressed as

∂Z(α,θR,θT )

∂α
= α

H

(
λ−1
0 K+

CX∑

m=1

PH
mPm

)
−

(
CX∑

m=1

yH
mPm

)
.

(17)

The optimal solution α and corresponding minimum value

of Z(α,θR,θT) can be calculated when (17) is set to 0, we

have

α
(t)
opt(θR,θT) =

(
λ−1
0 K+

CX∑

m=1

PH
mPm

)−1( CX∑

m=1

PH
mym

)
.

(18)

Combine (16) and (18), the optimal objective function can

be expressed as

Z
(t)
opt(θR,θT) = −

(
CX∑
m=1

PH
mym

)H(
λ−1
0 K+

CX∑
m=1

PH
mPm

)−1

·

(
CX∑
m=1

PH
mym

)
+

CX∑
m=1

yH
mym

.

(19)
B. Iterative Reweight-based Log-Sum Constraint Channel Es-

timation
As mentioned earlier, the constrained optimization problem

(8) has been replaced with an unconstrained angle optimization

problem (19). Next, we only need to optimize the normalized

spatial angles θR and θT to get the final result.

Specifically, at the tth iteration, the gradient descent method

is used to search for the new estimates θ̂
(t+1)
R and θ̂

(t+1)
T , given

as

θ̂
(t+1)
R = θ̂

(t)
R − ξ · ∇θRZ

(t)
opt(θ̂

(t)
R , θ̂

(t)
T ), (20)

θ̂
(t+1)
T = θ̂

(t)
T − ξ · ∇θTZ

(t)
opt(θ̂

(t)
R , θ̂

(t)
T ), (21)

where ξ is the step length. With iterative searching, the

estimates of (θR, θT) can be closer to their actual positions,

thus, high-precision channel estimation can be realized.

We assume D =
CX∑
m=1

PH
mym,B =

CX∑
m=1

PH
mPm the gradi-

ents can be calculated as follows

∂Zopt

∂θR,l
= − ∂DH

∂θR,l
B−1D−DH ∂B−1

∂θR,l
D−DHB−1 ∂D

∂θR,l

= − ∂DH

∂θR,l
B−1D+DHB−1 ∂B

∂θR,l
B−1D

−DHB−1 ∂D
∂θR,l

,
(22)
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where ∂DH

∂θR,l
=

Cx∑
m=1

∂PH
m

∂θR,l
ym,

∂B
∂θR,l

=
Cx∑

m=1

(
∂PH

m

∂θR,l
Pm+PH

m
∂Pm

∂θR,l

)
,

∂Pm

∂θR,l
=
[
0 · · ·WH ∂aR(θR,l)

∂θR,l
aHT (θT,l)xm 0 · · · 0

]
.

To reduce the computational complexity, the choice of initial(
θ
(0)
R ,θ

(0)
T

)
becomes very important. SVD-based precondi-

tioning can solve this problem effectively. Specifically, from

(3) and (7), we have

Y =
(
WHAR(θR)

)
diag(α)

(
XHAT(θT)

)H
+No. (23)

Then, singular value decomposition can be applied to

the matrix Y, i.e.,Y = U
∑

VH , where U and V are

singular matrix and subject to unit orthogonality,
∑

=
diag

(
σ1, σ2, . . . , σmin(CX,CY)

)
and its diagonal entries σ1 ≥

σ2 ≥ · · · ≥ σmin(CX,CY) ≥ 0 are the singular values of Y.

The largest L singular values and their corresponding singular

vectors can be approximately expressed as

σi ≈ |αli |
∥∥WHaR(θ

r
li
, φr

li
)
∥∥
2

∥∥XHaR(θ
t
li
, φt

li
)
∥∥
2
,

ui ≈ WHaR(θ
r
li
, φr

li
)/
∥∥WHaR(θ

t
li
, φt

li
)
∥∥
2
,

vi ≈ XHaT(θ
r
li
, φr

li
)/
∥∥XHaT(θ

t
li
, φt

li
)
∥∥
2
,

(24)

where ui and vi are the ith column of U and V, i = 1, 2, . . . L
,{l1, l2, · · · , lL} is a permutation of {1, 2, . . . L}. By utilizing

this method, we can search for the nearest angle-domain grids

to real AoAs/AoDs.

In the iterative objective function Z(t)(α,θR,θT), the dy-

namic regularization parameter λ0 is updated with the iteration

and controls the tradeoff between the sparsity and the data

fitting error. Specifically, a smaller λ0 can result in a sparse

solution but cause an underestimation, while a larger λ0 leads

to a less sparse but better-fitting solution. Therefore, choosing

λ0 in the proposed algorithm can be more intelligent and

updated by

d(t)e =
∥∥∥Y −WHAR(θ̂

(t)
R )diag(α̂(t))AH

T (θ̂
(t)
T )X

∥∥∥
2

F
(25)

λ0 = min

(
c

d
(t)
e

, λmax

)
, (26)

where c is a constant scaling factor, and λmax is a threshold

parameter.
IV. SIMULATION RESULTS

In this section, we demonstrate the performance of the

proposed algorithms for downlink channel estimation. Specif-

ically, the model we apply is a mmWave massive MIMO

system with hybrid precoding, with L = 3, d = λ/2, NR =
NT = 64/128, NRF

R = NRF
T = 4. We use MATLAB 2016 to

simulate the proposed algorithm on PC.In line-of-sight (LoS)

the gain of the paths is normalized to 1, while the gain of non-

line-of-sight (NLoS) paths is assumed to follow CN(0.0.1).
The directions of all paths of users are assumed to follow the

IID uniform distribution within [−π/2 , π/2]. Each element

of the transmitted pilots X satisfies xi,j =
√

ρ/NTe
jwi,j ,

where ρ is the transmitted power and wi,j is the random phase

uniformly distributed in [0 , 2π]. We assume that the path gains

TABLE I
THE PROPOSED ALGORITHM

Input:X, Y, W, Linit, αth, ζth.

Output: Coarse AoAs/AoDs estimates (θ̂
(0)
R , θ̂

(0)
T )

Estimated AoAs/AoDs (θ̂R, θ̂T)
and path gains of all paths.

1:[U,
∑

,V] = SVD(Y).
2:for i = 1, 2, . . . Linit

(θ̂
r(0)
i , φ

r(0)
i ) = argmax uiW

H
aR

(θ̂
t(0)
i , φ

t(0)
i ) = argmax viW

H
aR.

3:end for

4:θ̂
(0)
R = [θ̂

r(0)
1 , φ

r(0)
1 , θ̂

r(0)
2 , φ

r(0)
2 , . . . , θ̂

r(0)
Linit

, φ
r(0)
Linit

]

θ̂
(0)
T = [θ̂

t(0)
1 , φ

t(0)
1 , θ̂

t(0)
2 , φ

t(0)
2 , . . . , θ̂

t(0)
Linit

, φ
t(0)
Linit

].

5:Initialize α̂(0) = αopt(θ̂
(0)
R , θ̂

(0)
T ) according to (17).

6:Repeat

7: Update λ by (24).

8: Construct Z
(t)
opt(θR,θT) by (18).

9: Calculate θ̂
(t+1)
R ,θ̂

(t+1)
R by (19), (20).

10: Estimate the path gains α̂(t+1) by (17).

11: If α̂
(t+1)
l

< αth, prune path l.

12:until L(t) = L(t+1) and
∥

∥α̂(t+1)
− α̂(t)

∥

∥

2
< ζth.

13:θ̂R = θ̂
(last)
R , θ̂T = θ̂

(last)
T , α̂ = α̂(last).

follow Gaussian distribution. Within a certain range of signal-

to-noise ratio (SNR), normalized mean square error (NMSE)

is used as a standard to evaluate the performance of the

algorithm. The reference algorithms involved in performance

comparison are: Oracle LS scheme, conventional orthogonal

matching pursuit (OMP)-based channel estimation [14] and

iterative reweight-based super resolution channel estimation

scheme [12].

We consider the ULA geometry in case 1 and generate Figs.

2 (a) and (b), which compare the performance of the pro-

posed algorithm when changing the number of receiving and

transmitting antennas under line-of-sight (LoS). Obviously, the

proposed method shows excellent performance when the SNR

becomes larger compared with the traditional algorithm. As

the number of antennas increases, the performance of the

proposed algorithm is better. Particularly, the NMSE value

of the proposed algorithm about 9.3× 10−3 smaller than the

iterative reweight-based super resolution channel estimation

scheme.

In case 2, we consider the performance of the proposed

algorithm under non-line-of-sight (NLoS) transmission. The

NMSE value difference is about 0.21 between the IR-based

super-resolution algorithm and the proposed method in Fig. 3,

that is 2.7 × 10−2 in Fig 4 of case 3 which consider a UPA

geometry. In the above two cases, the proposed algorithm has

excellent channel estimation performance. The UPA structure

of case 3 is still carried out under the transmission conditions

of LoS. Comparing Fig. 2 (a) and Fig.4, it can be seen that

the proposed algorithm has better performance when adopting

the ULA structure since the estimation errors of both azimuth

and elevation angles contribute to the NMSE, under the same

number of antennas and number of pilot overheads.

Based on the simulations and analysis above, it is easy to

see that the proposed algorithm achieves much higher channel

estimation accuracy,but has a higher computational complexity

compared with traditional methods such as the OMP-based

channel estimation scheme [14].



5

-10 -5 0 5 10 15

SNR (dB)

10-5

10-4

10-3

10-2

10-1

100

101

N
M

SE
 

Oracle LS

OMP

IR-based Super-Resolution

Proposed scheme

(a) NT = NR = 64

-10 -5 0 5 10 15

SNR (dB)

10-5

10-4

10-3

10-2

10-1

100

101

N
M

SE
 

Oracle LS

OMP

IR-based Super-Resolution

Proposed scheme

(b) NT = NR = 128

Fig. 2. NMSE performance comparison of different

channel estimation schemes (LoS)
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Fig. 3. NMSE performance comparison of different

channel estimation schemes (NLoS)
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Fig. 4. NMSE performance comparison of different

channel estimation schemes (UPA)

V. CONCLUSION

In this paper, we proposed a new iterative reweight-based

log-sum constraint channel estimation scheme for mmWave

massive MIMO with hybrid precoding. Specifically, we con-

verted the channel estimation problem into a sparse optimiza-

tion problem. The proposed new objective function consists of

two parts: the sparse weighted sum and the data fitting error.

We set a flexible regularization parameter to adjust the tradeoff

between these two parts. For the new objective function, we

utilized the traditional gradient descent method to iteratively

move the coarse on-grid points to their actual off-grid po-

sitions. Moreover, a dynamic regularization parameter was

applied to control the tradeoff between the channel sparsity

and the data fitting error. The simulation results show that the

proposed channel estimation algorithm achieves more superi-

ority than several existing compressed sensing algorithms in

terms of accuracy. Angle domain channel estimation is very

important for mmWave massive MIMO. More accurate angle

estimation is a practical method for achieving higher spectral

efficiency. Further developments of the proposed approach can

involve high mobility scenarios or other schemes to reduce

complexity.
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