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Abstract 7 

Detonation of a high explosive close to a structural component results in a blast load that is highly localized and 8 

nonuninform in nature. Prediction of structural response and damage due to such loads requires a detailed 9 

understanding of both the magnitude and distribution of the load, which in turn are a function of the properties 10 

and dimensions of the structure, the standoff from the charge to the structure, and the composition of the 11 

explosive. It is common to express an explosive as an equivalent mass of TNT to facilitate the use of existing 12 

and well-established semi-empirical methods. This requires calculation of a TNT equivalency factor (EF), i.e. 13 

the mass ratio between the equivalent mass of TNT and the explosive mass in question , such that a chosen blast 14 

parameter will be the same for the same set of input conditions aside from explosive type. In this paper, we 15 

derive EF for three common explosives: C4, COMP-B, and ANFO, using an equivalent upper bound kinetic 16 

energy approach. A series of numerical simulations are performed, and the resultant magnitudes and 17 

distributions of specific impulse are used to derive the theoretical upper bound kinetic energy that would be 18 

imparted to a flexible target. Based on the equivalent mass of TNT of each explosive, which is required to impart 19 

the same kinetic energy for a given target size and standoff distance as of TNT, the EF is calculated. It is shown 20 

that in the near-field, the EFs are non-constant and are dependent on both standoff and target size. The results 21 

in the current study are presented in a scaled form and can be used for any practical combination of charge mass, 22 

distance from the charge to the target, target size, thickness, and density. 23 

 24 
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1. Introduction 26 

The prediction of the blast wave parameters following detonation of a high explosive is important for the 27 

assessment of the dynamic response of a structure subjected to that load. The blast wave parameters, such as the 28 

peak overpressure and impulse, and the magnitude and distribution over the structural element significantly 29 

affect its dynamic response. Analytical methods for the prediction of the blast parameters are rarely available, 30 

and therefore, there are three main approaches for their evaluation, as follows: 31 

 Empirical (or semi-empirical) models, which are given in the form of equations or diagrams. Examples 32 

are the methods given in design manuals, such as the UFC 3-340-02 (USACE, 2008), or the commonly 33 

used equations given by (Kingery and Bulmash, 1984). Being such fast running tools, these models are 34 

preferred by engineers, although they are limited to geometrically simple scenarios and charge 35 

configurations. 36 

 Numerical simulations using hydro-codes (e.g. Grisaro and Edri, 2017; Shin et al., 2015). Although this 37 

approach is expensive in terms of computational time and resources, it provides more accurate results 38 

for complex geometries, various charge shapes, and close-in detonations. 39 

 Experimental studies for more specific and special cases (e.g. Codina and Ambrosini, 2018; Rigby et al., 40 

2019a).  41 

A structure that is exposed to a close-in detonation is expected to experience high magnitudes of overpressure 42 

and impulse. A close-in detonation is commonly defined for scaled distances that are lower than 1.2 m/kg1/3 43 

(ASCE, 2011; CSA, 2012; Ritchie et al., 2018). In addition to the high pressure and impulse magnitudes in the 44 

near-field regime, the blast load in such conditions is expected to be nonuniform over the loaded face of the 45 

structure. These aspects make the prediction of the blast load parameters nontrivial and challenging, especially 46 

by using simplified methods. Although such methods are very common due to their low computational cost, 47 

their accuracy in the near-field regime is doubtful. Furthermore, while empirical models consider an idealized 48 

spherical or hemispherical charge shapes, the charge shape may be different, and in the near-field regime, the 49 

shape may significantly affect the overpressure environment around the charge (Adhikary et al., 2017; Sherkar 50 

et al., 2014). Thus, the two other methods are frequently used. When experimental work is not possible or 51 

practical, i.e. when a large number of scenarios is of interest, numerical simulations may naturally be the 52 

preferable option. 53 

Many of the above semi-empirical approaches assume the explosive is formed of TNT. However, when a 54 

different explosive is used, for the same charge mass, different blast parameters, such as the peak overpressure 55 

and impulse, are derived (Cooper, 1996; Esparza, 1986). In such cases, an equivalent charge mass of TNT is 56 

defined, which would yield the same blast load parameter (impulse, overpressure, etc.) at the same distance. 57 

The mass ratio of the equivalent TNT charge mass and the examined explosive mass is defined as the TNT 58 

equivalency factor (EF). Available methods (Grisaro and Edri, 2017) for predicting the EF values consider 59 

several parameters such as the internal charge energy,  detonation velocity, Chapman-Jouguet pressure, and 60 

explosive density. In a previous study (Grisaro and Edri, 2017), it was found that for the far-field regime (for 61 

3≤Z≤40 m/kg1/3), both the EFs for impulse and overpressure strongly depend on the energy ratio of the examined 62 
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explosive and TNT. However, a different function of the energy ratio was found for the impulse and the peak 63 

overpressure. Also, it was found that a constant value of EF can be used for impulse and pressure for the entire 64 

range of scaled distances referring to the far-field regime. However, there are currently very few studies on TNT 65 

equivalency in the near-field regime. These studies show that unlike the far-field regime, in the near-field regime 66 

a unique EF value for a specific blast parameter cannot represent the real behavior (e.g. Xiao et al., 2020, 2019). 67 

Therefore, in addition to affecting the impulse and pressure values, the EF in the near-field may affect also the 68 

spatial distribution of the blast load over the structural element. 69 

The response of thin plates subjected to close-in detonations was studied by (Rigby et al., 2019a), using a 70 

combination of experimental, numerical, and analytical tools. Since the blast load duration in a close-in 71 

detonation event is expected to be short compared to the period of vibration of the structure, the dominant load 72 

parameter is the impulse. The impulse distribution is expected to be nonuniform, as shown in Figure 1a. Thus, 73 

(Rigby et al., 2019a) defined an impulse enhancement factor, which enables a complex distributed load to be 74 

expressed as an equivalent uniform load which would impart the same kinetic energy to a target plate. It was 75 

shown that peak displacement was closely correlated to energy equivalent impulse, and weakly correlated to 76 

total impulse, therefore the peak displacement could be better predicted with knowledge of the distribution of 77 

loading, as well as its magnitude. 78 

Assuming that a plate is subjected to nonuniform impulsive loading, the following cases are possible. Firstly, 79 

under the assumption that the deformation modes possess infinite resistance to shear as shown in Figure 1b, the 80 

entire plate acts as a rigid body and the deformation mode represents a lower bound of the kinetic energy. A 81 

second possible extreme scenario includes a deformation mode in which the shear resistance between two mass 82 

particles of the plate is zero. Therefore, in this case, the kinetic energy is characterized by its upper bound. It 83 

was also shown by (Rigby et al., 2019a) that two different targets, each experiencing a load that imparts the 84 

same upper bound kinetic energy, will experience similar dynamic peak displacement for different charge mass 85 

and scaled distance. Thus, the prediction of this parameter is essential for the comparison of the structural 86 

response between two different cases. In their study (Rigby et al., 2019a), a single type of explosive charge was 87 

studied (PE4). 88 
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Figure 1 – Nonuniform impulse distribution (a), and modes of deformation related to lower bound (b) and upper 

bound (c) kinetic energy (Rigby et al., 2019a) 

A motivation is raised from the previous information to study and assess the blast loading on plates in the near-89 

field regime, from different explosive types, but with the same mass and standoff distance. The specific impulse 90 

distribution has the potential to be different for different explosive types, therefore the main goal of this study 91 

is to define the EF for energy equivalent impulse, based on the scaled distance of the charge to the loaded plate 92 

face, and the scaled plate dimensions. The main distinction between the current study and previous studies, 93 

which dealt with TNT equivalency factors, is that in previous studies the EF was related to blast wave parameters 94 

at a single point some distance from the explosive, while in the current study the EF is related to loading 95 

distributions which are more closely related to dynamic structural response.  96 

This paper focuses on the derivation and assessment of the TNT EF of three explosives: C4, COMP-B, and 97 

ANFO. It is based on numerical hydro-code simulations and uses a common scaling theory. The EF is calculated 98 

for each explosive and the results are presented in their scaled form. The paper is outlined as follows: The 99 

methodology is explained in the following section, after which the numerical model is presented. The model is 100 

validated and verified, and it is used for a parametric study for the assessment of the impulse magnitude and 101 

distribution along the radius of a circular plate, for various scaled distances from the target and scaled target 102 

sizes. Reference scaled data for TNT explosives is generated from the numerical simulation. The results for C4, 103 

COMP-B, and ANFO are scaled and analyzed using the scaling laws to find the equivalent TNT charge which 104 

yields the same upper bound kinetic energy that constitutes a representative measure of the dynamic structural 105 

response. 106 

2. Methodology 107 

The case considered in the current study refers to the detonation of a spherical charge (initiated at its center) 108 

close to a circular thin plate, as illustrated in Figure 2. The charge mass is W, the closest distance from the charge 109 

center to the target is R, the target radius is a, and the coordinate along the target radius is 0≤r≤a. The coordinate 110 



5 

 

r corresponds to an angle of   = arctan(r/R) between the axisymmetric axis and a line connecting the charge 111 

center and a point located at coordinate r along the radial direction of the target. The following definitions can 112 

be made: The scaled distance between the charge center and the target is Z = R/W1/3, and the scaled target radius 113 

is z = a/W1/3. Note that clearing effects are not considered in the current study. 114 

         
Figure 2 – Layout of the case considered in the current study (axisymmetric view) 

As mentioned in the introduction section, the dominant parameter that should be compared between two loading 115 

cases to get the same peak displacements is the upper bound kinetic energy of the structure Ek,u (Rigby et al., 116 

2019a) that reads: 117 

 2
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where  is the density, t is the thickness, i is the nonuniform specific impulse (per unit area), A is the structure 118 

surface area exposed to the blast load, and (x, y) are Cartesian coordinates on the target plate, where the origin 119 

is the target center. Eq. (1) shows that the impulse distribution over the plate surface is a dominant parameter 120 

affecting the kinetic energy. Note that overpressure does not appear in Eq. (1). Due to the high intensity and 121 

short duration of the blast load compared to the period of vibrations of the structure, the loading condition is 122 

considered impulsive, and the impulse is the only parameter that affects the structural response. In the current 123 

study, the structure is a thin circular plate, and for that case, Eq. (1) can be rewritten in polar coordinates: 124 
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where i(R,r) is the impulse along the radial direction, measured from the circular plate center (see Figure 2). 125 

The prediction of the blast load parameters follows the Hopkinson-Cranz scaling laws (Baker, 1973; Cooper, 126 

1996), which are based on Buckingham  theorem. According to the scaling laws, the scaled impulse (i/W1/3) is 127 

a function of the scaled distance Z. Since the main goal of the current study is to assess the upper bound kinetic 128 

energy, it must be scaled as well. Therefore, we present a scaled form of the upper bound kinetic energy which 129 
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includes the scaled plate parameters (density, thickness, and radius) and the blast parameters (impulse and 130 

distance). 131 

The EF for the structural response should be clearly defined. Since the upper bound kinetic energy depends on 132 

the scaled distance Z and the target size (defined by the angle of incidence or by the scaled plate radius z), 133 

the definition of the equivalent TNT mass is as follows: The equivalent TNT mass is the mass of the examined 134 

explosive multiplied by EF, such that it would yield the same upper bound kinetic energy (and hence energy 135 

equivalent uniform impulsive load) for a TNT charge located at the same absolute distance from the plate, and 136 

for the same plate absolute dimensions.  137 

The numerical model shown in Section 3 provides the impulse and its spatial distribution which is then used to 138 

calculate the upper bound kinetic energy. Thus, the numerical model has to be first validated with available 139 

experimental results. After its validation, the impulse distributions for various cases are used to calculate the 140 

upper bound kinetic energy in each case. The results for the upper bound kinetic energy for various plate sizes, 141 

standoff distances, and charge masses are first produced for TNT. Next, the data for TNT is taken as a reference 142 

data, to which the results of the other explosives are compared, to find their EF.  143 

3. Numerical modeling 144 

3.1 Geometry and materials 145 

The numerical models are solved in Ansys Autodyn hydro-code (Ansys, 2016). A typical numerical 2D 146 

axisymmetric model is shown in Figure 3, for 50 g TNT located 200 mm from the target. The model includes a 147 

400x400 mm2 Eulerian mesh. The mesh is filled with air and spherical explosive charge (in the axisymmetric 148 

model, the spherical charge is represented by a semi-circle shape with its center located along the axisymmetric 149 

axis). The detonation point is assumed to be located at the charge center. The target is modeled as a rigid 150 

reflected boundary condition along the right vertical boundary, with the implicit assumption that no fluid-151 

structure softening occurs (congruent with the impulsive nature of the loading). The other boundaries (excluding 152 

the axisymmetric axis) are modeled with “flow-out” boundary conditions, which allow the detonation products 153 

and pressures to vent from the model without any reflections. Numerical gauges are places with intervals of 5 154 

mm along the target radius, to measure the reflected overpressure histories and thus determine specific impulse. 155 
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Figure 3 – Typical axisymmetric numerical model  

The air is modeled with an ideal gas equation of state (EOS) as follows: 156 

 1p e    (3) 

where p is the pressure,  is the heat capacity ratio,  is the density, and e is the internal energy per unit 157 

mass. Initially, the air is assumed to be in standard conditions with a density of  = 1.225 kg/m3 and a pressure 158 

of p = 101.332 kPa. The corresponding internal energy per unit mass is e = 0.206 MJ/kg.  159 

The explosives are modeled by the Jones-Wilkins-Lee (JWL) EOS (Ansys, 2016; Lee et al., 1968) as shown in 160 

Eq. (4):  161 
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where 0 is a reference density. A1, A2, R1, R2, and w are constants. The detonation velocity, D, and the Chapman-162 

Jouguet pressure, PCJ, are also considered in Autodyn for the detonation process. Four types of explosives are 163 

considered in the current study and their well-known JWL parameters are given in Table 1. 164 
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 165 

Table 1 – JWL EOS parameters for the examined explosives 

Explosive 0 (g/cm3) A1 (kPa) A2 (kPa) R1 R2 w e (MJ/kg) D (m/s) PCJ (GPa) 

TNT (Dobratz, 

1985) 
1.63 3.712⋅108 3.231⋅106 4.15 0.95 0.30 4.294 6930 21.0 

ANFO (Davis and 

Hill, 2002) 
0.93 4.946⋅107 1.891⋅106 3.91 1.12 0.33 2.668 4160 5.15 

C4 (Dobratz, 

1985) 
1.60 6.098⋅108 1.295⋅107 4.50 1.40 0.25 5.621 8193 28 

COMP-B 

(Dobratz, 1985) 
1.72 5.242⋅108 7.678⋅106 4.20 1.10 0.34 4.950 7980 29.5 

3.2 Convergence study and validation 166 

Since a close-in detonation is modeled, the element size may be critical to achieving sufficient accuracy of the 167 

results, and a mesh sensitivity analysis is therefore performed. The element size determined for a converged 168 

solution is 0.25 mm, which corresponds to 2.56 million elements in the model. Figure 4 presents an example of 169 

the difference between two simulations with two different meshes for 50 g TNT charge located at 50 mm from 170 

the target. Results are presented for element sizes of 0.25 mm and 0.5 mm, which includes 640,000 elements. 171 

Overall, there is a good agreement between the two cases, with some deviation concentrated in r→ 0 and a 172 

maximum difference of approximately 6% between the two cases. In view of the balance between accuracy and 173 

computational effort, an element size of 0.25 mm was used to perform a parametric study. It should be noted 174 

that for smaller mesh sizes the differences were negligible. A simulation with an element size of 0.25 mm 175 

required about 12 hours run time in a standard Intel i7 desktop with 16 GB RAM. 176 

 
Figure 4 – Mesh sensitivity analysis for 50 g TNT located at 50 mm from the target 

 177 

Radial distance

r
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3.3 Validation 178 

The numerical results are first validated by comparisons with experimental data. The experimental study of 179 

(Rigby et al., 2018, 2019a) in which 100 g spherical PE4 charges were detonated close to large, nominally rigid, 180 

circular target plates are used. In these tests, Hopkinson pressure bars were used to measure the reflected 181 

overpressure acting on the target along the radial direction. The present modeling uses the JWL parameters of 182 

C4 for the PE4 charge as the PE4 explosive is nominally identical to C4 (Rigby et al., 2019a). The impulse was 183 

calculated by numerically integrating the overpressure-time history measurements at each gauge with respect to 184 

time. Figure 5 shows the peak impulse along the radial direction (which is the vertical direction in the 185 

axisymmetric numerical model shown in Figure 3) and compares the numerical results with the experimental 186 

ones. The numerical results are within the scatter of the experimental data, and a good agreement is observed. 187 

 
Figure 5 – Validation with experimental data from (Rigby et al., 2019b) for 100 g PE4 located 80 mm from the target 

Further validation of the numerical model is achieved by comparing its results to the empirical diagrams given 188 

in UFC 3-340-02 (USACE, 2008) for TNT charges. In UFC 3-340-02, the scaled impulse is given as a function 189 

of the angle . The comparison refers to two cases with scaled distances of Z = 0.198 m/kg1/3 and Z = 0.784 190 

m/kg1/3. The scaled impulse as a function of the angle of incidence for each case is presented in Figure 6. The 191 

numerical results are in good agreement with the TNT-standard empirical data provided in UFC 3-340-02.  192 

The above findings demonstrate the validation and verification of the numerical model. The model is used in 193 

the next section for a parametric study to obtain the impulse distribution, which serves as an input parameter for 194 

calculating the target kinetic energy for various cases.  195 

Present numerical model
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Figure 6 – Comparison with data from the UFC 3-340-02 (USACE, 2008) (solid line: UFC 3-340-02, circle markers: 

numerical model) 

4. Parametric study  196 

4.1 Simulation plan 197 

The numerical model is used to perform a parametric study. Firstly, a set of numerical calculations are performed 198 

to establish reference data for TNT, which is then used as the basis for the EF calculation of each explosive. 199 

The simulation plan for TNT is shown in Table 2. The charge mass W varies from 0.308 to 50 g. The 200 

distance R in Table 2  is defined as the distance between the charge center and the closest point on the target. 201 

The corresponding scaled distance, Z = R/W1/3, is calculated and shown in Table 2 as well, and they are in the 202 

range 0.136 < Z < 3.700 m//kg1/3. The distances R were chosen such that the absolute distance between the 203 

charge center and the left vertical flow-out boundary will be no less than 150 mm to avoid any numerical effects 204 

of this boundary on the reflected impulse distribution on the target. 205 

Table 2 – Simulation plan for TNT 

 W (g) R (mm) Z (m/kg1/3) 

50.000 50.0 0.136 

50.000 73.0 0.198 

50.000 100.0 0.271 

50.000 150.0 0.407 

50.000 200.0 0.543 

50.000 250.0 0.679 

2.000 150.0 1.191 

2.000 188.0 1.492 

2.000 220.0 1.746 

0.579 183.3 2.200 

0.579 216.7 2.600 

0.579 250.0 3.000 

0.416 250.0 3.350 

0.308 250.0 3.700 

Z=0.198 m/kg1/3



Z=0.0754 m/kg1/3
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After establishing the reference data for TNT, numerical simulations for ANFO, C4 and COMP-B have been 206 

performed, and the simulation plan is shown in Error! Reference source not found.. In total, 44 simulations 207 

have been performed (14 simulations to achieve the reference data for TNT and 10 simulations for each 208 

examined explosives). Note that the reference data for TNT is calculated up to Z = 3.7 m/kg1/3, while the data 209 

for the examined explosives (ANFO, C4 and COMP-B) is calculated up to Z = 3 m/kg1/3. The reason is that the 210 

value of the EF at Z = 3 m//kg1/3 is expected to be calculated, and in the calculation of the EF, the intersection 211 

point with the reference TNT curves may exist in the range of Z > 3 m/kg1/3. 212 

Table 3 – Simulation plan for ANFO, C4 and COMP-B 

 W (g) R (mm) Z (m/kg1/3) 

50.000 50 0.136 

50.000 73 0.198 

50.000 100 0.271 

50.000 150 0.407 

50.000 200 0.543 

50.000 250 0.679 

2.000 150 1.191 

2.000 188 1.492 

2.000 220 1.746 

0.579 250 3.000 

4.2 Upper bound kinetic energy calculation 213 

As outlined previously, the results of the upper bound kinetic energy for TNT are taken as reference data for the 214 

EF calculations. Because the impulse is given in discrete locations along the target radius, where the numerical 215 

gauges were placed, the integral in Eq. (2) is numerically solved using the trapezoid numerical method. For each 216 

numerical gauge, Ek,u is calculated, assuming that the gauge is located at the edge of a given circular plate (i.e. 217 

the target radius a is equal to the radial position of the gauge). To describe more general results which can be 218 

used in any parameter combination, a scaled form of Eq. (2) should be introduced. After scaling the impulse i, 219 

the target radius a, the coordinate along the target radius r, and the target thickness t, by W1/3, the scaled form 220 

of Eq. (2) is shown in Eq. (5). The density is not scaled according to the scaling theory. 221 

 
1/3 1/3

1/3

2
,

1/3 2/3 1/3

0

,

r a
z

W W
k u

r
z

W

E t i r
dz f Z z

W W W W
 

 

 

   (5) 

Ek,u depends on the determined values of the target thickness and density, as shown in Eq. (2). However, for the 222 

implementation of the scaled form, any value for the thickness and density of the target can be randomly chosen 223 

for the absolute value of Ek,u calculated by Eq. (2). Although the absolute value of Ek,u is divided by the target 224 

density and the thickness (Eq. (2)), in the scaled form Ek,u is multiplied again by the same values (Eq. (5)), and 225 
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therefore, the same scaled value is achieved for any target thickness and density (the upper bound kinetic energy 226 

relation is assumed to hold, provided the plates can still be considered thin and deform as a membrane). From 227 

all simulations, the results are collected and for a given target defined by a scaled dimension z, or a constant 228 

angle of incidence , the upper bound kinetic energy is calculated as a function of the scaled distance Z between 229 

the charge center and the target loaded face.  230 

The upper bound kinetic energy was calculated and scaled for each explosive type from all simulations. Since 231 

Ek,u is a function of two variables, the left side of Eq. (5) is represented by a surface, defined by Z and z, for each 232 

explosive. An example of the scaled surface for TNT is shown in Figure 7 in 2D contour form. Using the same 233 

procedure, the surfaces were produced also for ANFO, C4, and COMP-B.  234 

Figure 8 presents an example of a comparison between the scaled upper bound kinetic energy for a given scaled 235 

target radius z = 0.4 m/kg1/3. Note that a gauge that is placed at a given radial distance is located at a different 236 

scaled distance along the target radius if a different charge mass is used. Hence, in cases where there was no 237 

gauge located at r = zW1/3 (where z = 0.4 m/kg1/3 in this example), linear interpolation was applied to estimate 238 

the value at z = 0.4 m/kg1/3. It can be seen that as the scaled distance Z increases, the energy decreases, as 239 

expected. For the same conditions (same plate radius, thickness and density, and same standoff distance between 240 

the charge and the plate), C4 yielded the highest value of the upper bound kinetic energy and ANFO yielded the 241 

lowest one. Therefore, it is expected that there would be different EF values for each explosive, and there is a 242 

motivation to study the variation of the EF with scaled distance and scaled target size. 243 

  
Figure 7 – Example of the scaled upper bound kinetic energy surface for TNT 

 244 
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Figure 8 – Example of the scaled upper bound kinetic energy for different explosives and z = 0.4 m/kg1/3 

5. TNT equivalency factor (EF) 245 

5.1 Calculation approach 246 

The EF for the upper bound kinetic energy (and as a result, for structural response (Rigby et al., 2019a)) was 247 

calculated based on blast scaling laws, as follows: It is evident that the upper bound kinetic energy for ANFO, 248 

C4, and COMP-B is different than for TNT for the same conditions (same charge mass, absolute distance R, 249 

target radius a, and target thickness). Therefore, in order to conserve upper bound kinetic energy (and hence 250 

equivalent uniform impulse) when relating the examined explosive to an equivalent mass of TNT, the explosive 251 

should be scaled to a different mass of TNT such that its scaled upper bound kinetic energy, scaled distance, 252 

and scaled target size would lie on the TNT scaled curves. The results would be considered as the equivalent 253 

TNT charge mass to use for the calculation of the EF. When the charge mass is changed, the scaled distance Z 254 

and the scaled target radius z are also changed, because they depend on the charge mass. Thus, by changing a 255 

point on the scaled surface of an explosive different to TNT by changing the charge mass, all three axes are 256 

changed, where the main goal is to transfer this point to the scaled surface of TNT.  257 

The solution is numerically achieved by using the following procedure: Assuming that the scaled surface of the 258 

data for TNT is known: 259 

 ,

1/3
,

k uE t
f Z z

W W
    (6) 

where f is the surface function for TNT, the equivalent charge mass for the examined explosive is calculated for 260 

a specific case by solving the following equation: 261 

,

1/3 1/3 1/3
,

k u

eq eq eq eq

E t R a
f Z z

W W W W


 
      

 
     (7) 
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where Ek,u is the calculated upper bound kinetic energy for the examined explosive, located at a distance R, for 262 

a target defined by the radius a.  263 

The results for the EF are to be presented in scaled form for a given scaled target radius z. First, the scaled values 264 

for a given z are found for the examined explosives, for each Z available from the numerical simulations. Eq. 265 

(7) is solved using the bisection method. Throughout the numerical procedure, different values of Weq are chosen 266 

in an attempt to find the solution. By changing Weq, the scaled target size z and the scaled distance Z are changed. 267 

Since the function f of TNT must be used with the “new” z and Z, linear interpolation is applied to produce the 268 

data between the known values derived from the numerical simulation. The solution provides the equivalent 269 

charge mass Weq, and the resulting EF is the ratio between the calculated equivalent charge mass Weq and the 270 

actual charge mass W, i.e. EF = Weq/W.  271 

5.2 Results and discussion 272 

The EF is calculated for ANFO, C4, and COMP-B for scaled target sizes of z = 0.2, 0.4, and 0.6 m/kg1/3 by 273 

applying the suggested procedure over a range of scaled distances. The variation of the EF with the scaled 274 

distance Z for the three given values of z is shown in Figure 9, for the three examined explosives. Note that 275 

linear interpolation was used in the numerical solution, which is an approximation of the variation between two 276 

simulated points on the surface. The results are also presented in Table 4. 277 

 

 

 

Figure 9 – Calculated EF values for (a) ANFO, (b) C4, and (c) COMP-B 

EF=0.66 for the far-field regime

(Grisaro and Edri, 2017)

(a) EF=1.25 for the far-field regime 

(Grisaro and Edri, 2017)
(b)

EF=1.17 for the far-field regime

(Grisaro and Edri, 2017)

(c)
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 278 

Table 4 – Summary of the TNT equivalency results 

Z 

(m/kg1/3) 
ANFO C4 COMP-B 

 
z = 0.2 

m/kg1/3 

z = 0.4 

m/kg1/3 

z = 0.6 

m/kg1/3 

z = 0.2 

m/kg1/3 

z = 0.4 

m/kg1/3 

z = 0.6 

m/kg1/3 

z = 0.2 

m/kg1/3 

z = 0.4 

m/kg1/3 

z = 0.6 

m/kg1/3 

0.198 0.75 0.75 0.75 1.10 1.11 1.12 1.08 1.08 1.08 

0.271 0.73 0.73 0.73 1.11 1.13 1.14 1.08 1.09 1.10 

0.407 0.72 0.72 0.72 1.10 1.13 1.15 1.08 1.10 1.11 

0.543 0.70 0.70 0.70 1.13 1.16 1.17 1.09 1.11 1.12 

0.679 0.64 0.66 0.67 1.17 1.18 1.19 1.11 1.13 1.13 

1.191 0.64 0.64 0.65 1.14 1.15 1.17 1.09 1.10 1.12 

1.492 0.65 0.65 0.66 1.21 1.22 1.22 1.14 1.15 1.15 

1.746 0.63 0.64 0.64 1.22 1.22 1.23 1.14 1.15 1.15 

3.000 0.66 0.66 0.66 1.22 1.21 1.21 1.14 1.14 1.14 

 279 

Opposed to the EF values derived in previous studies for the far-field (e.g. Grisaro and Edri, 2017), the 280 

calculated EF values for the three examined explosives vary with the scaled distance Z, for a given scaled target 281 

size z. However, the variations are quite moderate with the scaled distance. The EFs for C4 and COMP-B are 282 

larger than 1.0, and the EF for ANFO is smaller than 1.0, as expected.  283 

The EFs of ANFO, C4, and COMP-B for far-field explosions were found to be ~0.66, ~1.25, and ~1.17, 284 

respectively (Grisaro and Edri, 2017). An interesting observation in this study shows that the EF values for these 285 

three explosives converge to these values, as the scaled distance increases (see Figure 9 and Table 4). ANFO 286 

converges more closely to the far-field EF values, whereas C4 and COMP-B converge to a value slightly below 287 

the (Grisaro and Edri, 2017) values. Within this observation, the EFs of C4 and COMP-B increases as the scaled 288 

distance Z increases, while it was found that the EF for ANFO decreases as Z increases. Our values for the EF 289 

for ANFO, C4 and COMP-B in the far-field regime are 0.0%, -2.5% and -2.4% lower than the values obtained 290 

by (Grisaro and Edri, 2017), respectively. 291 

By changing the scaled target size z, there is a variation between the calculated EF values for C4 and COMP-B, 292 

while for ANFO the differences are smaller. In all cases, for the larger Z, which is closer to the far-field regime, 293 

the differences are negligible. Since specific impulse distribution is affected by explosive type, and different EF 294 

values are derived for different scaled distances Z, for the largest examined value of Z the impulse distribution 295 

is more uniform and the effect of target size is therefore less significant. Hence the EF values for increasing Z 296 

approach those calculated for far-field conditions in a previous study (Grisaro and Edri, 2017), and the effect of 297 

the nonuniform distribution is less significant. 298 
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6. Summary and conclusions 299 

While TNT equivalency has been previously studied in terms of the blast wave parameters, in the current study, 300 

it is studied in terms of the structural response of thin plates under close-in detonations. Accordingly, the 301 

equivalency factors are calculated with respect to the upper bound kinetic energy, which was demonstrated to 302 

represent a physical measure for the resultant peak dynamic displacement of the plate (Rigby et al., 2019a). The 303 

study is based on numerical simulations, which are validated against experimental results and simplified 304 

methods. A parametric study is presented, which includes four types of explosives (TNT, ANFO, COMP-B, 305 

and C4) placed at various distances from a circular target with various radii. The impulse distribution along the 306 

target radial direction, and as a result, the upper bound kinetic energy, are calculated for each simulation and 307 

each target size. The TNT equivalency factors are calculated based on analytical considerations and blast wave 308 

scaling laws. 309 

The following conclusions are drawn from the current study: 310 

  Unlike the behavior observed in far-field loading conditions, the TNT equivalency factors have been 311 

found to vary with the scaled distance in the near-field regime. For the largest scaled distance examined 312 

in this study, the EFs tend to converge on the values that have been found in previous studies dealing 313 

with far-field explosions. In addition, a change in the scaled target size, z, has a decreasing effect on the 314 

variation of the TNT equivalency factors with increasing scaled distance Z. 315 

 For C4 and COMP-B, an increase of the equivalency factors has been observed when increasing the 316 

scaled distance Z. However, for ANFO, the opposite trend has been found, and smaller TNT 317 

equivalency factors have been obtained for increasing scaled distances.  318 

 The results in the current study have been presented in a scaled form and therefore they can be used for 319 

any combination of charge mass, distance from the charge to the target, target size, thickness, and 320 

density.  As far as the scaled parameters are within the examined scaled limits, no further analyses are 321 

required to predict the EF given by the nonuniform impulse distribution acting on the target face. 322 

 The approach presented in the current study includes the following limitations: the analyzed target is 323 

relatively thin, and the energy is calculated based on the assumption that there is no variation of the 324 

velocity and mass across the target thickness. The clearing effect is ignored. The material constitutive 325 

law of the target is linear and any nonlinear effects, accumulation of damage, and potential failure 326 

mechanism throughout the response are ignored. 327 

 The results presented in the current paper refer to a spherical charge shape. It is known that charge shape 328 

has a significant effect on the blast parameters in the near-field, and therefore, on the structural response, 329 

so additional EFs would need to be calculated if the explosive was formed into a different shape. In 330 

addition, the charges are detonated at their centroid (i.e. at the center of the sphere) and the point of 331 

detonation may affect the impulse distribution in the near-field. However, these features can be easily 332 

addressed, and the proposed approach can be augmented to consider their effects on the results. 333 
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 The approach presented in the current paper is novel, and it provides important insight regarding the 334 

TNT equivalency in the near-field which may be used as a first step when analyzing the blast response 335 

of structures under close-in detonations. 336 
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