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Abstract. Reaction with ozone (O3) is an important re-

moval process for unsaturated volatile organic compounds

(VOCs) in the atmosphere. Rate coefficients for reactions of

O3 with VOCs are therefore essential parameters for chemi-

cal mechanisms used in chemistry transport models. Updated

and extended structure–activity relationship (SAR) methods

are presented for the reactions of O3 with mono- and poly-

unsaturated organic compounds. The methods are optimized

using a preferred set of data including reactions of O3 with

221 unsaturated compounds. For conjugated dialkene struc-

tures, site-specific rates are defined, and for isolated poly-

alkenes rates are defined for each double bond to determine

the branching ratios for primary ozonide formation. The in-

formation can therefore guide the representation of the O3

reactions in the next generation of explicit detailed chemical

mechanisms.

1 Introduction

Volatile organic compounds (VOCs) are emitted to the at-

mosphere from both biogenic and anthropogenic sources.

Many of these compounds are unsaturated (i.e. contain at

least one double bond), including the ubiquitous biogenic

VOCs isoprene and monoterpenes (Sindelarova et al., 2014).

Chemical degradation of these compounds in the atmosphere

leads to a variety of secondary pollutants including ozone

and secondary organic aerosol (SOA). Unsaturated com-

pounds are generally highly reactive and react with the ox-

idant ozone (O3), which is typically present in the tropo-

sphere at mixing ratios in the range 10–200 ppb. The ozonol-

ysis reaction involves the concerted addition of O3 to the

double bond, followed by decomposition of the short-lived

primary ozonide to yield a carbonyl compound and a car-

bonyl oxide, commonly referred to as a Criegee interme-

diate (Criegee, 1975). The reaction is important as a non-

photolytic source of radicals and reactive intermediates, in-

cluding the hydroxyl radical (e.g. Johnson and Marston,

2008; Cox et al., 2020). Ozonolysis of large alkenes (e.g.

monoterpenes and sesquiterpenes) is also particularly effi-

cient at producing SOA (Hallquist et al., 2009), including as

a result of the formation of low-volatility products from reac-

tions of Criegee intermediates with atmospheric trace gases

(e.g. Heaton et al., 2007; Sakamoto et al., 2013; Zhao et al.,

2015; Mackenzie-Rae et al., 2018; Chhantyal-Pun et al.,

2018), and from auto-oxidation mechanisms involving per-

oxy radicals formed from decomposition of the Criegee in-

termediates (e.g. Ehn et al., 2014; Jokinen et al., 2015).

Previous assessments using explicit organic degradation

mechanisms have demonstrated that the atmosphere contains

an almost limitless number of organic compounds (e.g. Au-

mont et al., 2005), for which it is impractical to carry out

experimental kinetics studies. This has resulted in the devel-

opment of estimation methods for rate coefficients (e.g. see

Calvert et al., 2000, 2011; McGillen et al., 2008; Vereecken

et al., 2018, and references therein), which have been applied
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widely in chemical mechanisms and impact assessments. As

part of the present work, a set of preferred kinetic data has

been assembled for the reactions of O3 with 221 unsaturated

organic compounds, based on reported experimental studies

(see Sect. 2 for further details). Updated structure–activity

relationship (SAR) methods are presented for the initial re-

actions of O3 with unsaturated organic compounds. In the

cases of poly-alkenes, the rate coefficient is defined in terms

of a summation of partial rate coefficients for O3 reaction at

each relevant site in the given organic compound, so that the

attack distribution is also defined. Application of the methods

is illustrated with examples in the Supplement.

The information is currently being used to guide the rep-

resentation of the O3-initiation reactions in the next genera-

tion of explicit detailed chemical mechanisms, based on the

Generator for Explicit Chemistry and Kinetics of Organics

in the Atmosphere (GECKO-A; Aumont et al., 2005) and the

Master Chemical Mechanism (MCM; Saunders et al., 2003).

It therefore contributes to a revised and updated set of rules

that can be used in automated mechanism construction and

provides formal documentation of the methods. This paper

is part of a series of publications, including rules for the es-

timation of rate coefficients and branching ratios for the re-

actions of OH with aliphatic (Jenkin et al., 2018a) and aro-

matic (Jenkin et al., 2018b) organic compounds, and for per-

oxy radical reactions (Jenkin et al., 2019). Rules governing

the decomposition of the primary ozonides, formed initially

from the O3-initiation reactions, and the subsequent chem-

istry of the Criegee intermediates formed are considered in a

further paper (Mouchel-Vallon et al., 2020).

2 Preferred kinetic data

A set of preferred kinetic data has been assembled from

which to develop and validate the estimation methods for the

O3 rate coefficients. The complete set includes 298 K data

for 221 compounds, comprising 111 alkenes and 110 unsatu-

rated oxygenated compounds. Temperature dependences are

also defined for a subset of 39 compounds. In three cases, the

preferred rate coefficient is an upper-limit value, and in three

cases a lower-limit value. The information is provided as a

part of the Supplement (spreadsheets SI_1 and SI_2). As de-

scribed in more detail in Sect. 4, the oxygenates include both

monofunctional and multifunctional compounds containing

a variety of functional groups that are prevalent in both

emitted VOCs and their degradation products, namely -OH,

-C(=O)H, -C(=O)-, -O-, -C(=O)OH, -C(=O)O-, -OC(=O)-,

-ONO2 and -C(=O)OONO2. For a core set of 30 reactions,

preferred kinetic data are based on the evaluations of the

IUPAC Task Group on Atmospheric Chemical Kinetic Data

Evaluation (Cox et al., 2020; http://iupac.pole-ether.fr/, last

access: September 2020). The remaining values are informed

by recommendations from other key evaluations with com-

plementary coverage (e.g. Atkinson and Arey, 2003; Calvert

et al., 2011, 2015) and have been revised and expanded fol-

lowing review and evaluation of additional data not included

in those studies (as identified in spreadsheets SI_1 and SI_2).

3 Alkenes

As discussed in detail previously (e.g. Calvert et al., 2000;

Vereecken et al., 2018, and references therein), the data in-

dicate that the rate coefficients are highly sensitive to alkene

structure and depend on the degree of alkyl substitution of

the unsaturated bond(s), on steric effects and on ring strain

effects in cyclic compounds. The set of preferred kinetic data

has been used to update and extend a SAR method that can be

used to estimate the rate coefficients when no experimental

determinations are available. Similar to previous appraisals

(e.g. Jenkin et al., 1997; Calvert et al., 2000), reference rate

coefficients (k) are defined for addition of O3 to a series of

alkene and conjugated dialkene structures, based on the pre-

ferred data for relevant sets of alkenes and conjugated di-

alkenes.

3.1 Acyclic monoalkenes

The set of preferred values contains data for the reactions

of O3 with 43 acyclic monoalkenes. The generic rate coeffi-

cients for O3 addition to C=C bonds in acyclic monoalkene

structures with differing extents of alkyl (R) substitution are

given in Table 1 (kA1O3–kA6O3). These rate coefficients are

based on averages of the preferred values of k at 298 K and

of the preferred temperature coefficients, E/R, for the iden-

tified sets of alkenes (as described in detail in the Table 1

comments), and are defined for “R” being a linear alkyl

group (i.e. -CH3 or -CH2R′). In practice, reported data for

sets of alk-1-enes (CH2=CHR) and 2-methylalk-1-enes (the

majority of the CH2=CR2 dataset) show small systematic in-

creases in k with the size of the alkyl group (Mason et al.,

2009), although the preferred data for the other structural

alkene groups do not apparently show such dependences (see

Fig. 1). In view of the high sensitivity of k to the degree of

alkyl substitution of the double bond, the use of single size-

independent values of k for each of these structural groups is

considered acceptable for the present SAR.

Reported rate coefficients for monoalkenes possessing

branched alkyl groups tend to be lower than those for alkenes

possessing the corresponding linear alkyl groups, as is gen-

erally apparent from the data in Fig. 1. In most reported

cases, branching occurs at the carbon atom adjacent (α) to

the alkene structure, which may influence O3 attack through

steric hindrance (e.g. Calvert et al., 2000; Johnson et al.,

2000). Rate coefficients for alkenes with substituents at the

α position are determined from the following expression,

kcalc = kAO35Fα(X), (1)

where kAO3 is the appropriate reference rate coefficient in

Table 1, and a value of Fα(X) is applied for each α sub-

Atmos. Chem. Phys., 20, 12921–12937, 2020 https://doi.org/10.5194/acp-20-12921-2020
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Table 1. Arrhenius parameters (k = Aexp(−(E/R)/T )) for the reference rate coefficients for O3 addition to generic monoalkenes containing

linear alkyl groups (i.e. R can be -CH3 or -CH2R′), and the rate coefficient values at 298 Ka.

Alkene structure Parameter A E/R k298 K Comment

10−15 cm3 molecule−1 s−1 K 10−17 cm3 molecule−1 s−1

CH2=CHR kA1O3 2.91 1690 1.0 b

CH2=CR2 kA2O3 4.00 1685 1.4 c

cis-CHR=CHR kA3O3 3.39 995 12 d

trans-CHR=CHR kA4O3 7.29 1120 17 e

CHR=CR2 kA5O3 7.61 830 47 f

CR2=CR2 kA6O3 3.00 300 110 g

a k298K and E/R based on rounded averages for the sets of compounds identified in subsequent comments, with A = k298 K/exp(−(E/R)/298). Rate

coefficients are also default values for alkenes possessing remote substituents (i.e. β or higher), including isolated double bonds.
b k298 K based on preferred data for propene, but-1-ene, pent-1-ene, hex-1-ene, hept-1-ene, oct-1-ene and dec-1-ene; E/R based on preferred data for

propene, but-1-ene, pent-1-ene, hex-1-ene and hept-1-ene.
c k298 K based on preferred data for 2-methyl-propene, 2-methyl-but-1-ene, 2-methyl-pent-1-ene, 2-methyl-hept-1-ene, 2-methyl-oct-1-ene,

2-methyl-dec-1-ene, 2-methyl-undec-1-ene and 2-ethyl-but-1-ene; E/R based on preferred data for 2-methyl-propene and 2-methyl-but-1-ene.
d k298 K based on preferred data for cis-but-2-ene, cis-pent-2-ene, cis-hex-2-ene, cis-hex-3-ene, cis-oct-4-ene and cis-dec-5-ene; E/R based on

preferred data for cis-but-2-ene, cis-pent-2-ene and cis-hex-2-ene.
e k298 K based on preferred data for trans-but-2-ene, trans-pent-2-ene, trans-hex-2-ene, trans-hex-3-ene and trans-oct-4-ene; E/R based on preferred

data for trans-but-2-ene, trans-pent-2-ene and trans-hex-2-ene.
f k298 K based on preferred data for 2-methyl-but-2-ene, cis-3-methyl-pent-2-ene and trans-3-methyl-pent-2-ene; E/R based on preferred data for

2-methyl-but-2-ene; where applicable, parameters are assumed to apply to both cis- and trans-isomers.
g k298 K and E/R based on preferred data for 2,3-dimethyl-but-2-ene; k298K is also consistent with reported lower-limit k for 3,4-dimethyl-hex-3-ene

(cis- and trans-); where applicable, parameters are assumed to apply to both cis- and trans-isomers.

stituent in the molecule. A factor, Fα(alkyl), describing

the effect of each (acyclic) alkyl group at the α carbon

atom was determined by minimizing the summed square

deviation, 6((kcalc − kobs)/kobs)
2, for the set of relevant

branched alkenes (the resultant value is given in Table 2,

along with those for selected oxygenated groups discussed

below). It should be noted that the reported value of kobs

for 3,4-diethyl-hex-2-ene is substantially lower than the ref-

erence value of kA5O3 for the CHR=CR2 structure (i.e.

by 2 orders of magnitude; see Table 1), and this com-

pound was therefore excluded from the optimization pro-

cedure for Fα(alkyl). Confirmatory measurements of that

rate coefficient, and data for other α-branched alkenes,

are therefore required to test and refine the method pro-

posed here. In the absence of reported rate coefficients

as a function of temperature for α-branched alkenes, the

temperature dependence of Fα(alkyl) is assumed to be

described by Fα(alkyl) = exp(298 × ln(Fα (298)(alkyl))/T );

further temperature-dependent data are also required for this

assumption to be fully tested. The limited data for more re-

motely branched alkenes suggest no significant effect on the

rate coefficient. In those cases, the rate coefficients in Table 1

are applied as a default.

The corresponding absolute deviations, (kcalc −kobs)/kobs,

at 298 K for 40 acyclic monoalkenes in the set of preferred

values indicate that the estimation method reproduces the ob-

served values to within about +50 %
−30 % (see also Fig. 2). The

three monoalkenes excluded from the procedure were ethene

(a unique structure, for which no value needs to be calcu-

lated), 3,4-diethyl-hex-2-ene (as indicated above) and 3,4-

dimethyl-hex-3-ene (for which only a lower-limit preferred

Table 2. Substituent factors, Fα (298)(X), describing the effect of

the given substituent at the α carbon atom in R groups in alkenes

and in allylic oxygenated compounds at 298 Ka.

X Fα (298)(X) Comment

alkyl (acyclic) 0.54 b

-OH 1.4 c

-OR 0.6 d

-C(=O)-, [-C(=O)O-] 0.32 e

-OC(=O)- 0.25 f

-ONO2 0.044 g

a The temperature dependence is assumed to be described by

Fα(X) = exp(298 × ln(Fα (298)(X))/T ).
b Based on data for 3-methyl-but-1-ene, 3-methyl-pent-1-ene,

trans-2,5-dimethyl-hex-3-ene, 2,3-dimethyl-but-1-ene and

3-methyl-2-isopropyl-but-1-ene, 3,3-dimethyl-but-1-ene,

trans-2,2-dimethyl-hex-3-ene, 2.3.3-trimethyl-but-1-ene and

2.4.4-trimethyl-pent-2-ene. Also applied to organic groups

containing remote substituents. The definition “acyclic” here is

taken to mean that the first carbon atom in the substituent is not part

of a cycle.
c Based on data for 12 C3-C15 acyclic allylic alcohols.
d Based on data for 3-ethoxypropene, 3-methyl-3,4-epoxy-1-butene

and 5-methyl-5-vinyl tetrahydrofuranol.
e Based on data for 3(Z-)4-methylhex-3,5-dienal,

3(E-)4-methylhex-3,5-dienal and 4-methyl-cyclohex-3-ene-1-one.

Also applied to -C(=O)O- substituents in the absence of data.
f Based on data for allyl acetate.
g Based on data for 2-methyl-4-nitrooxy-but-2-en-1-ol, and

consistent with lower-limit value for

3-methyl-2-nitrooxy-but-3-en-1-ol.

https://doi.org/10.5194/acp-20-12921-2020 Atmos. Chem. Phys., 20, 12921–12937, 2020
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Figure 1. Preferred kinetic data for the reactions of O3 with acyclic monoalkenes at 298 K as a function of carbon number, and the assigned

rate coefficients for the generic monoalkene structures with linear alkyl substituents, as given in Table 1 (NB the α-branched R data in the

trans-CHR=CHR panel consist of two co-incident data points).

value is available). In the final case, kcalc is a factor of 3

higher than the lower-limit value.

3.2 Cyclic monoalkenes

The set of preferred values contains data for reactions of O3

with 14 simple monocyclic monoalkenes containing endo-

cyclic double bonds, including cyclopentenes, cyclohexenes,

cycloheptenes, cyclooctenes and cyclodecenes, with the tem-

perature dependence also defined in seven cases. The values

of k for these sets of compounds show systematic deviations

from those observed for acyclic monoalkenes with the same

level of substitution, likely resulting from the effects of ring

strain (e.g. Calvert et al., 2000). Table 3 provides a series of

ring factors, Fring, based on optimization to the 298 K rate

coefficients and E/R values within this dataset (as described

in detail in the Table 3 comments). The rate coefficients for

cyclic alkenes with endocyclic double bonds are therefore

determined from the following expression,

kcalc = kAO35FringFα(X) (2)

where kAO3 is the appropriate reference rate coefficient

(kA3O3–kA6O3) in Table 1. For polycyclic alkenes, a value

of Fring needs to be applied for each ring for which the

given C=C bond is a component. In addition to the Fring val-

ues given in Table 3, it is also possible to infer a tentative

value of 12 for Fring (298) for 11-member rings, based on the

reported rate coefficient for the sesquiterpene α-humulene

(which contains a 1,4,8-cycloundecatriene ring), with the as-

Atmos. Chem. Phys., 20, 12921–12937, 2020 https://doi.org/10.5194/acp-20-12921-2020
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Figure 2. Scatter plot of observed and calculated values of k at 298 K for the reactions of O3 with monoalkenes and poly-alkenes, based on

the parameters determined in the present work. The broken lines show the factor-of-3 range, within which the majority of data fall.

Table 3. Optimized ring factors at 298 K, Fring (298), for the reactions of O3 with cyclic monoalkenes, and their temperature dependences

described by Fring = AF (ring) exp(−BF (ring)/T ).

Ring AF (ring) BF (ring)/K Fring (298) Comment

5-member ring 0.448 −645 3.9 a

6-member ring 0.658 70 0.52 b

7-member ring 0.374 −500 2.0 c

8-member ring 0.204 −780 2.8 d

10-member ring 0.319 85 0.24 e, f

a Based on data for cyclopentene, 1-methylcyclopentene and 3-methylcyclopentene.
b Based on data for cyclohexene, 1-methylcyclohexene, 3-methylcyclohexene,

4-methylcyclohexene and 1,2-dimethylcyclohexene.
c Based on data for cycloheptene and 1-methylcycloheptene.
d Based on data for cis-cyclooctene, 1-methylcyclooctene and 3-methylcyclooctene.
e Based on data for cis-cyclodecene.
f Tentative values of Fring (298) of 2.1 and 12 can be derived for 9- and 11-member rings,

respectively, based on limited data for structurally complex sesquiterpenes (see Sect. 3.2).

These can be applied with an approximate average value of AF (ring) = 0.3, and BF (ring)
values of −580 and −1100 K, respectively.

sumption that the values for Fring can be applied to cyclic

systems with unconjugated multiple double bonds. The re-

ported rate coefficient for the sesquiterpene β-caryophyllene

(which contains a trans-cyclononene ring) then allows a ten-

tative value of Fring (298) = 2.1 for nine-member rings, al-

though it is noted that the level of ring strain, and therefore

Fring, likely depends on the cis-/trans-conformation. Clearly,

additional data for cyclononenes and cycloundecenes are re-

quired to confirm these tentative values of Fring.

As with the acyclic alkenes above, a value of Fα(alkyl) is

also applied for each (acyclic) alkyl group at the α carbon

atom in both monocyclic and polycyclic alkenes, where ap-

propriate. For this procedure, the term “acyclic” is taken to

mean that the first carbon atom in the substituent group is not

part of a cycle that also contains the α carbon atom. To avoid

ambiguity in defining the number of α acyclic alkyl groups,

the base structure is taken to be cyclic as a default, and val-

ues of Fα(alkyl) are applied as appropriate to each acyclic

alkyl group. This rule applies whether the double bond is en-

docyclic or exocyclic and has the effect of maximizing the

number of acyclic alkyl groups (e.g. see example calculations

B2–B5 in the Supplement).

https://doi.org/10.5194/acp-20-12921-2020 Atmos. Chem. Phys., 20, 12921–12937, 2020
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Table 4. Arrhenius parameters (k = Aexp(−(E/R)/T )) for the rate coefficients for O3 addition to generic conjugated dialkene structures,

and the rate coefficient values at 298 Ka.

Dialkene structure Parameter A E/R k298 K Comment

10−15 cm3 molecule−1 s−1 K 10−17 cm3 molecule−1 s−1

CH2 =C(R)CH=CH2 kD1O3 10 1980 1.3 b

CH2 =C(R)C(R)=CH2 kD2O3 10 1774 2.6 c

CH2 =CHCH=CHR kD3O3 10 1677 3.6 d

CH2 =C(R)CH=CHR

CH2=CHC(R)=CHR

CH2=CHCH=CR2

kD4O3 10 1439 8.0 e

CH2=C(R)C(R)=CHR

CH2=C(R)CH=CR2

CH2=CHC(R)=CR2

kD5O3 10 1214 17 f

CH2=C(R)C(R)=CR2 kD6O3 10 887 51 g

CHR=CHCH=CHR kD7O3 10 1008 34 h

CHR=CHCH=CR2

CHR=C(R)CH=CHR

kD8O3 10 686 100 i

CR2 =CHCH=CR2

CHR=C(R)C(R)=CHR

CHR=C(R)CH=CR2

CHR=CHC(R)=CR2

kD9O3 10 359 300 j

CR2=C(R)CH=CR2 kD10O3 10 142 620 k

CR2=C(R)C(R)=CR2 kD11O3 10 0 1000 l

a k298 K for bold structures based on data for the compounds identified in subsequent comments, with other values based on trends in the data. A value of

A = 10−14 cm3 molecule−1 s−1 adopted in all cases, based on the reported parameters for buta-1,3-diene, trans-penta-1,3-diene, isoprene

(2-methyl-buta-1,3-diene) and 2,3-dimethyl-buta-1,3-diene. E/R = 298× ln(A/k298 K). Rate coefficients are also default values for conjugated dialkenes possessing

remote substituents (i.e. β or higher), including isolated double bonds.
b k298 K based on data for isoprene (2-methyl-buta-1,3-diene).
c k298 K based on data 2,3-dimethyl-buta-1,3-diene.
d k298 K based on rounded average of data for cis-penta-1,3-diene and trans-penta-1,3-diene; parameters are assumed to apply to both cis- and trans-isomers.
e k298 K based on data for 2-methyl-penta-1,3-diene. The same value of k298K is also adopted for CH2=CHC(R)=CHR and CH2=CHCH=CR2.
f k298 K for CH2=C(R)C(R)=CHR taken to be a factor of 2.1 greater than that for CH2=CHC(R)=CHR, based on the trend in k observed on going from

buta-1,3-diene (0.63) to CH2=C(R)CH=CH2 and CH2=C(R)C(R)=CH2, and from CH2=CHCH=CHR to CH2=C(R)CH=CHR. The same value of k298 K is also

adopted for CH2=C(R)CH=CR2 and CH2=CHC(R)=CR2.
g k298 K for CH2=C(R)C(R)=CR2 taken to be a factor of 3 greater than that for CH2=C(R)C(R)=CHR, based on the trend in k observed on going from

CHR=CHCH=CHR to CR2=CHCH=CR2.
h k298 K based on average of data for cis-,trans-hexa-2,4-diene and trans-,trans-hexa-2,4-diene; parameters are assumed to apply to all cis- and trans- isomer

combinations.
i k298 K for CHR=CHCH=CR2 taken to be a factor of 3 lower than that for CR2=CHCH=CR2, based on the trend in k observed on going from CHR=CHCH=CHR to

CR2=CHCH=CR2; the same value of k298 K is also adopted for CHR=CHC(R)=CHR.
j k298 K based on data for 2,5-dimethyl-hexa-2,4-diene; the same value of k298 K is also adopted for CHR=C(R)C(R)=CHR, CHR=C(R)CH=CR2 and

CHR=CHC(R)=CR2.
k k298 K for CR2=C(R)CH=CR2 taken to be a factor of 2.1 greater than that for CR2=CHCH=CR2, based on the trend in k observed on going from buta-1,3-diene

(0.63) to CH2=C(R)CH=CH2 and CH2=C(R)C(R)=CH2, and from CH2=CHCH=CHR to CH2=C(R)CH=CHR.
l k298 K for CR2=C(R)C(R)=CR2 assigned the same value as A, this being compatible with expected increase in k298 K relative to that for CR2=CHCH=CR2.

3.3 Acyclic conjugated dialkenes

The generic rate coefficients for O3 addition to C=C-C=C

bond structures in acyclic conjugated dialkenes with differ-

ing extents of alkyl (R) substitution are given in Table 4,

based on reported data for nine compounds (kD1O3−kD11O3).

These rate coefficients are based on the preferred values of k

for the identified dialkenes, with those for some structural

groups being inferred from the observed trends in the impact

of successive alkyl substitution on k, as described in detail in

the Table 4 comments. The values are generally based on data

for conjugated dialkenes for which “R” is a linear alkyl group

(these making up almost all of the reported data). The limited

information on dialkenes possessing branched substituent

groups (5-methyl-hexa-1,3-diene and 5,5-dimethylhexa-1,3-

diene) suggests that there is a less pronounced reducing ef-

fect on k, compared with that observed for the monoalkenes

above. Similar to the approach used for the reactions of OH

with conjugated dialkenes (Jenkin et al., 2018a), the follow-

ing expression is therefore applied,

kcalc = kDO35(Fα(X))
1
2 , (3)

where kDO3 is the appropriate reference rate coefficient in

Table 4, and a value of Fα(X) (Table 2) is applied for each α

substituent in the molecule.

Temperature-dependent recommendations are available

for four acyclic conjugated dialkenes (see Table 4 com-
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Table 5. Optimized ring factors at 298 K, F ′
ring (298)

, for the reac-

tions of O3 with cyclic conjugated dialkenesa.

Ring F ′
ring (298)

Comment

6-member ring 4.5 b

7-member ring 0.44 c

8-member ring 0.06 d

a These factors apply to conjugated dialkene systems that are

completely within the given ring structure. In cases where the

conjugated dialkene is only partially within the ring (e.g. as in the

case of β-phellandrene), the appropriate value of Fring given in

Table 3 should be applied. In the absence of data, the temperature

dependence is assumed to be described by

F ′
ring

= exp(298 × ln(F ′
ring (298)

)/T ).

b Based on data for cyclohexa-1,3-diene,

5-isopropyl-2-methyl-cyclohexa-1,3-diene (α-phellandrene) and

1-isopropyl-4-methyl-cyclohexa-1,3-diene (α-terpinene).
c Based on data for cyclohepta-1,3-diene.
d Based on data for based on data for cis-,cis-cycloocta-1,3-diene.

ments), with the recommended pre-exponential factor, A, be-

ing close to 10−14 cm3 molecule−1 s−1 in each case. This

value of A is therefore adopted for all of the generic

rate coefficients kD1O3–kD11O3, with E/R given by 298 ×

ln(A/k298 K).

3.4 Cyclic conjugated dialkenes

The set of preferred values contains 298 K data for the re-

actions of O3 with five monocyclic conjugated dialkenes,

including cyclohexa-1,3-dienes, cyclohepta-1,3-diene and

cycloocta-1,3-diene. The values of k for these sets of com-

pounds all show systematic deviations from those observed

for acyclic conjugated dialkenes with the same level of sub-

stitution, again likely resulting from the effects of ring strain

(e.g. Calvert et al., 2000; Lewin et al., 2001). In each case,

these also differ substantially from those for the same sized

cyclic monoalkenes (as shown in Table 3), and Table 5 shows

a series of ring factors, F ′
ring, based on optimization to the

cyclic conjugated dialkene dataset. The rate coefficients for

cyclic conjugated dialkenes are therefore determined from

the following expression:

kcalc = kDO35F ′
ringFα(X)

1
2 . (4)

In the absence of data, the temperature depen-

dence is assumed to be described by F ′
ring =

exp(298 × ln(F ′
ring (298))/T ). For polycyclic systems, a

value of F ′
ring needs to be applied for each ring for which

the given C=C-C=C bond structure is a component. As for

acyclic conjugated dialkenes, a value of Fα(X) is applied

for each α substituent in the molecule, where appropriate.

In the cases of cyclic (or polycyclic) conjugated dialkenes

with α acyclic alkyl substituents, the base structure is

once again taken to be cyclic, and values of Fα(alkyl) are

applied as appropriate (e.g. see example calculations D1

and D2 in the Supplement). Note that for the special case

of conjugated dialkenes for which only one of the double

bonds is within the ring (e.g. β-phellandrene: example D2 in

the Supplement), a modified version of Eq. (4) is applied, in

which F ′
ring is replaced by the appropriate value of Fring.

3.5 Other alkenes and poly-alkenes

The remainder of the alkene dataset consists of preferred val-

ues for 30 acyclic and cyclic compounds containing various

combinations of isolated double bonds and conjugated di-

alkene structures, for which the methods described above can

be used to estimate rate coefficients. There are also preferred

values for a limited set of three conjugated poly-alkenes (one

acyclic and two cyclic) and four alk-1-enyl-substituted aro-

matics (styrenes), for which there are insufficient data to at-

tempt development of a SAR method.

The observed and calculated rate coefficients for 100

alkenes and poly-alkenes are compared in the correlation

plot in Fig. 2. These are all the compounds for which pre-

ferred values are available in the reference database (spread-

sheet SI_1), less those not covered by the SAR methods, i.e.

the three conjugated poly-alkenes and four styrenes referred

to above, and ethene and buta-1,3-diene, which are unique

structures. As shown in Fig. 2, the SAR methods perform

well for the sets of acyclic monoalkenes and conjugated di-

alkenes, and for the monocyclic monoalkenes and conjugated

dialkenes. This is because the data show well-defined varia-

tions with structure, and because most of those rate coeffi-

cients were used as the basis of the SAR methods (as identi-

fied in Tables 1–5 and in spreadsheet SI_1).

The data for the remaining 30 compounds are subdivided

into acyclic (6 compounds), monocyclic (11 compounds) and

polycyclic (13 compounds) in Fig. 2, with the observed data

from the first two categories also generally well described

by the SAR methods. The observed values of k for the re-

maining polycyclic compounds are also reasonably well cor-

related, although with much more scatter than for the simpler

structures. This is almost certainly due to a combination of

ring strain and steric effects in these complex structures that

cannot be fully accounted for by the SAR methods devel-

oped here. The alkenes in all these categories are identified

in spreadsheet SI_1.

4 Unsaturated oxygenated compounds

The set of preferred values contains data for the reactions of

O3 with 110 unsaturated oxygenated compounds, possess-

ing -OH, -C(=O)H, -C(=O)-, -O-, -C(=O)OH, -C(=O)O-,

-OC(=O)-, -ONO2 and -C(=O)OONO2 substituents. The

SAR methods applied to these compounds depend on the

location of the substituent oxygenated group relative to the

C=C bond and fall into three categories. For those possess-

ing oxygenated substituents at the α position (i.e. allylic oxy-

genates), the methods described above for alkenes and di-
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alkenes are modified to take account of the effect of the given

substituent (see Sect. 4.1). More remote oxygenated sub-

stituents are assumed to have no effect, and the appropriate

alkene or dialkene rate coefficient is applied unmodified in

these cases (see Sect. 4.2). When the oxygenated group (in-

cluding -C(=O)H, -C(=O)- and -C(=O)O-) is a substituent of

the C=C group itself (i.e. vinylic oxygenates), the method is

based on a series of reference rate coefficients for those spe-

cific structures, which are derived from the preferred data for

the relevant sets of oxygenated compounds (see Sect. 4.3).

4.1 Allylic oxygenated compounds

Preferred kinetics data at 298 K are available for 25 al-

lylic oxygenated compounds, containing the following sub-

stituents at the α carbon atom: -OH (14 compounds),

-C(=O)H (3 compounds), -C(=O)R (1 compound), -OR

(4 compounds, 1 possessing a remote -OH group),

-OC(=O)R (1 compound), and both -ONO2 and -OH (2 com-

pounds, with 1 having only a lower-limit recommendation).

These data were used, in conjunction with the methods de-

scribed for alkenes and dialkenes in Sect. 3, to optimize the

corresponding values of Fα(X) given in Table 2. It was found

that the effect of the -C(=O)H and -C(=O)R could reason-

ably be described by a single factor, Fα(-C(=O)-), and the

further assumption was made that the same factor applies

to groups containing the -C(=O)O- sub-structure. It is noted

that several of the factors are based on data for limited sets of

compounds (in some cases a single compound), and further

data are clearly required to test the approach fully. As shown

in Fig. 3, however, the method appears to work very well for

most of the relevant compounds containing -OH groups (the

largest subset of allylic oxygenates), providing some support

for the approach.

There are almost no temperature-dependent data for allylic

oxygenated compounds, and the temperature dependence of

Fα(X) is therefore assumed to be described by Fα(X) =

exp(298 × ln(Fα (298)(X))/T ). The recent study of Kalalian

et al. (2020) reports temperature dependences for the reac-

tions of O3 with cis-pent-2-en-1-ol and pent-1-en-3-ol. In

the former case, the reported value of (E/R)obs = 902 K

is very well described using the above assumption, which

leads to (E/R)calc = 895 K, whereas in the latter case the

observed and calculated values differ by about a factor of 2,

(E/R)obs = 730 K and (E/R)calc = 1590 K. Clearly, further

temperature-dependent data are required for a variety of al-

lylic oxygenated compounds for the method to be fully tested

and refined.

4.2 Unsaturated compounds containing remote

oxygenated substituents

The preferred data include rate coefficients for 22 un-

saturated compounds possessing remote oxygenated sub-

stituents. In these cases, the oxygenated substituent is as-

sumed to have no effect, and the corresponding alkene or

dialkene rate coefficient, calculated as described in Sect. 3,

is applied unmodified. As shown in Fig. 4, this assumption

provides 298 K values of kcalc that are generally within about

a factor of 2 of the values of kobs, and therefore within the

scatter of the methods when applied to unsubstituted alkenes

and dialkenes.

In the majority of cases, the presence of the remote oxy-

genated group appears to reduce the value of the rate coef-

ficient slightly, compared with that of the generic alkene or

dialkene rate coefficient. In the cases of a series of cis-hex-3-

enyl esters (i.e. cis-CH3CH2CH=CHCH2CH2OC(=O)R) the

rate coefficient is reported to depend systematically on the

size of the remote R group, rather than displaying a con-

sistent influence of the -OC(=O)- substructure itself (Zhang

et al., 2018). Within this series, the rate coefficient for the

largest compound (with R = n-C3H7) agrees well with the

reference rate coefficient, whereas that for the smallest (with

R = H) is about a factor of 3 lower than the reference rate co-

efficient. Clearly, further information is required for unsatu-

rated compounds possessing remote oxygenated substituents

before refined estimation methods can be developed that take

account of this type of effect.

The preferred data include a rate coefficient for methyl

chavicol (1-prop-2-enyl-4-methoxy-benzene), which con-

tains a remote methoxy group as part of a methoxyphenyl

substituent at the carbon atom α to the alkene double bond.

The rate coefficient, reported by Gai et al. (2013), is well de-

scribed by the generic rate coefficient kA1O3 (Table 1). This

suggests that the aromatic substituent at the α carbon atom

has no effect on the rate coefficient. However, further data

on alk-2-enyl substituted aromatic compounds are ideally re-

quired to confirm this.

4.3 Vinylic oxygenated compounds

When the oxygenated group (including -C(=O)H, -C(=O)-

and -C(=O)O-) is a substituent of the C=C group itself (i.e.

vinylic oxygenates), the data indicate that the rate coeffi-

cients are much less sensitive to the presence of other alkyl

groups attached to the C=C group (and in some cases actu-

ally decrease upon additional substitution). In contrast, the

data for some classes clearly show a greater influence of sub-

stituent size. It is therefore not possible to treat these com-

pounds using modifications to the SAR methods presented

for alkenes in Sect. 3, and it is necessary to assign generic

rate coefficients for addition of O3 to a series of vinylic

oxygenate structures. Three categories of vinylic oxygenate

structure are considered, namely vinyl aldehydes and ketones

(Table 6), vinyl esters and acids (Table 7) and vinyl ethers

(Table 8).

The influence of substituent group size is clearly appar-

ent in the data for vinyl aldehydes and ketones, vinyl ethers

and alk-1-enoic acid alkyl esters, for example as discussed

by Ren et al. (2019) for the esters. Accordingly, the follow-

Atmos. Chem. Phys., 20, 12921–12937, 2020 https://doi.org/10.5194/acp-20-12921-2020



M. E. Jenkin et al.: Rate coefficients for reactions of O3 with unsaturated organic compounds 12929

Figure 3. Scatter plot of observed and calculated values of k at 298 K for the reactions of O3 with allylic oxygenated compounds possessing

the groups shown (see Sect. 4.1). The broken lines show the factor-of-2 range.

Figure 4. Scatter plot of observed and calculated values of k at 298 K for the reactions of O3 with oxygenates containing remote oxygenated

groups as shown (see Sect. 4.2). The broken lines show the factor-of-2 range.

ing expression is used to describe the 298 K data,

kcalc = k◦
298 K × [1 + 6(αs(ni − 1))], (5)

where k◦
298 K and αs are constants. ni is the number of

carbon atoms in the ith substituent group, where each rel-

evant substituent group is represented by “R” in the struc-

tures shown in Tables 6–8. k◦
298 K therefore quantifies the

rate coefficient when each R group in the given structure is

CH3, and αs × k◦
298 K is the incremental increase for each

additional carbon in any substituent. As defined, therefore,

the same incremental increase is assumed to apply to each R

group in the given structure, although the trends in the pre-

ferred data are generally based on information for particular

R groups. Additional data are therefore required to test this
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Table 6. Reference rate coefficients for O3 addition to acyclic vinyl aldehyde and ketone structures.a

Oxygenate structure Parameter k◦
298 K Comment

10−17 cm3 molecule−1 s−1

Enals

CH2=C(R)C(=O)H kVC1O3 0.12 b

CHR=CHC(=O)H kVC2O3 0.14 c

CR2=CHC(=O)H kVC3O3 0.18 d

CHR=C(R)C(=O)H

CR2=C(R)C(=O)H

kVC4O3 0.57 e

Enones

CH2=CHC(=O)R kVC5O3 0.52 f

CH2=C(R)C(=O)R kVC6O3 1.2 g

CHR=CHC(=O)R

CHR=C(R)C(=O)R

kVC7O3 3.9 h

CR2=CHC(=O)R

[CR2=C(R)C(=O)R]

kVC8O3 0.83 i

Enediones and enonals

-C(=O)C(-)=C(-)C(=O)-

(unspecified group can be R or H)

kVC9O3 0.5 j

a Determined from data for the compound or sets of compounds identified in subsequent comments. Rate coefficients are

also default values for related compounds possessing other remote oxygenated substituents. The values of k◦
298 K should be

used in Eq. (5), with the globally optimized value of αS = 0.19.
b Based on preferred data for methacrolein.
c Based on data for trans-but-2-enal, trans-pent-2-enal, trans-hex-2-enal, trans-hept-2-enal, trans-oct-2-enal and

trans-non-2-enal.
d Based on data for 3-methyl-2-butenal.
e Based on data for trans-2-methyl but-2-enal and 2-methyl pent-2-enal.
f Based on data for methyl vinyl ketone and pent-1-en-3-one.
g Based on data for 3-methyl-3-buten-2-one.
h Based on data for pent-3-en-2-one, hex-4-en-3-one and 3-methyl-pent-3-en-2-one.
i Based on data for 4-methyl-pent-3-en-2-one. Also inferred to apply to CR2=C(R)C(=O)R.
j Based on data for 4-oxo-pent-2-enal and cis- and trans-3-hexen-2,5-dione. Value assumed to apply to all corresponding

vinylic keto-aldehydes, dialdehydes and diketones, except for the unique case when all unspecified groups are H, i.e.

butenedial.

assumption. It was also found that there was only marginal

benefit in using independent values of αs for the different

vinylic oxygenate categories, based on the data currently

available. A single category-independent value of αs = 0.19

was therefore optimized for simplicity. The calculated and

observed rate coefficients are compared on the scatter plot in

Fig. 5.

There is only limited information available on the temper-

ature dependences of these reactions. Where data are avail-

able (e.g. for methacrolein and methyl vinyl ketone), the

data suggest that the temperature dependence can reason-

ably be represented by k = A × exp(−(E/R)/T ), with A =

10−15 cm3 molecule−1 s−1 and E/R = 298 × ln(A/k298 K),

and this approach is adopted in the present work.

There are very limited data for conjugated dialkenes con-

taining vinylic oxygenated substituents and for cyclic vinylic

oxygenates, and it is not possible to propose SAR methods

for most oxygenated groups at the present time. The data

include rate coefficients for some relevant conjugated di-

enals/dienones and cyclic vinyl ketones (hexa-2,4-diendial,

cyclohex-2-en-1-one, β-ionone and acetyl-cedrene). In con-

trast to the compounds discussed above, the rate coefficients

for these species are all reasonably well described by apply-

ing the appropriate conjugated dialkene or alkene rate coef-

ficient determined by the methods presented in Sect. 3, re-

duced by a factor of 50 for each alkyl group replaced by a

-C(=O)H or -C(=O)- group. This assumption is provision-

ally applied in the current work, although further data are

clearly required. There are also limited data for some furans

and dihydrofurans. The rate coefficients for these species are

influenced by the compounds being aromatic (in the cases

of the furans) and also by ring strain effects, and it is dif-

ficult to extend the methods developed here for unsaturated

ethers to cover these species. The methods presented here are

therefore not applicable to heterocyclic compounds with en-

docyclic double bonds, such as furans and dihydrofurans.

There are no data for compounds containing a number

of vinylic oxygenated functional groups (e.g. -ONO2 and

-OOH), although such compounds are not expected to be

prevalent in atmospheric chemistry. Data for the reactions of
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Table 7. Reference rate coefficients for O3 addition to acyclic vinylic esters and acidsa.

Oxygenate structure Parameter k◦
298 K Comment

10−17 cm3 molecule−1 s−1

Alk-1-enoic alkyl esters

ROC(=O)CH=CH2 kVE1O3 0.15 b

ROC(=O)C(R)=CH2

ROC(=O)CH=CHR

ROC(=O)CH=CR2

[ROC(=O)C(R)=CHR]

[ROC(=O)C(R)=CR2]

kVE2O3 0.65 c

Alkanoic alk-1-enyl esters

RC(=O)OCH=CH2

RC(=O)OCH=CR2

[RC(=O)OCH=CHR]

kVE3O3 0.32 d

RC(=O)OC(R)=CH2

[RC(=O)OC(R)=CHR]

[RC(=O)OC(R)=CR2]

kVE4O3 0.054 e

Alk-1-enoic acids

CH2=C(R)C(=O)OH

CHR=CHC(=O)OH

[CHR=C(R)C(=O)OH]

[CR2=C(R)C(=O)OH]

kVA1O3 0.23 f

a Determined from data for the compound or sets of compounds identified in subsequent comments. Rate coefficients

are also default values for related compounds possessing other remote oxygenated substituents. Data for

peroxymethacryloyl nitrate (MPAN) suggest that parameters for alk-1-enoic alkyl esters can reasonably be applied to

corresponding unsaturated PANs and, by inference, peracids. The values of k◦
298 K should be used in Eq. (5), with the

globally optimized value of αS = 0.19.
b Based on preferred data for methyl and n-butyl acrylate.
c Based on data for methyl, ethyl, n-propyl, i-propyl, n-butyl and i-butyl methacrylate, ethyl crotonate and ethyl

3,3-dimethyl acrylate. Also inferred to apply to ROC(=O)C(R)=CHR and ROC(=O)C(R)=CR2.
d Based on data for vinyl acetate, vinyl propionate and 2-methylpropenyl acetate. Also inferred to apply to

RC(=O)OCH=CHR.
e Based on data for i-propenyl acetate. Also inferred to apply to RC(=O)OC(R)=CHR and RC(=O)OC(R)=CR2.
f Based on data for methacrylic acid and trans-pent-2-enoic acid. Also inferred to apply to bracketed structures shown.

O3 with vinylic alcohols are very limited, because kinetics

studies tend to be complicated by keto–enol tautomerism.

A recent theoretical study of the reaction of O3 with 4-

hydroxy-pent-3-en-2-one (Ji et al., 2020), the enolic tautomer

of pentane-2,4-dione (acetyl acetone), suggests that the pres-

ence of the hydroxy group has a limited effect, the reported

rate coefficient at 298 K (2.4 × 10−17 cm3 molecule−1 s−1)

being comparable with kVC7O3. However, it is noted that this

is more than an order of magnitude greater than the labora-

tory determination of Zhou et al. (2008) for the reaction of

O3 with the tautomeric mixture of pentane-2,4-dione and 4-

hydroxy-pent-3-en-2-one. Further information is clearly re-

quired to allow the effects of vinylic hydroxy groups to be

defined with confidence. Until then, they are provisionally

assumed to have the same influence as vinylic H atoms in the

present work.

4.4 Combinations of groups

Data for compounds containing two different vinylic oxy-

genated substituents listed in Tables 6–8 are limited to

4-methoxy-but-3-ene-2-one. This therefore falls into both

of the CHR=CHC(=O)R and ROCH=CHR generic struc-

ture categories, and the rate coefficients for these cate-

gories, kVC7O3 and kVO3O3, differ by an order of magnitude.

The rate coefficient for 4-methoxy-but-3-ene-2-one (1.3 ×

10−17 cm3 molecule−1 s−1) is actually a factor of three lower

than that for the less reactive category (kVC7O3). Based on

this, it is tentatively suggested that the estimated rate coef-

ficient for compounds containing two different vinylic oxy-

genated substituents should be based on the less reactive cat-

egory.

Data for compounds containing both vinylic and allylic

oxygenated groups are limited to 2-methyl-4-nitrooxy-cis-2-

buten-1-al, which contains a vinyl -C(=O)H group and an

allyl -ONO2 group. In this case, the rate coefficient (4.4 ×
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Table 8. Reference rate coefficients for O3 addition to vinylic ethersa.

Oxygenate structure Parameter k◦
298 K Comment

10−17 cm3 molecule−1 s−1

ROCH=CH2 kVO1O3 17 b

ROC(R)=CH2

[ROC(R)=CR2]

kVO2O3 1.3 c

ROCH=CHR

[ROCH=CR2]

kVO3O3 42 d

(RO)2C=C<

[ROC(-)=C(-)OR]

(unspecified groups can be R or H)

kVO4O3 48 e

a Determined from data for the compound or sets of compounds identified in subsequent comments. Rate coefficients are

also default values for related compounds possessing other remote oxygenated substituents. The values of k◦
298 K should be

used in Eq. (5), with the globally optimized value of αS = 0.19.
b Based on preferred data for ethyl, n-propyl, n-butyl and i-butyl vinyl ether. Also consistent with data for ethylene glycol

vinyl ether and ethylene glycol divinyl ether, but underestimates rate coefficient for t-butyl vinyl ether and overestimates

rate coefficient for diethylene glycol divinyl ether.
c Based on preferred data for 2-methoxypropene and 2-ethoxypropene.
d Approximately based on lower-limit rate coefficient for ethyl n-propenyl ether. Also inferred to apply to bracketed

structures shown.
e Based on data for 1,1-dimethoxyethene and assumed to apply to all other 1,1- and 1,2-dialkoxyalkenes.

Figure 5. Scatter plot of observed and calculated values of k at 298 K for the reactions of O3 with vinylic oxygenated compounds (see

Sect. 4.3). The broken lines show the factor-of-2 range.

10−18 cm3 molecule−1 s−1) is in reasonable agreement with

that of the relevant vinylic category, kVC4O3 (Table 6), sug-

gesting that the allyl -ONO2 group has almost no additional

deactivating effect in this case. This is consistent with the rel-

ative insensitivity of the vinylic rate coefficients to the pres-

ence of additional substituents, and it is therefore tentatively

suggested that the appropriate rate coefficient in Tables 6–8

can be applied, with no additional effect from an allylic sub-

stituent in relevant cases (i.e. the factors in Table 2 are only

applied with rate coefficients derived from those shown in

Tables 1 and 4).

5 Initial products and branching ratios

It is well established that the addition of O3 to a C=C

bond leads to initial formation of a primary ozonide (POZ),
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or 1,2,3-trioxolane product (e.g. Calvert et al., 2000; John-

son and Marston, 2008). In compounds with multiple C=C

bonds, the SAR methods developed here define kcalc in terms

of a summation of the various alkene and/or conjugated di-

alkene structures within the poly-unsaturated compound, and

therefore also provide the basis for estimating branching ra-

tios for the formation of the various isomeric POZs (e.g. see

calculations B4, B5 and C2 in the Supplement). Using β-

ocimene as an example, the present SARs provide a value

of kcalc = kA5O3 + kD4O3 = 5.5 × 10−16 cm3 molecule−1 s−1

at 298 K, which agrees well with the preferred value of

kobs = 5.1×10−16 cm3 molecule−1 s−1. The component rate

coefficients also indicate that the reaction is expected to oc-

cur predominantly (85 %) at the isolated C=C bond, lead-

ing to the formation of POZ1, as shown in the schematic

in Fig. 6. This conclusion is also supported by comparison

of kobs with that reported for the reaction of O3 with the β-

ocimene oxidation product 4-methyl-hexa-3,5-dienal, which

retains the conjugated dialkene structure (Baker et al., 2004).

The addition of O3 to conjugated dialkene structures

leads to the formation of either of two primary ozonides,

as shown in Fig. 6 for the example of the minor chan-

nel of β-ocimene ozonolysis (POZ2 and POZ3). In the

cases of symmetrically substituted conjugated dialkene

structures (i.e. CH2=C(R)C(R)=CH2, CHR=CHCH=CHR,

CR2=CHCH=CR2 and CHR=C(R)C(R)=CHR, where “R”

represents any alkyl group or remotely substituted oxy-

genated group) it is reasonable to assume that the addition

of O3 occurs equally at the two possible sites. There has only

been limited information reported on the products of the re-

actions of O3 with unsymmetrically substituted conjugated

dialkenes. Most of this information relates to the reaction

of O3 with isoprene (CH2=C(CH3)CH=CH2), but with se-

lected product yields reported for subsequently formed car-

bonyl compounds in a few other cases (Lewin et al., 2001).

In the case of isoprene, product information indicates that

the addition of O3 occurs significantly at both sites, but with

about 60 % at the less substituted -CH=CH2 bond (e.g. As-

chmann and Atkinson, 1994; Nguyen et al., 2016), and the

same branching ratio can therefore reasonably be assigned

to CH2=C(R)CH=CH2 structures in general. The informa-

tion for other conjugated dialkenes also suggests preferen-

tial addition of O3 at the less substituted C=C bond (Lewin

et al., 2001; Mackenzie-Rae et al., 2016). On this basis, it

is tentatively assumed that 60 % of addition occurs at a less

substituted C=C that contains one fewer alkyl substituents

(e.g. as in CH2=CHCH=CHR or CHR=CHC(R)=CHR),

70 % at a less substituted C=C bond that contains two

fewer alkyl substituents (e.g. as in CH2=CHC(R)=CHR or

CHR=CHC(R)=CR2) and 80 % at a less substituted C=C

bond that contains three fewer alkyl substituents (i.e. as in

CH2=CHC(R)=CR2 alone). Clearly, further information is

required to allow these addition ratios to be assigned with

greater certainty. In the absence of reported mechanistic data,

the same rules are also applied to conjugated dialkene struc-

tures with vinylic or allylic oxygenated groups.

6 Conclusions

Updated and extended SAR methods have been developed to

estimate rate coefficients for the reactions of O3 with unsatu-

rated organic species. The group contribution methods were

optimized using a database including a set of preferred rate

coefficients for 221 species. The overall performance of the

SARs in determining log k298 K is now summarized.

The distribution of errors (log kcalc/kobs), the root-mean-

squared error (RMSE), the mean absolute error (MAE) and

the mean bias error (MBE) were examined to assess the over-

all reliability of the SAR. The RMSE, MAE and MBE are

here defined as

RMSE =

√

√

√

√

1

n

n
∑

i=1

(logkcalc − logkobs)
2, (6)

MAE =
1

n

n
∑

i=1

|logkcalc − logkobs| , (7)

MBE =
1

n

n
∑

i=1

(logkcalc − logkobs) , (8)

where n is the number of species in the dataset. A total of

198 of the 221 species in the database contributed to the

statistical analysis. Six species could not be included, be-

cause only upper- or lower-limit recommendations are avail-

able. In addition, the SAR methods do not currently include

styrenes, heterocyclic species and conjugated poly-alkenes

(11 species), and the smallest species in some homologous

series (i.e. ethene, buta-1,3-diene, acrolein, butenedial and

acrylic acid) are not covered by the SAR categories because

the double bonds do not contain (additional) organic sub-

stituents (see Sects. 3 and 4). Finally, because of the factor-

of-60 difference between kcalc and kobs, 3,4-diethylhex-2-ene

was also excluded from the statistical analysis as an outlier

(see Sect. 3.1). However, it is emphasized that there is no

firm basis for believing that the reported rate coefficient for

3,4-diethylhex-2-ene (Grosjean and Grosjean, 1996) is any

less reliable than many other rate coefficients in the database.

Given the substantial disagreement between kcalc and kobs,

confirmatory measurements of that rate coefficient, and data

for other similar branched alkenes, would clearly be valuable

to help test and refine the methods presented here.

Figure 7 summarizes the statistics for the full set of 198

species, for acyclic and cyclic species collectively, and for

various alkene and unsaturated oxygenate subsets. With the

exception of the poly-alkene and remotely substituted oxy-

genate subsets, the calculated log k298 K for all categories

shows no significant bias, with MBE at or below 0.06 log

units and with median values of the error distributions close
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Figure 6. Schematic of the concerted addition of O3 to β-ocimene to form primary ozonides (POZs), showing the calculated contributions

of the different pathways at 298 K, based on the reported estimation methods (see Sect. 5).

Figure 7. Root-mean-square error (RMSE), mean absolute error (MAE), mean bias error (MBE) and box plot for the error distribution in the

estimated log k298 K values for the full set and subsets of the unsaturated species in the database. The bottom and the top of the boxes are the

25th (Q1) and 75th percentiles (Q3); the black band is the median value. The whiskers extend to the most extreme data point, which is no

more than 1.5× (Q3–Q1) from the box. The black dotted lines correspond to agreement within a factor 2.

to 0. Overall, the SAR methods overestimate k298 K for poly-

alkenes and remotely substituted oxygenates by a factor of

about 1.5. This is likely due to a number of contributory fac-

tors that are not fully accounted for in the SAR methods,

including effects of remote substituents on double bond reac-

tivity (e.g. see Sect. 4.2) and possible systematic ring strain

effects in cyclic poly-alkenes that are incompatible with the

factors derived from simpler compounds (see Sects. 3.2 and

3.4).
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The RMSE for the various alkene and unsaturated oxy-

genate subsets covers the range from 0.11 to 0.27 log units;

i.e. the relative errors for the calculated k298 K lie in the range

29–86 %. Of these, the poly-alkene and remotely substituted

oxygenate subsets again have values towards the high end

of the range (0.27 and 0.23, respectively). The RMSE for

the mono-alkene subset is also elevated (0.26), this being

mainly due to the influence of polycyclic species on the over-

all statistics. Accordingly, the RMSE of cyclic species col-

lectively (0.34) is substantially higher than that for acyclic

species (0.15), corresponding to relative errors for the cal-

culated k298 K of about 120 % and 40 %, respectively. The

large errors for cyclic species result from the difficulties in

accounting fully for ring strain and steric effects in poly-

cyclic alkenes and cyclic poly-alkenes, as also illustrated in

Fig. 2. Finally, for the full database, the SARs give fairly re-

liable k298K estimates, with a MAE of 0.13 and a RMSE of

0.21, corresponding to an overall agreement of the calculated

k298K within about 60 %. Although this level of agreement is

considered reasonable, it is noted that the methods generally

do not perform as well as those for the reactions of OH with

alkenes and unsaturated organic oxygenates (Jenkin et al.,

2018a). This may be explained by the O3 reaction being a

concerted process, which is more influenced by orientational

effects, ring strain and steric hindrance than the OH reac-

tion (e.g. see Johnson et al., 2000), and therefore less easy

to represent with a practical SAR. As discussed in Sects. 3

and 4, and highlighted by Vereecken et al. (2018), additional

kinetics studies would be highly valuable for some classes of

alkene and unsaturated oxygenate to help the SAR methods

to be further assessed and refined, including data for multi-

functional oxygenated species in particular.
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