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Abstract. Hyperpolarized gas MRI enables visualization of regitumad ventilation with high
spatial resolution. Segmentation of the ventilated lamgquired to calculate clinically relevant
biomarkers. Recent research in deep learning (DL) hasnshmmising results for numerous
segmentation problems. In this work, we evaluate a 3DeWtdNsegment ventilated lung regions
on hyperpolarized gas MRI scarkhe dataset consists @%#3 helium-3 {He) or xenon-129
(*?°Xe) volumetric scans and corresponding expert segmentationsS26 healthy subjects and
patients with a wide range of pathologies. We evaluatgthentation performance for several
DL experimental methods via overlap, distance and errbfam@nd compared them to conven-
tional segmentation methods, namely, spatial fuzzy c-mE&HSM) and K-means clustering.
We observed that training on combiriéte and?®Xe MRI scans outperformed other DL meth-
ods, achieving a meanzSD Dice of 0.958+0.022, averagedboprHausdorff distance of
2.22+2.16mm, Hausdorff 95percentile of 8.53+12.98mm and relative error of 0.08749.
Moreover, no difference in performance was observed beti#®@nand®He scans in the testing
set. Combined training o¥%Ke and®He yielded statistically significant improvements otre
conventional methods (p<0.0001). The DL approach evaluateddpsogiccurate, robust and
rapid segmentations of ventilated lung regions and suatlgsesccludes non-lung regions such
as the airways and noise artifacts and is expectdidiioate the need for, or significantly reduce,
subsequent time-consuming manual editing.

Keywords. Functional lung imagingHyperpolarized gas MRI, Deep learning, Convo-
lutional neural network, Lung segmentation.

1 Introduction

Hyperpolarized gas MRI enables visualization of regional l@mdikation with high
spatial resolutiorfl]. Quantitative biomarkers derived from this modality, incigd
the ventilated defect percentage, provide further insiglidspulmonary pathologies
currently not possible with alternative techniq{®s To facilitate the computation of
such biomarkers, segmentation of ventilated regiotiseofung is requireB].



Conventional approaché&sr hyperpolarized gas MRI ventilation segmentation em-
ploy classical image processing and machine learning tpedsyi such as hierarchical
K-means clusterinff}] and spatial fuzzy c-means (SFCM) with tuned bilatdltatihg
and clusteringb]. However, as these methods are based on voxel ingsresitil thresh-
olding, they provide only semi-automatic segmentationsuels, they are prone to er-
rors that often require significant time to mamyabrrect such as the removal of hon-
ventilated lung voxels and non-lung regions, includingain@ays and artifacts.

Recent research in image segmentation has focused on tifelasp learning (DL)
and has been applied to numerous problems, showing jmgmésults [6, 7]. Convo-
lutional neural networks (CNN) have become the most combionetwork used for
image segmentation, enhanced by the adoption of transfemnigaorgope with limited
datasets [8, 9]. Tustison et al. employed a 2D CNN withNetJarchitecture using 113
hyperpolarized gas MRI scans, obtaining impressivatsef 0]. However, application
of DL ona more extensive database with a broader range of pgitteole required for
clinical adoption.

In this work, we evaluate a 3D volumetric V-Net CltNaccurately, robustly and
rapidly segment ventilated lungs on hyperpolarized gas MRIssgsing a large, di-
verse dataset with both helium?Bi€) and xenon-129{°Xe) scans and corresponding
expert segmentations. We evaluate several DL methodsafbing a neural network
and use a diverse set of evaluation metrics for compaigerthen compare the best
performing DL method to conventional approaches usedyfoerpolarized gas MRI
segmentation. We also investigate the effect of théergas on DL performance.

2 M aterials and M ethods

21 Hyperpolarized gasMRI acquisition

All subjects underwent 3D volumetriele [11] and*?*Xe [12] hyperpolarized gas MRI
with full lung coverage at 1.5T. Flexible quadrature radopfemcy coils were em-
ployed for transmission and reception of MR signals at éweor frequencies dHe
and?®Xe. In-plane (x-y) resolution of scans for both gases 4wasnnv. 2°Xe scans
ranged from 16-34 slices with a mean of 23 slices and $lickness of 10mnHe
scans ranged from 34-56 slices with a mean of 45 slimdslece thickness of 5mm.

2.2 Dataset

The imaging dataset used in this study was collecteospetctively from several clin-

ical observational studies and patients referred foiceli scans. The dataset consisted
of 743 volumetric hyperpolarized gas MRI scans (22890 sliced), aitier*He (248
scans, 11370 slices) &°Xe (495 scans, 11520 slices), from 326 subjects. The slices
are distributed approximately 50:50 betwette and?°Xe. The subjects included
healthy individuals and patients with various pulmonarh@agies and are summa-
rized i Examples ofHe and'?*Xe images for a range of pathologies are
shown i



Table 1. Dataset information and disease breakdown.

Number of scans Hyperpolarized Gas

Healthy 41 129%e

Lung cancer 22 SHe or 12%Xe
Chronic obstructive pulmonary disease (COP 54 3He or 12%Xe
Cystic fibrosis (CF) 223 SHe or 12%Xe
Premature children 50 SHe or 12%Xe
Interstitial lung disease (ILD)* 127 SHe or'?Xe
Patients referred for clinical scans** 245 He or 12%Xe

*Contains idiopathic pulmonary fibrosis (IPF), connectiveutisdisease associated ILD (CTD-
ILD), hypersensitivity pneumonitis (HP) and drug induced ILD-{D).

**Clinical referral cases include patients with asthmaPCObronchiectasis, cystic fibrosis, col-
lapsed lung and primary ciliary dyskinesia (PCD).

Healthy Lung cancer Asthma Premature children

Fig. 1. Example coronal slices from the datadde MRI scans for healthy subjects were una-
vailable.

Each scan has a corresponding manually-edited giaithdsegmentation represent-
ing the ventilated region of the lung. These segmentatiere generated by multiple
expert observers and reviewed by an independent imagingisci® ensure quality
and identify potential errors; errors such as the includidheotrachea or background
noise were manually corrected.

2.3  Parameterization

Several experiments were conducted to assess the effestyofg network architec-
ture, loss function and pre-processing technique usingsetsabthe data comprising
of 431 hyperpolarized gas MRI scans, with eitttée (n=173) o*?*Xe (n=258), from
healthy subjects and patients with pulmonary patholog@scans were used as a pa-
rameterization testing set and 40 scans used for interidétiarh.

Table 2 displays the results of these investigations showiegn performance on
the parameterization testing set. The V-Net architeatitle cross-entropy loss func-
tion exhibiedimproved performance in terms of Dice similarity coediit (DSC), av-



erage Hausdorff distance at the boundary (Avg HD) and Haifi8&8r percentile dis-
tance at the boundary (HD95). The impact of two commuoséyl pre-processing tech-
niques for hyperpolarized gas MRI, hamely, normalization dertbising[10], were
evaluated. Due to the lack of substantial improvemetgre-processing was imple-
mented on the larger dataset used to evaluate DL meththds work.

Table 2. Mean results on the parameterization testing set shawthrfe experiments investi-
gating the effect of varying network architecture, losgfion and pre-processing technique. The
highest DSC values are shown in bold.

) Evaluation metrics
Experimental methods DSC Avg HD (mm)  HD95 (mm)
Network architecture v-Net 0.956 1.68 5.61
Dense V-Net 0.952 2.03 7.30
HighResNet 0.927 5.46 19.32
Loss function Cross entropy 0.956 1.68 5.61
Dice 0.%47 2.86 10.98
Pre-processing None 0.956 1.68 5.61
Denoising 0.956 1.93 6.83
Normalization 0.956 2.02 6.79

Further derived from the above investigations, 25008titms were selected as the
appropriate number of training iterations, as they repitebe optimal balance between
segmentation performance and training time.

Conducting these experiments on a subset of the total tiats débr optimization
of parameters without introducing potential biases to a spégifitng and testing set.
The following section describes the data split and g@akameters, informed by the
above investigations, used in the remainder of this work.

2.4  Convolutional Neural Network

We used the V-Net fully convolutional neural network wipchcesses 3D scans using
volumetric convolutions [13]. The network is trained eadnd using hyperpolarized
gas MRI volumetric scans. The network utilizes a noadirPRelLu activation function
[14] and is optimized using a binary cross-entropy (BCE)finsstion defined below:

N
1
BCE(PR,GT) = =+ ) [gtlog(pm) + (1 — gt)log(1 —pr)] (1)
i=1
whereGT = {gti € GT} denotes the manually-edited ground truth segmentatiors

{pr; € PR} the predicted segmentation by the network iarepresents the voxel loca-
tion within the image, which is assumed to have N nurobeoxels



Parameters. ADAM optimization was used to train the CNIb]. The spatial window
size was set to [96,96,24] with a batch size of 10. A learningfdtr10°® was used
for initial training and 0.5x18for fine-tuning methods.

Data split. The dataset was split into training, validation antirtgssets. The training

set contained 23%He scans (10686 slices) and 4%Ke scans (10212 slices) from a
total of 252 subjects. 74 scans, each from a differdrjest, were selected for the test-
ing set fHe: 16 scanst?°Xe: 58 scans). 10% of the training set was randomly selected
as a validation dataset. Repeat or longitudinal scansrrohiple visits for the same
patient were contained in the training set; however ub@Est was present in both the
training/validation and testing sets, with the tes8egcontaining only one scan from
each patient. The range of diseases in the testing regiresentative of the dataset as
a whole.

Computation. The networks were trained using the medical imadhgframework
NiftyNet 0.6.0[16] on top of TensorFlow 1.14 [17]. Training and inference vpare
formed on an NVIDIA Tesla V100 GPU with 18B of RAM.

25 DL experimental methods

Five DL experimental methods were performed to traim#teork:

(1) The model was trained on 233e scans for 25000 iterations.

(2) The model was trained on 4%?Xe scans for 25000 iterations.

(3) The model was trained on 23de scans for 20000 iterations; these weights
were used to initialize a model trained on 43X e scans for 5000 iterations.

(4) The model was trained on 4%¥?Xe scans for 20000 iterations; these weights
were used to initialize a model trained on 282 scans for 5000 iterations.

(5) The model was trained on 6&69Xe and®He scans for 25000 iterations.

The five experimental methods were applied to the slait defined in section 2.4
using the same testing set for each method, facilitatimgparison between the five
methods to identify the best performing training procesmultiple metrics.

2.6  Comparison to conventional methods

For further benchmarking of the CNN methods, the bedtpring DL method was
compared against other conventional machine learningoaefor hyperpolarized gas
MRI segmentation. The methods used are briefly describtll@ass:

(1) Hierarchical K-means segmentation algorithm: A high nurobgerations and
centroid sorting were used to improve robustiiéks



(2) SFQV algorithm: The method uses bilateral filtering tuneéHe or'?°Xe and
19 clusters to assign membership before thresholding medubinary seg-
mentation (adaption ¢5]).

2.7 Evaluation Metrics

The testing set results for each of the five DL experital methods and two conven-
tional methods were evaluated using several metrics. B@vas used to assess over-
lap between the ground truth and predicted segmentdfi8hsTwo distance metrics,
Avg HD (mm) and HD95 (mm) were used [19]. The Avg HD reduessisivity to
outliers and is regarded as a stable metric for segmamaluation [20]. Further-
more, a relative error metric (XOR) was used to evalsigenentation errd1].

2.8 Statigtical Analysis

Paired t-tests were used to assess the statistindlcagce of differences between ex-
perimental methods. A Mann-Whitney U test was used to cagifferences between
3He and**Xe segmentations to assess the effect of the gaseBh@erforming exper-
imental method was compared to other segmentation metisodgpaired t-tests. Sta-
tistical analysis was performed using Pris#h &raphPad, San Diego, CA).

3 Results

Table 3 shows a comparison of segmentation performance fominBfi experimental
methods and the two conventional segmentation methods.

Table 3. Comparison of segmentation performance of DL methods @meentional methods
for a testing set of 74 scans. Means are given; thedmst for each metric is in bold.

Experimental methods Evaluation metrics

DSC Avg HD (mm) HD95 (mm) XOR
Train on®He 0.948 3.92 16.64 0.109
Train on'*Xe 0.954 1.84 6.32 0.091
Train on®He, fine-tuned oA?Xe 0.955 2.47 9.12 0.091
Train on'2%Xe, fine-tuned oriHe 0.946 4.37 17.94 0.120
Combined®He and'?*Xe training 0.958 2.22 8.53 0.087
K-means 0.610 37.28 98.79 1.604
SFCM 0.907 5.61 23.06 0.242

P-values are shown in a 5x5 matrixTiable 4 using both the DSC and Avg HD
evaluation metrics for the five DL experimental methods.



Table 4. P-values from paired t-tests comparing DL experimentdhodks inTable 3 for DSC
(blue) and Avg HD (green) evaluation metrics. *significBrvalues (p<0.05)

Train on Train on Train on°He, Train on Train on com-
DSC AVg HD *He 129%%e fine tune on 129e, fine bined!*Xe and
129%e tune on’*He °He
Train on°He 0.11 0.004* 0.28 <0.0001*
Train on'?*Xe 0.0072* 0.44 0.13 0.032*
Train on®He, fine tune o?°Xe <0.0001* 0.31 0.036* 0.0007*
Train on'?**Xe, fine tune oriHe 0.53 0.0004* 0.0093* 0.0075*
Train on combineéd?®Xe and®He 0.0005* 0.069 0.097 0.0003*

Fig. 2 shows distributions of the DSC and Avg HD values for eaethau. Statisti-
cal significance was assessed using paired t-testtdoD$SC and Avg HD metrics
comparing the combinetHe and?°Xe method to other DL methods. The combined
3He and'?°Xe method yielded statistically significant improvenseoter all DL meth-
ods using DSC (mean DSC=0.958, p<0.05). Using Avg HD, the caufiHe and
129%e method generated statistically significant improgats over two DL methods
(p<0.05); no significant difference between the other pdstwas observed (p>0.05).
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Fig. 2. Comparison on 74 testing scans for five DL experimenthods using DSC (left) and
Avg HD (right). P-values are displayed for paired te@simparing the combinédie and*?*Xe
DL method to the other DL methods.

Fig. 3 shows examples of segmentation quality for a healthy ctuljel patients
with six different pathologies across the five DL expemtal methods usintHe and
129X e, representing a wide range of hyperpolarized gas MRI s@soriginal scans
and ground truth segmentations are included to facitatgarisonlt can be observed
that there are negligible voxels outside the lung parenatglassed as ventilated and
that the CNN accurately excluded ventilation defectshass in the examples of the
CF and lung cancer patienTable 5 stratifies results based on disease and shows that,
for the majority of diseases, the combiriee and'?*Xe method is the best performing
method.



Table 5. Comparison of segmentation performance of DL methodtfistieby disease for 74
testing scans. Mean DSCs are given; the best resaaébr disease is shown in bold.

DL experimental methods
Disease N | Train on| Train on 1;;;2”;;2_ 33:?"?2- C-lgrarl:gir?gd
129¢e 3He ' tuned on | °He and

tuned orfHe 1297 129y
Healthy 5| 0952 0.936 0.928 0.%47 0.949
Lung cancer 3 0.932 0.951 0.955 0.943 0.951
COPD 3 | 0.949 0.967 0.968 0.959 0.968
CF 3 0.951 0.941 0.937 0.954 0.956
Premature children | 7 0.927 0.917 0.919 0.929 0.932
ILD 8 0.959 0.959 0.962 0.961 0.964
Clinical referrals 45 0.959 0.952 0.947 0.959 0.961

Lung Cancer Asthma ILD Premature children  COPD Healthy
)zgxe iHe SHE ' IZBXe

He

Ground Truth

Train on3He

Mean DSC
0.948 + 0.035 (SD)

Train on 129Xe

Mean DSC
0.954 +0.021 (SD)

Train on 3He, Fine-
tuning on 129Xe
Mean DSC

0.955 £ 0.022 (SD)

Train on12%Xe, Fine-
tuning on 3He

Mean DSC

0.946 + 0.050 (SD)

Train on combined
3He and 1°Xe
Mean DSC

0.958 +0.022 (SD)

Fig. 3. Example coronal slices for seven subjects with diffepathologies for each DL experi-
mental method. Individual, and mean + SD, DSC values go&agesd.

Fig. 4 shows the segmentation performance for the testingeseeen noble gases
(*?°Xe and®He) using the DSC and Avg HD metrics. Only the ‘Train on 1?°Xe, fine-
tune on®He’ method exhibits a significant difference in terms of both the DSC



(p=0.011) and Avg HD (p=0.0002) metrics. The combittéeland'?®Xe method shows
no statistically significant differences between gas#sg DSC and Avg HD metrics.
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Fig. 4. Comparison of DSC (top) and Avg HD (bottom) values'f®e and3He testing scans
for five DL methods. P-values betwe®fXe and®He using the Mann-Whitney test are shown.

CombinedHe and'?*Xe training was identified as the most accurate DL ilatetl
lung segmentation method due to statistically signifi¢genprovements over all other
methods using DSC and XOR metriEsy. 5 shows a comparison using the combined
DL method and two conventional segmentation methodseamiand SFCM. The DL
segmentation method exhibits significant improvements Q8€), accurately exclud-
ing low-level noise as well as non-lung regions sastthe trachea and bronchi.

Ground Truth K-means

DSC=0.972 DSC=0.951 DSC=0.519
AvgHD =1.21mm AvgHD=2.10mm AvgHD =56.8mm

bL  SFCM  K-Means DSC = 0.980 DSC =0.938 DSC = 0.600

Segmentation Method

Avg HD=0.75mm  Avg HD=2.66mm Avg HD = 57.2mm

Fig. 5. Comparison of performance on testing scans between tigireed >°Xe and®He DL
method and conventional segmentation methods (SFCM andaksnavith P-values from
paired t-tests. Individual DSC and Avg HD values for eaelthod are displayed for two cases.
Case 1 is a COPD patient and case 2 is a clinieratfpatient.



4 Discussion and Conclusion

DL segmentation methods produced highly accurate segmestatiooss a range of
evaluation metrics on the dataset used. To the best of the authors’ knowledge, the hy-
perpolarized gas MRI dataset used here is the largest use todeentilated lung
segmentation and contains over 743 scans from patiéhtswide range of lung pa-
thologies. This is advantageous for preserving generdltyads it enables the algo-
rithm to learn features present in a range of diseases @tiglenhyperpolarized gases
(®He and'?°Xe), producing robust and accurate segmentations across ouscases.

The CNN produced more accurate segmentations than theomentional ap-
proaches investigated for all evaluation metrics uretthis study. In particular, the
CNN was able to deal with images containing backgrounctraoigl artifacts, as well
as successfully excluding ventilation defects and airwétysomparison, the SFCM
method is unable to distinguish airways or artifacts seginents these areas errone-
ously. As such, it is highly probable that the CNN elirtéseor dramatically reduces
the manual-editing time required after automatic segmientatustison et al. used a
2D U-Net for hyperpolarized gas MRI segmentation and aeHia mean DSC of 0.94
[10]. In comparison, our combinetHe and!?°Xe method trained via a 3D V-Net
yielded a mean DSC value of 0.96. The 3D CNN allows the ntodiedat the segmen-
tation as a 3D volume and learn features which are prasesgs multiple slices.

The combinedHe and'?°Xe method shows statistically significant improvements
over all other methods using the DSC metric; however, ussgvg HD metric, there
is no significant difference between the combined'&®Xe-only methods. In terms of
mean values, th&%<e-only method generates a reduced Avg HD; this is likelytdue
the ability of the'?*Xe-only method to accurately segment an outlier testing theen
was segmented relatively poorly by the other methadsdtition, the testing set is
imbalanced in favor d?°Xe, introducing a possible bias into the analysis. dtis$i-
cally significant differences were observed in perfornreawnbhen comparingHe and
129X e testing set scans, indicating that for a gitida or'?°Xe scan, neither the com-
bined nor thé®Xe-only methods are biased towards a specific hyperpethgas.

The training algorithm was implemented on a single GPUraquired 12 days to
reach25000 iterations. Inference was also implemented on a s{BBlg, taking 27
seconds pet?®Xe scan and 35 seconds peEe scan, corresponding to approximately
one second per slice for both gases.

A limitation of the study is the presence of only @xpert segmentation per scan
which limits the ability to evaluate inter- and intra-eh&r variability. However, the
wide range of expert observers to generate the expert segjorentead to significant
variability in the training and testing sets. Hence,GNN can learn a robust segmen-
tation method across ground truth segmentations with mudtyert observers. In fu-
ture work, multiple ground truth segmentations may be wsedin the algorithm and
allow evaluation of inter-observer variability.

The variation in the number of repeat or longituds@dns and slice thickness be-
tween®He and'?*Xe scans impeded us from achieving a training and testtrepke
equally between both gases. Although multiple scans tharsame patient were in-
cluded in the training set to increase dataset numioeirs;rease the robustness of the



evaluation, no scan of the same patient was presdnirtibte training and testing sets.
In doing so, the testing set suffers from an imbalant¢g/jerpolarized gases in favor
of 12%e. As such, the comparisafi DL methods may have been subject to bias.

Although the effect of several CNN architectures wagstigated, a more robust
study of network architectures, such as 2D and 3D netwsriexjuired; in future work,
further comparisons between common network architextuiie be conducted to as-
sess whether superior performance can be achieved. Fustkethmyper-parameteriza-
tion and additional loss functions need to be investigated.

For the evaluation of clinically relevant metrics sashventilated defect percentage
[2], the whole-lung cavity volume is required in additionventilated lung volumes,
most commonly computed from a whole-lung segmentatioargéed from a structural
proton MRI scan. Accurate automatic segmentation of botlilatenl and structural
images will lead to significant improvements in thimickl workflow, including re-
duced segmentation generation time and manual editing time

In conclusion, we evaluated a 3D fully-connected CNN usieg/tNet architecture
that is capable of producing accurate, robust and rapmdrpglarized gas MRI seg-
mentations on a large, diverse dataset. We compareéxperimental DL methods
and observed that combinidge and*?°Xe scans in the training set produces the most
accurate segmentations with multiple evaluation meffitis. CNN-based method also
significantly outperforms two conventional segmentatiathods.
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