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Abstract. Hyperpolarized gas MRI enables visualization of regional lung ventilation with high 
spatial resolution. Segmentation of the ventilated lung is required to calculate clinically relevant 
biomarkers. Recent research in deep learning (DL) has shown promising results for numerous 
segmentation problems. In this work, we evaluate a 3D V-Net to segment ventilated lung regions 
on hyperpolarized gas MRI scans. The dataset consists of 743 helium-3 (3He) or xenon-129 
(129Xe) volumetric scans and corresponding expert segmentations from 326 healthy subjects and 
patients with a wide range of pathologies. We evaluated segmentation performance for several 
DL experimental methods via overlap, distance and error metrics and compared them to conven-
tional segmentation methods, namely, spatial fuzzy c-means (SFCM) and K-means clustering. 
We observed that training on combined 3He and 129Xe MRI scans outperformed other DL meth-
ods, achieving a mean±SD Dice of 0.958±0.022, average boundary Hausdorff distance of 
2.22±2.16mm, Hausdorff 95th percentile of 8.53±12.98mm and relative error of 0.087±0.049. 
Moreover, no difference in performance was observed between 129Xe and 3He scans in the testing 
set. Combined training on 129Xe and 3He yielded statistically significant improvements over the 
conventional methods (p<0.0001). The DL approach evaluated provides accurate, robust and 
rapid segmentations of ventilated lung regions and successfully excludes non-lung regions such 
as the airways and noise artifacts and is expected to eliminate the need for, or significantly reduce, 
subsequent time-consuming manual editing. 

 
Keywords: Functional lung imaging, Hyperpolarized gas MRI, Deep learning, Convo-
lutional neural network, Lung segmentation. 

1 Introduction 

Hyperpolarized gas MRI enables visualization of regional lung ventilation with high 
spatial resolution [1]. Quantitative biomarkers derived from this modality, including 
the ventilated defect percentage, provide further insights into pulmonary pathologies 
currently not possible with alternative techniques [2]. To facilitate the computation of 
such biomarkers, segmentation of ventilated regions of the lung is required [3]. 



 

Conventional approaches for hyperpolarized gas MRI ventilation segmentation em-
ploy classical image processing and machine learning techniques, such as hierarchical 
K-means clustering [4] and spatial fuzzy c-means (SFCM) with tuned bilateral filtering 
and clustering [5]. However, as these methods are based on voxel intensities and thresh-
olding, they provide only semi-automatic segmentations; as such, they are prone to er-
rors that often require significant time to manually correct such as the removal of non-
ventilated lung voxels and non-lung regions, including the airways and artifacts. 

Recent research in image segmentation has focused on the use of deep learning (DL) 
and has been applied to numerous problems, showing promising results [6, 7]. Convo-
lutional neural networks (CNN) have become the most common DL network used for 
image segmentation, enhanced by the adoption of transfer learning to cope with limited 
datasets [8, 9]. Tustison et al. employed a 2D CNN with a U-Net architecture using 113 
hyperpolarized gas MRI scans, obtaining impressive results [10]. However, application 
of DL on a more extensive database with a broader range of pathologies is required for 
clinical adoption. 

In this work, we evaluate a 3D volumetric V-Net CNN to accurately, robustly and 
rapidly segment ventilated lungs on hyperpolarized gas MRI scans using a large, di-
verse dataset with both helium-3 (3He) and xenon-129 (129Xe) scans and corresponding 
expert segmentations. We evaluate several DL methods for training a neural network 
and use a diverse set of evaluation metrics for comparison. We then compare the best 
performing DL method to conventional approaches used for hyperpolarized gas MRI 
segmentation. We also investigate the effect of the noble gas on DL performance. 

2 Materials and Methods 

2.1 Hyperpolarized gas MRI acquisition 

All subjects underwent 3D volumetric 3He [11] and 129Xe [12] hyperpolarized gas MRI 
with full lung coverage at 1.5T. Flexible quadrature radiofrequency coils were em-
ployed for transmission and reception of MR signals at the Larmor frequencies of 3He 
and 129Xe. In-plane (x-y) resolution of scans for both gases was 4x4mm2. 129Xe scans 
ranged from 16-34 slices with a mean of 23 slices and slice thickness of 10mm. 3He 
scans ranged from 34-56 slices with a mean of 45 slices and slice thickness of 5mm. 

2.2 Dataset 

The imaging dataset used in this study was collected retrospectively from several clin-
ical observational studies and patients referred for clinical scans. The dataset consisted 
of 743 volumetric hyperpolarized gas MRI scans (22890 slices), with either 3He (248 
scans, 11370 slices) or 129Xe (495 scans, 11520 slices), from 326 subjects. The slices 
are distributed approximately 50:50 between 3He and 129Xe. The subjects included 
healthy individuals and patients with various pulmonary pathologies and are summa-
rized in Table 1. Examples of 3He and 129Xe images for a range of pathologies are 
shown in Fig. 1. 



 

Table 1. Dataset information and disease breakdown. 

 Number of scans Hyperpolarized Gas  

Healthy 41 129Xe 

Lung cancer 22 3He or 129Xe 

Chronic obstructive pulmonary disease (COPD) 54 3He or 129Xe 

Cystic fibrosis (CF) 223 3He or 129Xe 

Premature children 50 3He or 129Xe 

Interstitial lung disease (ILD)* 127 3He or 129Xe 

Patients referred for clinical scans** 245 3He or 129Xe 

*Contains idiopathic pulmonary fibrosis (IPF), connective tissue disease associated ILD (CTD-
ILD), hypersensitivity pneumonitis (HP) and drug induced ILD (DI-ILD). 
**Clinical referral cases include patients with asthma, COPD, bronchiectasis, cystic fibrosis, col-
lapsed lung and primary ciliary dyskinesia (PCD). 
 

 

Fig. 1. Example coronal slices from the dataset. 3He MRI scans for healthy subjects were una-
vailable. 

    Each scan has a corresponding manually-edited ground truth segmentation represent-
ing the ventilated region of the lung. These segmentations were generated by multiple 
expert observers and reviewed by an independent imaging scientist to ensure quality 
and identify potential errors; errors such as the inclusion of the trachea or background 
noise were manually corrected. 

2.3 Parameterization 

Several experiments were conducted to assess the effect of varying network architec-
ture, loss function and pre-processing technique using a subset of the data comprising 
of 431 hyperpolarized gas MRI scans, with either 3He (n=173) or 129Xe (n=258), from 
healthy subjects and patients with pulmonary pathologies. 29 scans were used as a pa-
rameterization testing set and 40 scans used for internal validation.  

Table 2 displays the results of these investigations showing mean performance on 
the parameterization testing set. The V-Net architecture with cross-entropy loss func-
tion exhibited improved performance in terms of Dice similarity coefficient (DSC), av-



 

erage Hausdorff distance at the boundary (Avg HD) and Hausdorff 95th percentile dis-
tance at the boundary (HD95). The impact of two commonly used pre-processing tech-
niques for hyperpolarized gas MRI, namely, normalization and denoising [10], were 
evaluated. Due to the lack of substantial improvements, no pre-processing was imple-
mented on the larger dataset used to evaluate DL methods in this work. 

Table 2. Mean results on the parameterization testing set shown for three experiments investi-
gating the effect of varying network architecture, loss function and pre-processing technique. The 
highest DSC values are shown in bold. 

Experimental methods 
Evaluation metrics 

DSC Avg HD (mm) HD95 (mm) 

Network architecture V-Net 0.956 1.68 5.61 

 Dense V-Net 0.952 2.03 7.30 

 HighResNet 0.927 5.46 19.32 

Loss function Cross entropy 0.956 1.68 5.61 

 Dice 0.947 2.86 10.98 

Pre-processing None 0.956 1.68 5.61 

 Denoising 0.956 1.93 6.83 

 Normalization 0.956 2.02 6.79 

 
    Further derived from the above investigations, 25000 iterations were selected as the 
appropriate number of training iterations, as they represent the optimal balance between 
segmentation performance and training time. 

Conducting these experiments on a subset of the total data allows for optimization 
of parameters without introducing potential biases to a specific training and testing set. 
The following section describes the data split and DL parameters, informed by the 
above investigations, used in the remainder of this work. 
 
2.4 Convolutional Neural Network 

We used the V-Net fully convolutional neural network which processes 3D scans using 
volumetric convolutions [13]. The network is trained end-to-end using hyperpolarized 
gas MRI volumetric scans. The network utilizes a non-linear PReLu activation function 
[14] and is optimized using a binary cross-entropy (BCE) loss function defined below: 

ሺܴܲǡܧܥܤ  ሻܶܩ ൌ  െ ͳܰ ෍ሾ݃ݐ௜ logሺݎ݌௜ሻ ൅ ሺͳ െ ௜ሻݐ݃ logሺͳ െ ௜ሻேݎ݌
௜ୀଵ ሿ          ሺͳሻ 

where ܶܩ ൌ ൛݃݅ݐ א ܴܲ ,ൟ denotes the manually-edited ground truth segmentationܶܩ ൌሼݎ݌௜ א ܴܲሽ the predicted segmentation by the network and ݅ represents the voxel loca-
tion within the image, which is assumed to have N number of voxels.  
 



 

Parameters. ADAM optimization was used to train the CNN [15]. The spatial window 
size was set to [96,96,24] with a batch size of 10. A learning rate of 1x10-5 was used 
for initial training and 0.5x10-5 for fine-tuning methods. 

Data split. The dataset was split into training, validation and testing sets. The training 
set contained 232 3He scans (10686 slices) and 437 129Xe scans (10212 slices) from a 
total of 252 subjects. 74 scans, each from a different subject, were selected for the test-
ing set (3He: 16 scans; 129Xe: 58 scans). 10% of the training set was randomly selected 
as a validation dataset. Repeat or longitudinal scans from multiple visits for the same 
patient were contained in the training set; however, no subject was present in both the 
training/validation and testing sets, with the testing set containing only one scan from 
each patient. The range of diseases in the testing set is representative of the dataset as 
a whole. 
 
Computation. The networks were trained using the medical imaging DL framework 
NiftyNet 0.6.0 [16] on top of TensorFlow 1.14 [17]. Training and inference were per-
formed on an NVIDIA Tesla V100 GPU with 16 GB of RAM. 

2.5 DL experimental methods 

Five DL experimental methods were performed to train the network:  
 

(1) The model was trained on 232 3He scans for 25000 iterations. 
(2) The model was trained on 437 129Xe scans for 25000 iterations. 
(3) The model was trained on 232 3He scans for 20000 iterations; these weights 

were used to initialize a model trained on 437 129Xe scans for 5000 iterations. 
(4) The model was trained on 437 129Xe scans for 20000 iterations; these weights 

were used to initialize a model trained on 232 3He scans for 5000 iterations. 
(5) The model was trained on 669 129Xe and 3He scans for 25000 iterations. 

 
    The five experimental methods were applied to the data split defined in section 2.4 
using the same testing set for each method, facilitating comparison between the five 
methods to identify the best performing training process on multiple metrics. 

2.6 Comparison to conventional methods 

For further benchmarking of the CNN methods, the best-performing DL method was 
compared against other conventional machine learning methods for hyperpolarized gas 
MRI segmentation. The methods used are briefly described as follows: 

 
(1) Hierarchical K-means segmentation algorithm: A high number of iterations and 

centroid sorting were used to improve robustness [4]. 



 

(2) SFCM algorithm: The method uses bilateral filtering tuned to 3He or 129Xe and 
19 clusters to assign membership before thresholding produces a binary seg-
mentation (adaption of [5]). 

2.7 Evaluation Metrics 

The testing set results for each of the five DL experimental methods and two conven-
tional methods were evaluated using several metrics. The DSC was used to assess over-
lap between the ground truth and predicted segmentations [18]. Two distance metrics, 
Avg HD (mm) and HD95 (mm) were used [19]. The Avg HD reduces sensitivity to 
outliers and is regarded as a stable metric for segmentation evaluation [20]. Further-
more, a relative error metric (XOR) was used to evaluate segmentation error [21].  

2.8 Statistical Analysis 

Paired t-tests were used to assess the statistical significance of differences between ex-
perimental methods. A Mann-Whitney U test was used to compare differences between 
3He and 129Xe segmentations to assess the effect of the gas. The best performing exper-
imental method was compared to other segmentation methods using paired t-tests. Sta-
tistical analysis was performed using Prism 8.4 (GraphPad, San Diego, CA). 

3 Results 

Table 3 shows a comparison of segmentation performance for the five DL experimental 
methods and the two conventional segmentation methods. 

Table 3. Comparison of segmentation performance of DL methods and conventional methods 
for a testing set of 74 scans. Means are given; the best result for each metric is in bold. 

Experimental methods  Evaluation metrics 

 DSC Avg HD (mm) HD95 (mm) XOR 

Train on 3He 0.948 3.92 16.64 0.109 

Train on 129Xe 0.954 1.84 6.32 0.091 

Train on 3He, fine-tuned on 129Xe 0.955 2.47 9.12 0.091 

Train on 129Xe, fine-tuned on 3He 0.946 4.37 17.94 0.120 

Combined 3He and 129Xe training 0.958 2.22 8.53 0.087 

K-means 0.610 37.28 98.79 1.604 

SFCM 0.907 5.61 23.06 0.242 

    
   P-values are shown in a 5x5 matrix in Table 4 using both the DSC and Avg HD 
evaluation metrics for the five DL experimental methods. 
 



 

Table 4. P-values from paired t-tests comparing DL experimental methods in Table 3 for DSC 
(blue) and Avg HD (green) evaluation metrics. *significant P-values (p<0.05) 

 
DSC Avg HD Train on 

3He 
Train on 

129Xe 
Train on 3He, 
fine tune on 

129Xe 

Train on 
129Xe, fine 

tune on 3He 

Train on com-
bined 129Xe and 

3He 
Train on 3He  0.11 0.004* 0.28 <0.0001* 

Train on 129Xe 0.0072*  0.44 0.13 0.032* 

Train on 3He, fine tune on 129Xe <0.0001* 0.31  0.036* 0.0007* 

Train on 129Xe, fine tune on 3He 0.53 0.0004* 0.0093*  0.0075* 

Train on combined 129Xe and 3He 0.0005* 0.069 0.097 0.0003*  

 
    Fig. 2 shows distributions of the DSC and Avg HD values for each method. Statisti-
cal significance was assessed using paired t-tests for the DSC and Avg HD metrics 
comparing the combined 3He and 129Xe method to other DL methods. The combined 
3He and 129Xe method yielded statistically significant improvements over all DL meth-
ods using DSC (mean DSC=0.958, p<0.05). Using Avg HD, the combined 3He and 
129Xe method generated statistically significant improvements over two DL methods 
(p<0.05); no significant difference between the other methods was observed (p>0.05). 
 

Fig. 2. Comparison on 74 testing scans for five DL experimental methods using DSC (left) and 
Avg HD (right). P-values are displayed for paired t-tests comparing the combined 3He and 129Xe 
DL method to the other DL methods. 
 

Fig. 3 shows examples of segmentation quality for a healthy subject and patients 
with six different pathologies across the five DL experimental methods using 3He and 
129Xe, representing a wide range of hyperpolarized gas MRI scans. The original scans 
and ground truth segmentations are included to facilitate comparison. It can be observed 
that there are negligible voxels outside the lung parenchyma classed as ventilated and 
that the CNN accurately excluded ventilation defects, as shown in the examples of the 
CF and lung cancer patients. Table 5 stratifies results based on disease and shows that, 
for the majority of diseases, the combined 3He and 129Xe method is the best performing 
method. 



 

Table 5. Comparison of segmentation performance of DL methods stratified by disease for 74 
testing scans. Mean DSCs are given; the best result for each disease is shown in bold. 

Disease N 

DL experimental methods 

Train on 
129Xe 

Train on 
3He 

Train on 
129Xe, fine-

tuned on 3He 

Train on 
3He, fine-
tuned on 

129Xe 

Train on 
Combined 

3He and 
129Xe 

Healthy 5 0.952 0.936 0.928 0.947 0.949 

Lung cancer 3 0.932 0.951 0.955 0.943 0.951 

COPD 3 0.949 0.967 0.968 0.959 0.968 

CF 3 0.951 0.941 0.937 0.954 0.956 

Premature children 7 0.927 0.917 0.919 0.929 0.932 

ILD 8 0.959 0.959 0.962 0.961 0.964 

Clinical referrals 45 0.959 0.952 0.947 0.959 0.961 

 

 
Fig. 3. Example coronal slices for seven subjects with different pathologies for each DL experi-
mental method. Individual, and mean ± SD, DSC values are displayed. 
 

Fig. 4 shows the segmentation performance for the testing set between noble gases 
(129Xe and 3He) using the DSC and Avg HD metrics. Only the ‘Train on 129Xe, fine-
tune on 3He’ method exhibits a significant difference in terms of both the DSC 



 

(p=0.011) and Avg HD (p=0.0002) metrics. The combined 3He and 129Xe method shows 
no statistically significant differences between gases using DSC and Avg HD metrics. 
 

 

Fig. 4. Comparison of DSC (top) and Avg HD (bottom) values for 129Xe and 3He testing scans 
for five DL methods. P-values between 129Xe and 3He using the Mann-Whitney test are shown. 

   Combined 3He and 129Xe training was identified as the most accurate DL ventilated 
lung segmentation method due to statistically significant improvements over all other 
methods using DSC and XOR metrics. Fig. 5 shows a comparison using the combined 
DL method and two conventional segmentation methods, K-means and SFCM. The DL 
segmentation method exhibits significant improvements (p<0.0001), accurately exclud-
ing low-level noise as well as non-lung regions such as the trachea and bronchi. 
 

 

Fig. 5. Comparison of performance on testing scans between the combined 129Xe and 3He DL 
method and conventional segmentation methods (SFCM and K-means) with P-values from 
paired t-tests. Individual DSC and Avg HD values for each method are displayed for two cases. 
Case 1 is a COPD patient and case 2 is a clinical referral patient. 



 

4 Discussion and Conclusion 

DL segmentation methods produced highly accurate segmentations across a range of 
evaluation metrics on the dataset used. To the best of the authors’ knowledge, the hy-
perpolarized gas MRI dataset used here is the largest used to date for ventilated lung 
segmentation and contains over 743 scans from patients with a wide range of lung pa-
thologies. This is advantageous for preserving generalizability as it enables the algo-
rithm to learn features present in a range of diseases and multiple hyperpolarized gases 
(3He and 129Xe), producing robust and accurate segmentations across numerous cases. 

The CNN produced more accurate segmentations than the two conventional ap-
proaches investigated for all evaluation metrics used in this study. In particular, the 
CNN was able to deal with images containing background noise and artifacts, as well 
as successfully excluding ventilation defects and airways. In comparison, the SFCM 
method is unable to distinguish airways or artifacts and segments these areas errone-
ously. As such, it is highly probable that the CNN eliminates or dramatically reduces 
the manual-editing time required after automatic segmentation. Tustison et al. used a 
2D U-Net for hyperpolarized gas MRI segmentation and achieved a mean DSC of 0.94 
[10]. In comparison, our combined 3He and 129Xe method trained via a 3D V-Net 
yielded a mean DSC value of 0.96. The 3D CNN allows the model to treat the segmen-
tation as a 3D volume and learn features which are present across multiple slices. 

The combined 3He and 129Xe method shows statistically significant improvements 
over all other methods using the DSC metric; however, using the Avg HD metric, there 
is no significant difference between the combined and 129Xe-only methods. In terms of 
mean values, the 129Xe-only method generates a reduced Avg HD; this is likely due to 
the ability of the 129Xe-only method to accurately segment an outlier testing scan that 
was segmented relatively poorly by the other methods. In addition, the testing set is 
imbalanced in favor of 129Xe, introducing a possible bias into the analysis. No statisti-
cally significant differences were observed in performance when comparing 3He and 
129Xe testing set scans, indicating that for a given 3He or 129Xe scan, neither the com-
bined nor the 129Xe-only methods are biased towards a specific hyperpolarized gas. 

The training algorithm was implemented on a single GPU and required 12 days to 
reach 25000 iterations. Inference was also implemented on a single GPU, taking 27 
seconds per 129Xe scan and 35 seconds per 3He scan, corresponding to approximately 
one second per slice for both gases. 

A limitation of the study is the presence of only one expert segmentation per scan 
which limits the ability to evaluate inter- and intra-observer variability. However, the 
wide range of expert observers to generate the expert segmentations lead to significant 
variability in the training and testing sets. Hence, the CNN can learn a robust segmen-
tation method across ground truth segmentations with multiple expert observers. In fu-
ture work, multiple ground truth segmentations may be used to train the algorithm and 
allow evaluation of inter-observer variability. 

The variation in the number of repeat or longitudinal scans and slice thickness be-
tween 3He and 129Xe scans impeded us from achieving a training and testing set split 
equally between both gases. Although multiple scans from the same patient were in-
cluded in the training set to increase dataset numbers, to increase the robustness of the 



 

evaluation, no scan of the same patient was present both in the training and testing sets. 
In doing so, the testing set suffers from an imbalance in hyperpolarized gases in favor 
of 129Xe. As such, the comparison of DL methods may have been subject to bias. 

Although the effect of several CNN architectures was investigated, a more robust 
study of network architectures, such as 2D and 3D networks, is required; in future work, 
further comparisons between common network architectures will be conducted to as-
sess whether superior performance can be achieved. Furthermore, hyper-parameteriza-
tion and additional loss functions need to be investigated.  

For the evaluation of clinically relevant metrics such as ventilated defect percentage 
[2], the whole-lung cavity volume is required in addition to ventilated lung volumes, 
most commonly computed from a whole-lung segmentation generated from a structural 
proton MRI scan. Accurate automatic segmentation of both ventilated and structural 
images will lead to significant improvements in the clinical workflow, including re-
duced segmentation generation time and manual editing time.  

In conclusion, we evaluated a 3D fully-connected CNN using the V-Net architecture 
that is capable of producing accurate, robust and rapid hyperpolarized gas MRI seg-
mentations on a large, diverse dataset. We compared five experimental DL methods 
and observed that combining 3He and 129Xe scans in the training set produces the most 
accurate segmentations with multiple evaluation metrics. This CNN-based method also 
significantly outperforms two conventional segmentation methods. 
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