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Abstract

In this work we addressed the problem of

capturing sequential information contained in

longitudinal electronic health records (EHRs).

Clinical notes, which is a particular type of

EHR data, are a rich source of information

and practitioners often develop clever solu-

tions how to maximise the sequential infor-

mation contained in free-texts. We proposed

a systematic methodology for learning from

chronological events available in clinical notes.

The proposed methodological path signature

framework creates a non-parametric hierarchi-

cal representation of sequential events of any

type and can be used as features for down-

stream statistical learning tasks. The method-

ology was developed and externally validated

using the largest in the UK secondary care

mental health EHR data on a specific task of

predicting survival risk of patients diagnosed

with Alzheimer’s disease. The signature-based

model was compared to a common survival

random forest model. Our results showed a

15.4% increase of risk prediction AUC at the

time point of 20 months after the first ad-

mission to a specialist memory clinic and the

signature method outperformed the baseline

mixed-effects model by 13.2 %.

1 Introduction

Electronic health records (EHRs) have now become

ubiquitous and offer novel opportunities for clinical

research by supporting the development of intel-

ligent decision support systems and improvement

of patients’ care. One of the distinct features of

EHR is that the data are being collected over time

and might be seen as health data streams, allow-

ing research to study longitudinal trends and make

inference about the progression of disease, treat-

ments and outcomes. However, the proper repre-

sentation of sequential medical events still remains

1Equal contribution.

a challenge. Moreover, longitudinal clinical notes

exhibit a multi-level hierarchical structure, where

events are described and embedded in sentences,

sentences in paragraphs and eventually resulting

in chronologically ordered documents. Recent

works have addressed the problem of capturing

this information directly from raw texts by intro-

ducing novel neural network architectures, such

as attention-based recurrent neural networks (Bai

et al., 2018) and time-aware Transformers (Zhang

et al., 2020). When dealing with chronological clin-

ical notes, practitioners make multiple decisions

on how to structure and transform these sequential

events, which are often simplifications of medical

histories. In this work we proposed a different

methodology to address the problem of learning

from events found in clinical notes, by first extract-

ing them using natural language processing and

then representing the sequential order by means of

the path signatures. The signature (Lyons, 2014) is

a non-parametric representation of heterogeneous

sequential data, offers a feature extraction method

from longitudinal events and can naturally be inte-

grated within a general data mining pipeline. To

demonstrate the methodology, we used the largest

secondary care mental health EHR data in the UK

to develop a survival prognostic model for patients

diagnosed with Alzheimer’s disease.

2 Method

2.1 Data

The data in this study were sourced from the

UK-Clinical Record Interactive Search system

(UK-CRIS), which provides a research platform

(https://crisnetwork.co/) for data mining and anal-

ysis using de-identified real-world observational

electronic patients records from twelve secondary

care UK Mental Health NHS Trusts (Goodday

et al., 2020). UK-CRIS provides access to struc-
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tured information, such as ICD-10 coded diagnoses,

quality of life scales and demographic informa-

tion, as well as various unstructured texts, such as

clinical summaries, discharge letters and progress

notes. The study cohort jointly comprised records

from 24,108 patients diagnosed with Alzheimer’s

disease and various types of dementia, containing

more than 3.7 million individual clinical documents

from two centres: Oxford and Southern Health

Foundation NHS Trusts. The field of clinical NLP

in general, and of mental health and Alzheimer’s re-

search in particular, largely suffers from the dearth

of gold-annotated data. The reason is due to the

shortage of trained annotators with clinical back-

ground who are also authorised to access sensitive

patient-level data. Therefore, to develop a robust

information extraction (IE) model from an insuffi-

cient amount of data, we leveraged the idea of trans-

fer learning using the publicly available MIMIC-III

corpus (Johnson et al., 2016) comprising informa-

tion relating to patients admitted to intensive care

units (ICU) with more than 2.1 million clinical

notes as well as 505 gold-annotated by clinical

experts discharge summaries from the 2018 n2c2

challenge (Henry et al., 2020). We assert that the

study was independently approved and granted by

the Oxfordshire and Southern Health NHS Founda-

tion Trust Research Ethics Committees.

2.2 Information extraction model

The information extraction model was developed

to identify diagnosis, medications and cognitive

health assessment Mini-Mental State Examination

score (MMSE) (Pangman et al., 2000). Addition-

ally, the identified entities were classified accord-

ing to several attributes, such as the ’experiencer’

modality (i.e., whether the MMSE was actually re-

ferring to a patient or to a family member), tempo-

ral information (i.e the date of diagnosis or MMSE

score) and negations (i.e. discontinued medica-

tions) (Harkema et al., 2009). Such drug mentions

were discarded in order to extract the most accu-

rate information. Generic and brand drug names

were normalised using the British National For-

mulary, the core pharmaceutical reference book

(Committee et al., 2019). The architecture of the

named entity recognition model comprised a hy-

brid approach of an ontology-based fuzzy pattern

matching and a bi-directional LSTM neural net-

work architecture with the attention mechanism

(Bahdanau et al., 2014) for sequence classification.

The GloVE word embedding (Pennington et al.,

2014) were fine-tuned on both MIMIC-III and UK-

CRIS data (Vaci et al., 2020; Kormilitzin et al.,

2020). The developed IE model was trained only

on data from the Oxford Health NHS Trust instance

and externally validated on a sample of data from

a regionally different Southern Health NHS Foun-

dation Trust.

2.3 The signature of a path

Repeated measurements, speech, text, time-series

or any other sequential data might be seen as a

path-valued random variable. Formally, a path X

of finite length in d dimensions can be described

by the mapping X : [a, b] → R
d, or in terms of

co-ordinates X = (X1
t , X

2
t , ..., X

d
t ), where each

coordinate Xi
t is real-valued and parametrised by

t ∈ [a, b]. The signature representation S of a path

X is defined as an infinite series:

S(X)a,b = (1,S(X)1a,b, S(X)2a,b, ..., S(X)da,b,

S(X)1,1a,b, S(X)1,2a,b, ...),

(1)

where each term is a k-fold iterated integral of the

path X labelled by multi-index i1, ..., ik:

S(X)i1,...,ika,b =

∫
a<tk<b

...

∫
a<t1<t2

dXi1
t1
...dXik

tk
.

(2)

However, in many real-life applications the first

k-terms of the truncated signature at level L give

a satisfying approximation. Intuitively, it is anal-

ogous to statistical moments of a d-dimensional

vector-valued random variable, such as mean, vari-

ance or higher moments. One can define statistical

moments of a path-valued random variable, which

are essentially the signature moments (Chevyrev

and Oberhauser, 2018) defined in Eq. (2). The sig-

nature S(X) completely characterises a path X up

to tree-like equivalence and is invariant to reparam-

eterisation (Hambly and Lyons, 2010). The signa-

ture can also be expressed in a more compact form

known as log-signature (Liao et al., 2019; Morrill

et al., 2020a), which is the formal power series

of logS(X), while carrying the same information.

Informally, the path signature captures the order

of events. For example, consider two sequences

X1 = aabba and X2 = baaab consisting of a sim-

ple vocabulary with only two letters {a, b}. The

sequences might be presented as paths in 2d space

as shown in Fig. 1. Each linear segment between
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Figure 1: Two paths X1 = aabba and X2=baaab.

two points (Fig. 1) corresponds to a single letter

in the sequence and the arrows denote the tempo-

ral direction of the sequence. Despite the same

Level 1 2 3 4

S(X1) 3 2 1 -0.5 -1 -1/3 -0.5 0

S(X2) 3 2 0 1.5 0.5 0 0 0

Table 1: The first k = 8 terms of the log signature

expansion up to level L = 4. The difference between

two sequences X1 and X2 is apparent starting from the

second level.

number of letters in the sequences {a = 3, b = 2},

the order of letters matters. The signature easily

picks the differences and the first four levels of the

log-signatures of paths are shown in Table 1. The

lower order signature terms S(i) are the increments

along the i-th direction (i.e. the distance between

the endpoints), for example, S(1) = 3− 0 = 3 and

S(2) = 2− 0 = 2 as can be seen in Figure 1. The

second order corresponds to the area enclosed by a

path and a chord connecting endpoints (Chevyrev

and Kormilitzin, 2016).

The usefulness of a path signature as a feature

map of sequential data was demonstrated theoret-

ically (Chevyrev and Oberhauser, 2018) as well

as in numerous machine learning applications in

healthcare (Morrill et al., 2019; Kormilitzin et al.,

2016; Arribas et al., 2018; Morrill et al., 2020b; Ko-

rmilitzin et al., 2017), finance (Arribas, 2018), com-

puter vision (Yang et al., 2017; Xie et al., 2017),

topological data analysis (Chevyrev et al., 2018)

and deep learning (Kidger et al., 2019).

2.4 Independent and outcome variables

The independent variables used in the prognostic

model were medications and the MMSE scores col-

lected over time. The dependent outcome variable

was right-censored time to death data in months.

A synthetic example of the patient’s records (Ta-

ble 2) and the corresponding algorithmically ex-

tracted longitudinal data is presented in Table 3.

The outcome variable was encoded as a tuple:

(True, 34.17) indicating that a person has died

after 34.17 months since the very first visit to a

specialist memory clinic. The patient was treated

by two different medications with a changing pat-

tern and eventually was tapered off medication due

to no further expected improvement.

2.5 Baseline longitudinal data summarisation

The signature transformation might be seen as a

hierarchical statistical summarisation (“feature ex-

traction”) of the longitudinal data along the tempo-

ral dimension. In order to benchmark the proposed

method, we used a time-honoured linear mixed-

effects regression as a baseline model for longitudi-

nal summarisation. Specifically, each patient-level

longitudinal MMSE scores were modelled using

a linear regression and the resulting coefficients,

such as an intercept and a slope, were used as fea-

tures representing the progression of the MMSE

over time. The median number of medication cate-

gories was used as an additional feature, resulting

in three features for each patient.

2.6 Survival random forests

The common statistical approach to analyse the

time-to-event survival data is based on the linear

Cox model (Collett, 2015). However, Miao et al.

(2015) showed that a survival random forest (SRF)

approach (Ishwaran et al., 2008) outperformed lin-

ear Cox model, based on the Harrell’s concordance

index (C-index) (Harrell et al., 1982), and was un-

derstandably capable of identifying non-linear ef-

fects of the input variables as opposed to linear

Cox model. Therefore, we chose the SRF as the

preferred method. The SRF approach was imple-

mented in Python using “scikit-survival” package

(Pölsterl et al., 2015). The Harell’s C-index (the

concordance index) is a goodness of fit measure for

risk scores models. It is a common statistical ap-

proach to evaluate risk models in survival analysis,

where data may be right-censored and corresponds

to rank correlation between predicted risk scores

and observed time points, similarly to Kendall’s τ .

3 Results

3.1 Information extraction model

We used a hybrid approach to developing an IE

model consisting of training a baseline model us-

ing MIMIC-III and n2c2 annotated data. Specifi-

cally, the named-entity recognition (NER) model
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Doc date Text

05-Oct-2016
Today I saw a patient diagnosed with Alzheimer’s, who deteriorated: MMSE 23/30 as compared to 25/30

from 1st January. Started on Rivastigmine.

12-Feb-2017 Today MMSE 19, the patient didn’t respond to Rivastigmine and was changed to Donepezil.

03-Feb-2018 Great response to new treatment (MMSE 23/30), continue on Donepezil.

01-Apr-2019 The patient stopped responding to Donepezil and severely deteriorated (MMSE 14/30), stop Donepezil.

Table 2: A synthetic example of chronological medical records.

Date Medication MMSE

01-Jan-2016 NoMed 25/30

05-Oct-2016 Rivastigmine 22/30

12-Feb-2017 Donepezil 19/30

03-Feb-2018 Donepezil 23/30

01-Apr-2019 Discontinued 14/30

Table 3: Extracted and chronologically structured data

from Table 2.

comprised a transition-based system based on the

chunking model (Lample et al., 2016) where to-

kens were represented as hashed and embedded

representations of the prefix, suffix, shape and lem-

matised features of words, followed by the rule-

based matching using the BNF vocabulary. The

IE model was implemented using “spaCy” python

library1, including negations and temporal infor-

mation identification as well as relationships classi-

fication between the word-tokens using linguistic

features, such as part-of-speech and dependencies.

Finally, the active learning tool “Prodigy”2 was

used for iterative model improvement. Target do-

main training, validation and external validation

data contained a collection of gold-annotated drug

names, diagnosis and cognitive health assessment

MMSE scores as shown in Table 4. The IE model

Concept Training Validation External val. Total

Drug 216 153 30 399

MMSE 169 87 23 279

Diagnosis 570 352 26 948

Table 4: The number of gold-annotated instances in the

training, validation and external validation data sets.

achieved a good and consistent performance on

both validation and external validation data sets

(Table 5). The annotation schema was developed

following the recommendations of Pustejovsky and

Stubbs (2012). The token-level performance met-

rics were evaluated using the SemEval schema (Se-

gura Bedmar et al., 2013) and the inter-annotator

agreement (IAA) of two clinical annotators was

1https://spacy.io
2https://prodi.gy

computed using F1 score.

Validation External val. IAA

Concept Pr Re F1 Pr Re F1 F1

Diagnosis 89.6 96.3 92.8 84.1 86.3 84.8 95

Drug 98 98 98.1 92.4 68.4 78.3 96

MMSE 92.6 74.7 82.8 85.6 81.2 82.6 100

Table 5: Performance (shown in %) of the information

extraction model. IAA - inter annotator agreement.

n male female survival time

died 1962 841 1121 52.2(22.8)

censored 1500 529 971 28.4(16.6)

Table 6: Summary statistics of the extracted data for

survival analysis. Survival time is shown as mean(std)

in months. The MMSE scores were not observed for

censored people later in time, while date of death was

recorded in hospital.

3.2 Prognostic model

Four prognostic models were developed and com-

pared to each other. All models estimated the

survival probability of a patient diagnosed with

Alzheimer’s disease since their first admission to

a memory clinic. We compared signature (“Sig”,

Sec. 2.3) versus non-signature (“Non-sig”, Sec.

2.5) models. We also estimated the added value of

the sequential information contained in the treat-

ment course with medications. Specifically, we

used two sets of input variables: {time, MMSE}
and {time, MMSE, medications}, where time cor-

responds to the date of MMSE score or prescribed

medication as presented in Table 3. For the “Sig”

model, the input variable were first transformed

into signatures, where the categorical medication

names were one-hot encoded and augmented with

numerical MMSE scores to create a path. For the

“Non-sig” model, the longitudinal MMSE scores

were summarised by means of linear models ad-

justing for each patients and the median number of

distinct medications were computed. Both models

were trained and validated using the same folds

of stratified 5-fold cross validation (with fixed ran-

dom seed). The quality of predictions was assessed
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using the Harell’s C-index and the results are sum-

marised in Table 7. The signatures were computed

using the “esig” Python library3, however, alter-

native libraries are also available (Reizenstein and

Graham, 2018; Kidger and Lyons, 2020).

Features Sig Non-sig

{time, MMSE} 0.626(0.009) 0.574(0.022)

{time, MMSE, meds} 0.621(0.011) 0.571(0.019)

Table 7: Harell’s C-index measure of four models. Val-

ues reported as mean(std) over 5-fold cross validation.

We also estimated the time-dependent area un-

der the curve of receiver operating characteristics

(Lambert and Chevret, 2016). It is a natural exten-

sion of a common AUC ROC analysis to possibly

censored survival times where the patients’ cogni-

tive health is usually better at the very first visit to

a memory clinic, while their condition may dete-

riorate later. The time-dependent cumulative dy-

namic AUC ROC of all four models are presented

in Fig. 2. The signature features outperformed the

non-signature ones at all times and the inclusion

of sequential information from switching medica-

tions improved AUC ROC at later times. However,

both models struggle to reliably predict the future

outcomes further than 3 years. This is due to the

limitation of predictors and the available number

of patients after 3 years rather than the capacity of

our model.

10 15 20 25 30 35 40
Months since the first admission to memory clinic

0.600
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0.650

0.675
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Ti
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e-
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Sig no meds
Non-sig no meds
Sig with med
Non-sig with meds

Figure 2: Time-dependent AUC of risk prediction over

time since the first admission to a memory clinic.

4 Discussion and future direction

Unstructured longitudinal electronic health records,

such as free-text clinical notes, inherently contain

rich information about patients’ health and out-

comes over time. The right analytical tools capable

3https://esig.readthedocs.io/

of capturing sequential information can therefore

maximise utilisation of longitudinal EHRs and can

be valuable for supporting clinical decisions and

prognostic models. In this work we implemented a

signature-based approach to represent chronologi-

cal events extracted using natural language process-

ing from clinical notes. Extracted chronological

events can be seen as a trajectory (path) embedded

in a high-dimensional multi-modal space of events

(i.e. different medications, interventions, measures,

etc) and the signature uniquely characterises the

path in the most succinct way. The signature-based

feature extraction approach was compared to hand-

crafted features, comprising a slope and an inter-

cept of MMSE scores over time and the median

number of medications for each patient. The signa-

tures represent a hierarchical collection of features,

where the first order is proportional to linear statis-

tical moments (i.e. mean) and is not sensitive to the

order of data points, as illustrated in Table 1. We

demonstrated that the sequential information about

medications has significantly improved the time-

demented AUC as captured by the signatures (Fig-

ure 2). In future works we will extend the proposed

framework to include the structured information

available in EHR (i.e. lab results, coded procedures

or clinical encounters) and will develop an inter-

pretability framework to make the signature-based

models explainable.
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