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Control Design and Small-Signal Stability Analysis of Inverter-Based Microgrids

with Inherent Current Limitation under Extreme Load Conditions⋆
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Abstract

Α novel droop controller that ensures a desired inverter current limitation and guarantees the stable operation of inverter-
based microgrids under extreme load conditions, is proposed in this paper. Opposed to existing dq framework-based
droop controllers that align the output voltage on d axis, here the inverter current is aligned on d axis in order to achieve
two main goals: i) limitation of the RMS value of each inverter current during transients, without a need for saturation
units that guarantee only steady-state limitation and require adaptation techniques for adjusting their limits and ii) a
rigorous proof of closed-loop system stability for the entire microgrid. In particular, the proposed approach significantly
simplifies the stability analysis of the microgrid, since it can be investigated through a Jacobian matrix of reduced size.
Simulation results are given to highlight the superiority of the proposed controller when compared to a conventional
droop controller under extreme load conditions, while experimental validation in a lab-scale microgrid is also provided.

Keywords: Nonlinear control systems, droop control, microgrid, small-signal stability analysis, current-limiting
control, inverters

1. Introduction

The increasing penetration of distributed energy re-
sources (DERs) in modern power systems has increased
the interest in investigating the operation of microgrids
in order to locally utilize the DER capabilities [1]. Since
the majority of DERs use inverters for their integration
to the power grid, the inverter-based microgrids concept
has emerged, where crucial issues such as the proportional
power sharing between DER units, the voltage and fre-
quency regulation and the converter protection are re-
quired to be addressed through the control design [2, 3].

Among other control schemes, droop control can guar-
antee regulation of the load voltage and frequency close
to their nominal values, without requiring any commu-
nication units, while proportional power sharing is also
preserved when the inverters have the same per unit out-
put impedance [3, 4, 5]. Hence, droop control has been
the most widely used technique in inverter-based micro-
grids. Different droop controllers have been proposed in
the literature in order to improve the system performance
and stability [4, 6]. In most of the cases, the Q − V and
P − f droop relations are considered, as they are defined
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by CERTS [7, 8], to mimic the operation of synchronous
generators [9]. However, different droop relations are re-
quired when the output impedance is not inductive, while,
recently, universal droop schemes have been proposed to
handle different types of output impedance [4, 10].

Apart from the voltage and frequency regulation, closed-
loop stability of inverter-based microgrids is of great im-
portance as well. Analytical stability conditions have been
presented in [11, 12], however several assumptions have
been taken into consideration such as small or zero power
angles, lossless lines or a time-scale separation between
the inverters and the lines. Thus, to investigate stabil-
ity around an equilibrium point, a root-locus analysis of
the linearized system (small-signal model) is usually per-
formed [3, 4, 13, 14].

The majority of works that deal with droop control
and closed-loop system stability of inverter-based micro-
grids, examine the operation under normal load condi-
tions. However, overload or faulty conditions occur very
often and should be considered in power system studies
[15, 16]. In the same context, due to the strict techni-
cal limitation in the maximum current of each inverter,
current-limiting techniques should be embedded through
the control design of every inverter-interfaced DER [17, 18,
19, 20]. In conventional cascaded control schemes, the cur-
rent limitation is accomplished through saturation units
in the inner control loops, which may suffer from integra-
tor wind-up and eventually lead to instability [21], while
adaptive saturation is required to allow maximum power

Preprint submitted to Elsevier
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Figure 1: Inverter connected to a generic microgrid

utilization during faults [22, 23]. Another approach con-
siders switching to a different current-limiting controller
during faults. However, such an action can still suffer
from integrator wind-up or force the controller to latch-up
[21, 24, 25]. Moreover, these approaches guarantee a cur-
rent limitation only at the steady-state. In order to over-
come these undesirable phenomena, the virtual impedance
or resistance concept offers a promising solution [21, 26].
To this end, a current-limiting droop control concept has
been proposed in [25] for single-phase inverters, where
no switching actions or saturated integrators are used to
achieve the current limitation. However, this work consid-
ers the grid-connected operation of a single-phase inverter
and the same control approach can not be directly applied
to inverter-based microgrids.

In this paper, a new droop control approach that guar-
antees an inverter current limitation during transients and
ensures stability for an entire inverter-based microgrid, is
proposed. This is accomplished by aligning the inverter
current on the d axis of the local (inverter) dq framework,
in contrast to conventional droop control approaches that
align the output voltage on the d axis [13]. It is analyti-
cally proven that the proposed control structure simplifies
the Jacobian matrix, the eigenvalues of which should be
computed in order to investigate the stability properties
of an inverter-based microgrid. Hence, compared to con-
ventional control techniques of droop-controlled inverters
[22, 27], the novelties that the proposed controller brings
include: 1) an inherent protection mechanism under ex-
treme load conditions, which guarantees via the control
design, a limited inverter current injection, even during
transients, 2) limitation of the RMS value of the current
below a desired value without requiring an adaptive limita-
tion technique and 3) a Jacobian matrix of reduced size to
study the stability properties of inverter-based microgrids
that adopt the proposed control scheme. The superiority
of the proposed controller is shown through comparative
simulation results, while it is further validated through ex-
perimental results in a lab-scale microgrid.

2. Modeling and Motivation

2.1. Microgrid modeling

A generic inverter-dominated microgrid is considered in
this paper, consisting of n three-phase inverters connected
to the microgrid buses through an LC filter and an RL

line, as depicted in Fig. 1. The power system components
and variables are defined as follows: the inductance of the
filter is denoted as Li with its parasitic resistance being ri,
the filter capacitor is denoted as Ci, where i indicates the
number of the inverter and the corresponding bus, with
i ∈ [1, . . . , n] . The line inductance and resistance are rep-
resented as Lli and rli, respectively. The inverter voltage
in the natural reference frame is defined as viabc, the in-
verter current is given as iiabc, while the capacitor voltage,
bus voltage and line current are represented as vCiabc, v

bus
iabc

and iLiabc, respectively. Each inverter can measure its
inverter current iiabc and its point of common coupling
(PCC) voltage voiabc. As it is clear from Fig. 1, when the
inverter switches are open voiabc = vbusiabc, while when the
switches close, voiabc = vCiabc. Following the synchronous
reference frame theory [28], the dynamics of each inverter
can be described in the synchronously rotating dq refer-
ence frame using θi as the angle of each inverter. Since in
an inverter-based microgrid each individual inverter may
have its own angle and hence, its own dq frame alignment,
the local dq reference frame quantities (e.g. fdq) of each
DER with angular frequency ωi, can be transformed into
the global DQ reference frame quantities (e.g. fDQ) with
angular frequency ωcom, through the transformation

fDQ =

[

cos δi − sin δi
sin δi cos δi

]

fdq,

where δi is the rotational angle difference between the lo-
cal reference frame of each DER and the global reference
frame, given by

δ̇i = ωi − ωcom. (1)

To facilitate the modeling, the angular frequency of one of
the inverters can be selected as the global reference frame
[13]. Following the above methodology, the considered mi-
crogrid can be modeled in the synchronous reference frame,
where the dynamic equations for any of the n three-phase
inverters of the microgrid are obtained as

Li

diid
dt

= vid − vCid − riiid + ωiLiiiq (2)

Li

diiq
dt

= viq − vCiq − riiiq − ωiLiiid, (3)

where the inverter voltage components vid and viq repre-
sent the control inputs. Note that the inverter real and
reactive powers Pi and Qi can be calculated from Pi =
1.5 (vCidiid + vCiqiiq) andQi = 1.5 (vCiqiid − vCidiiq) . For
the filter capacitors and each line that connects each PCC
with the microgrid bus, the dynamics at the global refer-
ence frame rotating with ωcom [13, 29], take the form

Ci

dvCiD

dt
= iiD − iLiD + ωcomCivCiQ (4)

Ci

dvCiQ

dt
= iiQ − iLiQ − ωcomCivCiD (5)

Lli

diLiD

dt
= vCiD − vbusiD − rliiLiD + ωcomLliiLiQ (6)

Lli

diLiQ

dt
= vCiQ − vbusiQ − rliiLiQ − ωcomLliiLiD. (7)



2.2. Motivation

Droop control is widely used in inverter-based micro-
grids to enhance load voltage and frequency regulation
and achieve proportional power sharing between DERs.
However, the safe operation of microgrids under extreme
load conditions should be also considered in the control
design. In [25], a droop controller that offers an inherent
current limitation for grid-connected inverter applications
has been proposed. To accomplish this, the bounded inte-
gral controller (BIC) structure from [30] was employed to
guarantee the boundedness of the control states. Never-
theless, there is a challenge in applying a rigorous current-
limiting strategy in inverter-based microgrids, where the
conventional approaches may lead to undesirable perfor-
mance [24]. Furthermore, the microgrid stability analysis
represents a far more challenging task than stability of in-
verters connected to a stiff grid and should be investigated
[3, 28]. In the sequel of this paper, a novel current-limiting
design of droop controllers will be proposed to facilitate the
microgrid operation under extreme load conditions and en-
sure system stability.

3. The Proposed Controller: Control design and

current-limiting property

3.1. Control Design

In order to accomplish the desired tasks highlighted in
section 2.2, the proposed controller is suitably designed to
align the inverter current on the d axis of each inverter lo-
cal dq framework, to guarantee an inherent current limita-
tion. To this end, the inverter voltage (which is the control
input) consists of two parts: i) a voltage feed-forward term
implemented in the abc reference frame and ii) a dynamic
control part implemented in the dq reference frame. The
proposed controller takes the form

viabc = voiabc + viabc

where viabc is the dq to abc transformation of the reference
voltages

v̄id = Ei − rviiid − ωiLiiiq (8)

v̄iq = −rviiiq + ωiLiiid, (9)

where Ei is a control state representing a virtual voltage,
rvi is a constant virtual resistance and ωiLiiiq and ωiLiiid
are decoupling terms. The state Ei changes according to
the nonlinear expressions

Ėi = cifi(Pi, Vi)E
2
qi (10)

Ėqi=−

ciEiEqi

E2
maxi

fi(Pi, Vi)−ki

(

E2
i

E2
mi

+ E
2
qi − 1

)

Eqi (11)

proposed in [30] while Eqi is an extra control state, ci, ki
are positive constant gains and the control states initial
conditions are defined as Ei0 = 0, Eqi0 = 1. The P ∼ V,
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Figure 2: The proposed controller implementation

Q ∽ −ω droop expressions of the universal droop con-
trol scheme in [4] are considered here to provide robust-
ness to different kinds of output impedance (i.e. resistive
or capacitive). In the proposed controller, the function
fi(Pi, Vi) inherits the real power droop control character-
istics through the virtual voltage dynamics and takes the
form

fi(Pi, Vi) = E2
rms − V 2

i − npiPi. (12)

The reactive power droop control is statically applied through
the inverter local frequency ωi with

ωi = ω∗ +mqiQi, (13)

while npi, mqi represent the real power and reactive power
droop coefficients, respectively, Vi is the RMS PCC voltage
and Erms is the nominal RMS load voltage. The proposed
controller is depicted in Fig. 2. The BIC structure from
[30] that was adopted for the controller dynamics (10)-
(11), guarantees that the controller states Ei, Eqi will start

and remain on the ellipse W =

{

Ei, Eqi ∈ R :
E2
i

E2
mi

+ E2
qi =1

}

,

based on the given initial conditions. Thus it holds that
Ei ∈ [−Emi, Emi] , with Emi > 0 being the absolute max-
imum value of the control state, which is defined by the
control operator and Eqi ∈ [0, 1] . For more details on the
boundedness of the states Ei, Eqi, the reader is referred
to [30]. This boundedness feature is essential for the de-
sired inverter current-limiting property of any three-phase
inverter connected to a microgrid, as it will be proven
through the closed-loop system analysis in the sequel.

3.2. Current-limiting property

By applying the proposed controller (8)-(9) into the
inverter current dynamics (2)-(3), and considering that the
switches are closed, i.e. voiabc = vCiabc, the closed-loop
system dynamics take the form

Li

diid
dt

= Ei − (rvi + ri) iid (14)

Li

diiq
dt

= − (rvi + ri) iiq. (15)

Note that at the steady state it holds iide = Ei
rvi+ri

and
iiqe = 0, while from (15), it is clear that if iiq (0) = 0, then



iiq (t) = 0, ∀t ≥ 0. Now consider as Lyapunov function
candidate the function

V =
1

2
Lii

2
id +

1

2
Lii

2
iq.

Its time derivative takes the form

V̇ =
(

Eiiid − (rvi + ri) i
2
id

)

− (rvi + ri) i
2
iq ≤

[Ei 0]

[

iid
iiq

]

− (rvi + ri)
(

i2id + i2iq
)

≤

− (rvi + ri) ‖Ii‖22 +
∥

∥Ei

∥

∥

2
‖Ii‖2 ,

where Ii = [iid iiq]
T
and Ei = [Ei 0]

T
. Furthermore taking

into account the dq transformation where

‖Ii‖2 =
√

i2id + i2iq =
√
2Iirms

∥

∥Ei

∥

∥

2
=

√

E2
i = |Ei|

and given that |Ei| ≤ Emi from the BIC structure, as
explained in the previous subsection, it follows that

V̇ ≤ −2 (rvi + ri) I
2
irms +

√
2EmiIirms

V̇ ≤ −2riI
2
irms, ∀Iirms ≥

Emi√
2rvi

.

Thus, according to the Theorem 4.18 in [31], there exists
a KL function β so that for any initial condition Iirms (0)
there is a T ≥ 0 such that

Iirms (t) ≤ β (Iirms (0) , t) ∀0 ≤ t ≤ T

Iirms (t) ≤
Emi√
2rvi

∀t ≥ T,

proving that the solution of the RMS inverter current
is uniformly ultimately bounded. Note that if initially
Iirms (0) ≤

Emi√
2rvi

, then T = 0, i.e. it holds true that

Iirms (t) ≤
Emi√
2rvi

, ∀t ≥ 0. (16)

By selecting the controller parameter Emi =
√
2Imax

irmsrvi,
(16) yields

Iirms ≤ Imax
irms, ∀t ≥ 0.

According to the ultimate boundedness analysis, the con-
troller variable Imax

irms can be accordingly selected by the
controller operator in order to ensure an inverter RMS cur-
rent limitation at all times, even during transients. More-
over, since the ultimate bound Imax

irms is a constant and
does not depend on the microgrid conditions, the maxi-
mum available power can be utilized under extreme load
conditions, as required in the latest Grid Codes, without
the need of online adaptation techniques.
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Figure 3: Microgrid under consideration for the small-signal stability
analysis
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4. Small-signal stability analysis of common load

bus inverter-based microgrid

4.1. The case without lines between the PCC and the load

Although, in the previous section, the desired RMS
current limitation was proven for each inverter, the stabil-
ity of the entire inverter-based microgrid is not yet guar-
anteed. This is a crucial problem due to the absence of a
stiff grid to stabilize voltage and frequency [28]. For the
stability analysis section, a common load bus microgrid
will be considered, as depicted in Fig. 3. This microgrid
configuration is commonly considered in power system sta-
bility studies [3, 19, 32], while as highlighted in [32], it
represents a special case of a meshed microgrid. To inves-
tigate stability using the proposed a controller, a simple
case will be initially considered where each inverter is di-
rectly connected to the load bus, i.e. without the lines
shown in Fig. 3. This means that all inverters measure
the same load voltage components in the global reference
frame, i.e. by denoting any two inverters as i and j, it holds
vCiD = vCjD = vD and vCiQ = vCjQ = vQ. Taking into
account the angle difference of each inverter from (1) and
since it is proven in Section 3.2 that iiq = 0, one can rewrite
the power equations as Pi = 1.5(vD cos δi + vQ sin δi)iid
and Qi = 1.5(vQ cos δi−vD sin δi)iid. Since the same RMS
voltage is measured by every inverter, then accurate power



sharing will be achieved for both real and reactive power

at the steady-state. Hence, it holds that
npi
npj

=
Pj
Pi

and
mqi

mqj
=

Qj
Qi

, with
npi
npj

=
mqi

mqj
. Thus, at the steady-state

npiiid (vD cos δi + vQ sin δi) = npjijd (vD cos δj + vQ sin δj)

mqiiid (vQ cos δi − vD sin δi) = mqjijd (vQ cos δj − vD sin δj) ,

which by dividing these two equations and after some ma-
nipulations results to

(

v2D + v2Q

)

sin (δj − δi) = 0. Under the

common assumption that δi, δj ∈
(

−π
2
, π
2

)

[11], it is con-
cluded that δi = δj .

This proof shows that in the absence of lines between
the PCC of each inverter and the common load bus, not
only accurate power sharing is achieved without the need
of hierarchical control structures but also, the rotational
angle differences δi and δj are all the same and hence, by
selecting the angular frequency of one inverter as the global
reference frame, it holds δi = δj = 0 at the steady-state.
This is also graphically explained in Fig. 4. However, since
this represents only a special case, an analysis considering
the entire microgrid with the lines, as depicted in Fig. 3,
will be performed in the next subsection.

4.2. The case with resistive-inductive lines between the PCC

and the load bus
The state vector of the closed-loop system, when lines

are considered between the PCC of each inverter and the
common load (where the angle difference δi can not be ig-
nored), as shown in Fig. 3, becomes x = [i1d...ind E1...En vC1D

...vCnD vC1Q...vCnQ iL1D...iLnDiL1Q...iLnQ δ2...δn Eq1...Eqn i1q ...

inq ]
T , where the load is modeled as constant impedance

load (RL) with the load current denoted as iLabc. More-
over, the angular frequency of the first inverter is selected
as the frequency of the global reference frame, i.e. ω1 =
ωcom. Note that when considering a constant impedance
load, as commonly done in power system studies [13], the
load dynamics take the form

L
diLD

dt
= vD −RiLD + ωcomLiLQ

L
diLQ

dt
= vQ −RiLQ − ωcomLiLD.

For the coupling terms in the system dynamics and the
rotational angle dynamics, the angular frequency of the
global reference frame is selected as the steady-state micro-
grid frequency to simplify the analysis, as in [13, 29]. Con-
sidering an equilibrium point xe with xe = [i1de...indeE1e..

.EnevC1De...vCnDevC1Qe...vCnQeiL1De...iLnDeiL1Qe...iLnQe δ2e...

δne Eq1e...Eqne i1qe...inqe]
T , where |Eie| < Emi and Eqie ∈

(0, 1] , the Jacobian matrix, which is obtained by lineariz-
ing the closed-loop system, takes the form

A =







AT 0 A2

A1 −diag
{

2kiE
2
qie

}

A3

0 0 −diag
{

rvi+ri
Li

}






. (18)

Hence, according to the small-signal analysis, the closed-
loop system will be stable if all the eigenvalues of the ma-
trix AT in (17) have negative real parts, where it holds
κi = (vCiDe cos δie + vCiQe sin δie) , λi = (cos δievCiDe

+sin δievCiQe) and the submatrices of the matrix AT are
given in the Appendix.

Remark 1. It should be highlighted that the dynamics of
the currents iiq have been decoupled under the proposed
control scheme, as it is clear from (18). Hence, the sta-
bility investigation can be performed through a new Jaco-
bian matrix AT which is reduced by n states compared to
conventional SRF-based droop controllers. In the conven-
tional approaches, the voltage vCiq is regulated to zero [13]
and a different timescale for the inner current controller
has to be assumed in order to achieve a similar simplifi-
cation in the Jacobian matrix and decouple the voltage
dynamics. Moreover, it is clear that this simplification
is achieved irrespective to the microgrid topology, which
only affects the matrix AT , hence it holds for a generic
meshed microgrid as well. Thus, with the proposed control
scheme the Jacobian matrix, and concurrently the micro-
grid stability analysis, is significantly simplified, without
considering any timescale separation assumption.

4.3. Identifying the equilibrium point and root-locus anal-

ysis

In order to perform a root-locus analysis, the steady-
state equilibrium point of the entire microgrid needs to be
identified. However, the analytic calculation of the equilib-
rium point is a daunting task when dealing with islanded
microgrids [13, 33] and hence, many papers approximate
the required equilibrium points through time-domain sim-
ulations [33, 34, 35]. Note that an exemplary microgrid
with two inverters will be considered for simplicity but a
similar methodology can be followed for any number of
inverters, since the modeling in the previous subsections
deals with the case of n inverters. Firstly, the first in-
verter’s angular frequency is selected as the global refer-
ence frame. Then, only the values of I1rms and ωcom are
needed to be identified. Thus, keeping in mind that δ1 = 0,
then i1de = i1De =

√
2I1rms and i1qe = i1Qe = 0. Now, the

capacitor voltages of the first inverter can be calculated
from the droop expressions at the steady-state as

vC1Qe =
ωcom − ω∗

1.5mq1i1De

vC1De =
√

2.25n2
p1i

2
1De − v2C1Qe + 2E2

rms − 1.5np1i1De

and the line currents of the first inverter can be obtained
from the steady-state equation of the capacitor dynamics

iLiDe = iiDe + ωcomCivCiQe (19)

iLiQe = iiQe − ωcomCivCiDe (20)

for i ∈ {1, 2}. Following the analysis in [32], the admit-
tance matrix for the setup under consideration in the DQ
framework takes the form









iL1De

iL1Qe

iL2De

iL2Qe









=









G11 −B11 G12 −B12

B11 G11 B12 G12

G12 −B12 G22 −B22

B12 G12 B22 G22

















vC1De

vC1Qe

vC2De

vC2Qe









.

Through the admittance matrix, the values of vC2De, vC2Qe

and iL2De, iL2Qe can be calculated, and at the same time
using the steady-state capacitor equations (19)-(20) of the
second inverter, the inverter currents in the global frame
can be obtained as well. Finally, since it holds that δ2 =



AT =

























−diag
{

rvi+ri
Li

}

diag
{

1
Li

}

0n×2n 0n×2n 0n×(n−1)

−diag
{

cinpiE
2
qie

3
2
κi

}
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acos
(

i2D/
√

i22D + i22Q

)

, the inverter currents of the second

inverter in their local frame can be found as well, while it
holds that Eie = iide (rvi + ri) and Eqie=

√

1− (E2
ie/E

2
mi)

from the BIC analysis. A specific equilibrium point for a
constant RL load can now be finally obtained using the
system parameters given in Table 1. The calculated equi-
librium point is also given in Table 1.

In Fig. 5, the eigenvalues of the closed-loop system,
for the considered equilibrium point, are depicted for con-
troller gains c1 = c2 ranging from 0.02 to 1.2. It is shown
that up to a value of ccritical = 1.02, all the eigenval-
ues have negative real parts and thus, the microgrid is
stable around the considered equilibrium point using the
proposed control approach. Hence, ci can be selected ac-
cording to the root-locus analysis to obtain the desired
transient response and guarantee closed-loop system sta-
bility.

Even though the above stability analysis leads to a
local stability result, as commonly achieved using small-
signal modeling, it is underlined that the boundedness of
the current of any inverter in the microgrid (proven in Sec-
tion 3.2) is guaranteed for the original nonlinear model, in
contrary to the majority of existing microgrid stability ap-
proaches which are restricted to local results only. More-
over, for the considered microgrid topology in Fig. 3, one
can easily show for the original nonlinear system that due
to the current boundedness, the rest of the system states
(capacitor voltages, line currents and load currents) will
remain bounded as well [25].
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Figure 5: Closed-loop system eigenvalues for ci ranging from 0.02 to
1.2

5. Comparison through Simulation Results

5.1. Selection of the benchmark controller

In order to validate the properties of the proposed con-
troller, in this section, it will be compared with a conven-
tional virtual resistance-based droop controller [3]. The
widely used framework with inner voltage and current con-
trol loops will be considered for the conventional control
scheme, with saturation units being applied to the refer-
ence inverter currents for current-limiting purposes, in a
similar way as in [13, 21]. Finally, the selection of the
droop coefficients is carried out according to the formulas
in [13]. The control scheme discussed above is selected as
the benchmark controller for the comparative simulations
of the next subsection, and is depicted in Fig 6.

5.2. Simulation Results

To provide an insight into the performance of the pro-
posed controller, compared to that of the benchmark con-
troller, Matlab/Simulink simulation results are presented
in this subsection. The exemplary case of two inverters
that was used for the root-locus analysis is again con-
sidered, with Inverter #1 having twice the power rat-
ing of Inverter #2. The droop coefficients in the pro-

posed controller can be selected as npi = 0.19
E2
rms

Smaxi
and

mqi = 0.05 ω∗

Smaxi
, in order to allow a maximum of 10%

voltage deviation and 5% frequency deviation. The power
system and controller parameters are given in Table 1.
For both control schemes the same scenario is examined:
Initially both inverters do not feed the load since their
switches are open. At 0.1 s, Inverter #1 is connected to the
constant RL load which initially has the values of R = 25Ω
and L = 40mH, per phase. At 1.5 s, an extra load of
R = 25Ω and L = 40mH per phase is added in parallel
to the initial one. At 3 s, Inverter #2 is connected and
the two inverters share the common load. Finally, at 5 s, a
three-phase short circuit is applied at the load bus, which
is self-cleared after 150ms.

Comparing the response of the two control schemes,
depicted in Fig. 7, one can see that the singe inverter op-
eration is similar for both schemes. However, at the time
when Inverter #2 connects to the microgrid, the transient
is much smoother using the proposed controller while us-
ing the benchmark controller, the Inverter #2 current rises
close to its limit. The small difference in the power val-
ues comes from the fact that the benchmark controller
powers are measured using the line current. When the
three-phase short circuit is applied, using the benchmark



Table 1: Power system parameters, controller parameters and considered equilibrium point for root-locus analysis and comparative simulation
results

Parameters Values Parameters Values

Power system parameters
L1, L2 2.2mH r1, r2 0.5Ω
Ll1 0.028mH Ll2 0.014mH

C1, C2 1µF rl1, rl2 0.04Ω,0.02Ω
R 12.5Ω L 20mH

Erms 220V ω∗ 2π50 rad/s
Imax
1rms 20A Imax

2rms 10A
Smax1 13.2KVA Smax2 6.6KVA

Proposed controller parameters
c1, c2 0.9 rv1, rv2 20Ω

np1, np2 0.69, 1.39 mq1,mq2 0.0012, 0.0024
Benchmark controller parameters

kpi, kii, kpv, kiv 4, 200, 0.3, 12 rv1, rv2 0.7Ω, 1.4Ω
np1, np2 0.0047, 0.0094 mq1,mq2 0.0012, 0.0024

Considered equilibrium point
vC1De, vC1Qe 266.52V,134.08V vC2De, vC2Qe 266.11V,133.99V
i1de, i2de 13.97A,7.18A i1qe, i2qe 0A,0A

iL1De, iL1Qe 14.01A,−0.08A iL2De, iL2Qe 7.22A,0.01A
ωcom 317.50 rad/s δ2e 0.76 o
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Figure 6: The benchmark controller implementation
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Figure 7: Comparative simulation results



Table 2: System parameters for experimental results

Parameters Values Parameters Values

L1 3.5mH L2 5.7mH
Ll1 4.4mH Ll2 1mH
r1 0.4Ω r2 0.8Ω
rl1 0.9Ω rl2 0.4Ω

C1, C2 1µF c1, c2 0.6
Erms 90V ω∗ 2π50 rad/s
Imax
1rms 2A Imax

2rms 1A
k1,k2 1000 rv1, rv2 50Ω, 10Ω

controller, the inverter currents violate their limits during
the transient and reach high values, even if their reference
values are saturated. Moreover, during the steady-state,
the maximum allowed current is not injected since in this
certain example, iiq takes very small values. For this issue
to be solved, an adaptive saturation technique would be
required which, however, further complicates the control
implementation. On the other hand, using the proposed
controller, both RMS inverter currents are driven to their
maximum values without violating this threshold value,
even during the transient. Even if both control schemes
maintain a stable operation, the presented simulation re-
sults verify the superiority of the proposed controller in
terms of its current-limiting capability and the maximum
power utilization under faults.

6. Experimental Validation

Α 90V, 50Hz prototype lab-scale microgrid was built
in order to experimentally verify the proposed controller.
The microgrid consists of two three-phase inverters with
ratings of 540VA for the first inverter (Inverter #1) and
270VA for the second inverter (Inverter #2). The con-
trollers were digitally implemented through a Texas Instru-
ments (TI) F28M379D control card for Inverter #1 and
a dSpace 1104 control card for Inverter #2, with 15 kHz
sampling frequency. Both inverters were connected to a
three-phase resistive load (R) through an LC filter and
a inductive-resistive line, as shown in Fig. 3, while the
system and controller parameters are given in Table 2.

Firstly, Ιnverter #1 is connected to the load, which is
initially R = 100Ω. As it can bee seen in Fig. 8, Ιnverter
#1 regulates its output real power to feed the load, while
regulating the voltage close to its nominal value Erms.
I1rms is also depicted in the same figure. At 44 s, Inverter
#2 is switched on and at 46 s, it starts its synchronization
process by feed-forwarding the PCC voltage. The synchro-
nization process can be clearly depicted in Fig. 9, where at
62ms, the voltage read at the PCC is feed-forwarded at the
inverter capacitors to allow a seamless connection. When
the synchronization has been completed, at 49 s in Fig. 8,
Inverter #2 is smoothly connected to the microgrid. In
Fig. 10 the load voltage under the parallel operation of
the two inverters is shown. Since the rating of Inverter #1
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Figure 8: Initial operation of Inverter #1 and connection of Inverter
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Figure 11: Load change and current-limiting property

is twice the rating of Inverter #2, a 2 : 1 power sharing
is desired through the droop control. As it is illustrated
in Fig. 8, the real powers and RMS currents of the two
inverters are very close to the desired 2 : 1 sharing, where
the small inaccuracies are expected due to the different line
impedance (“line impedance effect”). Note that since the
capacitors of the LC filter have small capacitance and the
load is purely resistive, the reactive powers of both invert-
ers are very close to 0Var and thus, they are not presented
here. Nevertheless, the effectiveness of the proposed con-
troller under reactive power demand has been highlighted
in the simulation results of Section 5.2.

To verify the inherent current-limiting property (that
was analytically proven in Subsection 3.2), in Fig. 11, a
load change from R = 100Ω to R = 25Ω is performed at
49 s, which represents an extreme loading demand condi-
tion. Following to the load change, I1rms and I2rms go very
fast close to their maximum values (2A and 1A, respec-
tively) without violating their limit at any time, even dur-
ing the transient. Since the current provision is not enough
to regulate the load voltage inside the selected 10% droop
percentage, the load voltage drops to 70V. The transient
of the load voltage at the time that the load changes can
be seen in Fig. 12, while iLa is also shown in the same fig-
ure. Note that the load current never exceeds the sum of
the maximum RMS values of the two inverter currents, i.e.
3A, even during the transient. This clearly demonstrates
the current-limiting capability of the proposed controller
for each inverter in the AC microgrid.

7. Conclusions

A new droop controller for inverter-based microgrids
is proposed in this paper to inherently guarantee RMS
inverter current limitation and microgrid stability. The
proposed control scheme aligns the inverter current on the
d axis of the local dq frame in order to rigorously prove
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Figure 12: Load voltage and current transient during load change

the desired current limitation during transients and the
stability of an entire microgrid. In particular, it is shown
that through the proposed controller, the microgrid sta-
bility properties can be investigated through a Jacobian
matrix of reduced size. The proposed control approach is
compared to a conventional droop control scheme under
extreme load conditions through simulation results, while
its effectiveness is also verified experimentally in a proto-
type microgrid.

Future research will focus on the integration of sec-
ondary control schemes into the proposed controller and
the development of tools for investigating global asymp-
totic stability of inverter-based microgrids.
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