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Abstract: Bacterial keratitis is a corneal infection which may cause visual impairment or even loss

of the infected eye. It remains a major cause of blindness in the developing world. Staphylococcus

aureus and Pseudomonas aeruginosa are common causative agents and these bacterial species are

known to colonise the corneal surface as biofilm populations. Biofilms are complex bacterial

communities encased in an extracellular polymeric matrix and are notoriously difficult to eradicate

once established. Biofilm bacteria exhibit different phenotypic characteristics from their planktonic

counterparts, including an increased resistance to antibiotics and the host immune response.

Therefore, understanding the role of biofilms will be essential in the development of new ophthalmic

antimicrobials. A brief overview of biofilm-specific resistance mechanisms is provided, but this is a

highly multifactorial and rapidly expanding field that warrants further research. Progression in this

field is dependent on the development of suitable biofilm models that acknowledge the complexity

of the ocular environment. Abiotic models of biofilm formation (where biofilms are studied on

non-living surfaces) currently dominate the literature, but co-culture infection models are beginning

to emerge. In vitro, ex vivo and in vivo corneal infection models have now been reported which use

a variety of different experimental techniques and animal models. In this review, we will discuss

existing corneal infection models and their application in the study of biofilms and host-pathogen

interactions at the corneal surface.

Keywords: microbial keratitis; bacterial keratitis; cornea; infection; biofilm; models; in vitro; ex vivo;

in vivo

1. Introduction

Bacterial keratitis is a potentially sight-threatening eye infection, localised to the cornea.

The infection is characterised by the presence of replicating bacteria on the ocular surface, which disrupt

the integrity of the corneal epithelium and result in inflammation of the corneal stroma [1].

Early symptoms include pain, redness, excessive lacrimation, light sensitivity and blurred vision.

Examination of the eye reveals lid oedema, congestion of conjunctiva, corneal haze and a variable
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degree of inflammation of the anterior chamber. The condition results in corneal scarring or in extreme

cases, corneal perforation and loss of the eye [2]. According to the World Health Organization, corneal

blindness is currently the fourth largest contributor to global blindness [3] and instances of ocular

trauma/corneal ulceration have been estimated to cause 1.5-2 million new cases of monocular blindness

per year [4]. Following ocular surface trauma, the cornea becomes highly susceptible to infection and

so many of these cases involve an infection component. Corneal infections may be caused by bacteria,

fungi, viruses or protozoans (collectively termed ‘microbial keratitis’) [5] but this review will focus

solely on bacterial keratitis. Bacterial species most commonly responsible for bacterial keratitis include

Staphylococcus aureus and Pseudomonas aeruginosa, although geographic variations in predominance

have been reported [6–8].

Predisposing Risk Factors

The healthy cornea is highly resistant to infection and so microbial keratitis rarely occurs

in the absence of predisposing risk factors [9]. Reported risk factors include corneal trauma,

contact lens-wear, chronic ocular surface disease, ocular surgery and systemic diseases associated with

an immunocompromised state [10,11]. These factors compromise the resistance mechanisms employed

by the cornea, rendering it newly susceptible to infection [9]. Although microbial keratitis occurs in

both developed and developing countries, there are large differences in the disease epidemiology

and aetiology [12]. In developing countries, corneal trauma constitutes the major risk factor in the

development of microbial keratitis and this is thought to reflect the increased size of the agricultural

workforce in these countries, e.g., rice stalks and thorns are a common cause of ocular injury for farmers

in South India [13,14]. Support for this is provided by a recent epidemiological study, conducted in

South India (n = 252). Ocular trauma was reported for 72% of microbial keratitis infections and 63%

of patients were employed as agriculturists [15]. In contrast, contact lens-wear constitutes the major

risk factor in the development of microbial keratitis in more developed countries. Studies conducted

in France and Sweden identified contact-lens wear as the major risk factor in ~50% of cases [10,16]

and steep rises in the incidence of microbial keratitis in developed countries have been linked to

the increased popularity of contact lenses. In Minnesota, a 435% increase in microbial keratitis was

recorded over a 39-year period, following the introduction of contact-lenses [17].

2. Biofilms

A biofilm has been defined as “a microbially derived sessile community characterized by cells

that are irreversibly attached to a substratum or interface or to each other, are embedded in a matrix of

extracellular polymeric substances that they have produced, and exhibit an altered phenotype with

respect to growth rate and gene transcription” [18]. Biofilms form on both biotic and abiotic surfaces

and are ubiquitous in infection. It is estimated that over 80% of microbial infections affecting the

human body involve a biofilm component [19], and this includes various ocular infections [20,21].

Biofilm formation has been directly visualised at the corneal surface during experimental corneal

infection [22] and bacteria obtained from corneal infections display biofilm forming activity [23,24].

The biofilm life-cycle (Figure 1) can be divided into three main stages: Initial attachment, biofilm

maturation and dissemination [25]. The process of dissemination creates particular challenges in the

treatment of biofilm infections, as it allows biofilm bacteria to regain their planktonic characteristics

and colonise distal sites within the body. As a result, many biofilm infections become chronic and are

recurrent in nature [26] and eradication of biofilms is further complicated by an enhanced resistance

phenotype [27–29]. Biofilm literature is currently dominated by abiotic models which lack any living

cells [30]. Numerous studies have investigated biofilm formation on contact lenses/lens cases, as well

as the efficacy with which different lens materials and disinfecting solutions can be used to reduce

bioburden [31–35]. However, these models lack crucial interaction between bacteria and animal/human

tissues. To understand various aspects of biofilm and their true implications it will be important that
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co-culture models investigating biofilm formation at the biotic surface are developed. In this review,

we will focus on the presence of biofilm at the biotic corneal surface.

 

 

Figure 1. The biofilm life-cycle. The biofilm life-cycle consists of three main stages: (1) Attachment:

Planktonic, free-living bacteria adhere to a surface. This is mediated by a combination of physical

factors (e.g., surface hydrophobicity, electrostatic interactions) and bacterial appendages (e.g., pili,

flagella). (2) Biofilm maturation: Adherent bacteria proliferate to form microcolonies. Bacteria produce

Extracellular Polymeric Substances (EPS), EPS matrix stabilises the bacterial network. (3) Dissemination:

A subset of bacteria detach, regain some of the characteristics of planktonic bacteria and colonise

distal sites.

3. Antibiotic Resistance in Biofilms

A major concern for the treatment of bacterial keratitis is the emergence of antibiotic resistance.

Two of the most common causative agents, S. aureus and P. aeruginosa, are ESKAPE pathogens:

an acronym used by the Infectious Diseases Society of America to describe 6 major pathogens

(Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas

aeruginosa, and Enterobacter species) that commonly cause nosocomial infections and that use

various antibiotic resistance mechanisms [36,37]. Furthermore, S. aureus and P. aeruginosa have

been identified by the World Health Organization as ‘High’ and ‘Critical’ priority targets, in the

development of new antibiotics [38]. Evidence of increasing antibiotic resistance among ocular isolates

is provided by longitudinal studies [39,40] and of particular concern is the observation that resistance to

fluoroquinolones is increasing for both Methicillin Susceptible (MSSA) and Methicillin Resistant (MRSA)

S. aureus strains [40]. In the UK, fluoroquinolones are currently used as the first-line antibiotic in the

treatment of bacterial keratitis [41]. Antibiotic resistance data for P. aeruginosa ocular isolates is varied,

with studies reporting Multi-Drug Resistant (MDR) isolates in the range of 6.52-42.9% [42,43]. Overall,

the US Department of Health and Human Services has reported that MDR P. aeruginosa constitutes

13% of all P. aeruginosa infections (n = 6700) [44]. Infections involving antibiotic resistant bacteria are

difficult to treat and often require combination antibiotics in high doses (fortified therapy) instead of

the standard fluoroquinolone monotherapy. Furthermore, increased levels of antibiotic resistance have

been linked to poorer clinical outcomes, with one study reporting a significant association between the

Minimum Inhibitory Concentration (MIC) of the treatment antibiotic(s) and the length of healing time

for corneal ulcers [45].

3.1. Mechanisms of Biofilm-Specific Antibiotic Resistance

To tackle the growing threat of antibiotic resistance, it is important that we understand the antibiotic

resistance mechanisms used by bacteria. Resistance is largely attributable to genetic mutations and

the acquisition of specific antibiotic resistance genes by horizontal gene transfer. Common genetic

mechanisms include the presence/overexpression of efflux pumps that remove antibiotics, stimulation

of modifying enzymes that inactivate antibiotics and the modification of bacterial target sites [46].

The formation of biofilms has also been associated with an increased resistance to antimicrobials [27].
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However, biofilm-specific antimicrobial resistance does not appear to be governed by the same

genetic elements that confer resistance in planktonic bacteria and dissemination of bacterial biofilms

has been associated with a return in susceptibility to antimicrobials [47]. This suggests that the

multicellular nature of biofilms is central in explaining biofilm-specific antibiotic resistance, a topic

more extensively reviewed elsewhere [48,49] and three main hypotheses that acknowledge the

importance of multicellularity have been proposed.

3.1.1. Limited Antimicrobial Penetration

One explanation is that the presence of a biofilm network limits antimicrobial penetration,

thereby preventing effective concentrations of antibiotic from reaching all of the cells in the population.

Not only does the presence of a biofilm act as a physical barrier, but antimicrobials may be deactivated

or sequestered within the extracellular matrix environment [50]. For instance, alginate, eDNA and

periplasmic glucans are all components of the P. aeruginosa biofilm environment that have been shown to

impede the movement of antibiotics [51,52]. Further support is provided by a recent study investigating

the relationship between antibiotic penetration and bacterial clearance. Antibiotics that diffused more

readily across S. aureus biofilms were associated with decreased bacterial recovery, demonstrating

that the ability to penetrate the biofilm matrix is important in reducing bacterial load [53]. However,

there is one major problem with this explanation, which is that if transport limitations were a major

factor in antibiotic resistance, we would expect the effectiveness of antibiotics to return once the biofilm

matrix became saturated with the drug compound. On the contrary, biofilm bacteria have been shown

to exhibit continued resistance at antibiotic concentrations that greatly exceed the minimum inhibitory

concentration (MIC) and minimum bactericidal concentration (MBC) [54,55].

3.1.2. The Presence of Altered Chemical Microenvironments

Further support for the idea that transport limitation does not play a major role in antimicrobial

resistance is provided by a study investigating the relative effects of antibiotic penetration, metabolic

activity and oxygen availability on the antibiotic resistant phenotype of P. aeruginosa biofilms [56].

The use of a diffusion bioassay revealed that both ciprofloxacin and tobramycin are able to

penetrate P. aeruginosa biofilms and that zones displaying greatest antibiotic resistance corresponded

with areas of low metabolic activity and oxygen concentration, rather than decreased antibiotic

concentration. These findings provide support for an alternative explanation, in which increased

resistance to antimicrobials is attributable to the presence of altered microenvironments within

biofilms. These microenvironments include areas of waste product build up, altered pH and

anaerobic niches that cause antimicrobials to work less effectively than they would in the bulk

environment [57,58]. The presence of these altered chemical environments not only interferes

with the activity of antimicrobials but also causes metabolic heterogeneity to arise within biofilms.

This heterogeneity makes it difficult for one single antimicrobial to target and kill all of the members of

the bacterial population.

3.1.3. Persister Cells

Another source of heterogeneity and a third explanation for biofilm-specific resistance is the

existence of phenotypic variants named ‘persisters’. This subset of cells constitutes a very small

proportion of the total bacterial population (~1%), but the presence of persisters has been documented

since the mid-1900s [59]. A recent Nature review article defined these cells as “a subpopulation of

transiently antibiotic-tolerant bacterial cells that are often slow-growing or growth-arrested, and are

able to resume growth after a lethal stress” [60]. The transcription of genes involved in energy

production is downregulated in persister cells [61] and a reduced growth phenotype exists prior

to antibiotic treatment [62]. Since many antibiotics work by targeting metabolic pathways, it has

been hypothesised that persister cells evade the bactericidal effects of antibiotics as a result of their

inactivity [60].
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4. Immune Evasion in Biofilms

During bacterial infections, host cell Pattern Recognition Receptors (PRRs) detect invading

pathogens via the recognition of Pathogen Associated Molecular Patterns (PAMPs). This stimulates an

innate immune response involving the activation of complement and various chemotactic signalling

pathways, which allow immune cells to be recruited to the site of infection [63,64]. Innate immune

cells such as polymorphonuclear neutrophils (PMNs) and macrophages are then able to kill invading

bacteria via phagocytosis and the production of bactericidal compounds (e.g., elastase enzymes,

lactoferrin and reactive oxygen species) [65]. When challenged by planktonic bacteria, the innate

immune response is highly efficient in its clearance of bacteria but the presence of bacterial biofilms has

been associated with an increased resistance to host defences [66,67]. Mechanisms of biofilm-specific

immune evasion include mechanical protection, shielding from immune recognition, changes in gene

expression and inhibition of immune cell functions [68–70]. It is important to note that there are

differences in the immune evasion strategies used by different bacterial species (heavily influenced by

EPS composition), but this review is focused solely on S. aureus and P. aeruginosa.

4.1. Role of Extracellular Polymeric Substances (EPS)

4.1.1. Mechanical Protection

Common to all bacterial biofilms, is the presence of an EPS matrix that encases the bacterial

cells. This matrix is important in aggregating the individual cells together and in doing so creates

a formidable barrier against phagocytosis. This killing mechanism is dependent on the engulfment

of bacteria and so phagocytes are only able to phagocytose bacterial targets up to their own cell

size. Therefore, when bacteria are aggregated together as biofilm populations, a dysfunction in

immune-cell-killing, termed “frustrated phagocytosis”, is observed [71,72]. In PMNs (cell size ~10 µm),

frustrated phagocytosis is observed at a polystyrene bead diameter of 11.2 µm, with only 50%

engulfment of bead circumference [73]. To overcome this size barrier, biofilm structures must be

broken apart. PMNs are predicted to exert attractive stresses of up to 1kPa that could facilitate biofilm

disruption. However, EPS matrix composition has been shown to influence resistance to mechanical

attack and in P. aeruginosa, increased expression of the Psl polysaccharide is associated with increases in

biofilm stiffness and intercellular cohesion between bacterial cells [74]. This led the authors to suggest

that changes in biofilm mechanics could allow biofilms to resist PMN stress, or at least delay biofilm

disruption long enough for bacterial PMN killing mechanisms to take effect.

4.1.2. Immune Recognition

As well as providing mechanical protection against phagocytosis, components of the EPS

also help to prevent immune recognition, thereby reducing phagocytic clearance. For instance,

coagulase expression causes fibrin to accumulate in the EPS environment of S. aureus biofilms [75],

this fibrous protein is known to protect staphylococci from opsonophagocytic killing [76]. In other

staphylococcal strains, polymeric-N-acetyl-glucosamine (PNAG) has been described as an antibody

“sink” and is shown to protect against the binding of IgG and C3b to biofilm-bacteria [77,78].

Although this has not been demonstrated in S. aureus, it is possible that similar principles could apply,

with EPS components acting as decoys for opsonisation and/or preventing direct targeting of the

biofilm bacteria [70]. In P. aeruginosa, alginate and Psl polysaccharide are major components of the EPS.

The presence of alginate has been shown to reduce both opsonic and non-opsonic phagocytosis [29,79],

with protection against opsonic antibodies mediated by O-acetylation of alginate [80]. Similarly,

the presence of Psl has been shown to reduce opsonic phagocytosis but via disruption of complement

binding [81].
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4.2. Changes in Gene Expression

The upregulation of genes encoding toxins and immune evasion proteins plays a major role in

the increased immune resistance of S. aureus biofilms. Upregulated toxins include Hla, LukAB/GH,

LukED, HlgAB, HlgCB and PSMs and upregulated immune evasion proteins include Eap, CHIPS, SAK

and SSL10 [70]. Gene expression is controlled by the accessory gene regulator (Agr) quorum sensing

(QS) system [82]. Interestingly, Agr dysfunction is common within S. aureus biofilm populations,

whereas there is a strong selective pressure against QS mutations in planktonic bacteria [83]. Agr controls

the expression of several protease enzymes involved in biofilm dispersal and so Agr mutants form thick,

dense biofilms [84,85] with an increased resistance to antibiotics [86]. Therefore, it has been suggested

that Agr heterogeneity may represent another biofilm specific host defence mechanism; the Agr

functional bacteria produce toxins that actively target host immune cells while Agr dysfunctional

bacteria strengthen the mechanical barrier against phagocytes [83,87]. P. aeruginosa bacteria also

undergo significant changes in gene expression following the switch to a biofilm lifestyle. Following

initial adhesion, there is a large increase in intracellular cyclic diguanylate monophosphate (c-di-GMP)

concentration [88]. This second messenger molecule controls the expression of over 500 genes, including

genes implicated in immune evasion [88,89]. For instance, c-di-GMP signalling induces a switch from

flagellar to twitching motility and downregulates the expression of PAMPs including the flagellum

and PcrV [90]. This prevents activation of the host NAIP/NLRC4 inflammasome and limits phagocyte

recruitment [91,92]. However, the importance of the host inflammasome in resolving P. aeruginosa

infections has been challenged [90].

4.3. Manipulation of Host Immune Cells

Despite the presence of the EPS, innate immune cells have been shown to penetrate both S. aureus

and P. aeruginosa biofilms [93,94]. However, this does not guarantee bacterial clearance, and within

this environment, immune cells are exposed to various host-killing mechanisms. For instance,

P. aeruginosa biofilms produce N-3-oxododecanoyl homoserine lactone (3-oxo-C12-HSL), a QS molecule

that induces apoptosis of both PMNs and macrophages [95]. Similarly, rhamnolipid biosynthesis has

been linked to PMN lysis in P. aeruginosa biofilms [96] and the production of various pore-forming

leukocidins is responsible for leukocyte cell death in S. aureus infections [97]. PMN lysis not only

prevents phagocytosis, but also enhances the formation of P. aeruginosa biofilms as biofilm bacteria can

incorporate host DNA and actin protein into their own EPS environment [98]. This increases biofilm

matrix stability and resistance to antimicrobials [99]. The biofilm-enhancing effects of PMN lysis have

been demonstrated in bacterial keratitis, with eDNA/F-actin acting as cellular scaffolds to promote

bacterial colonization [100]. Another way in which biofilm bacteria exploit host immune cells is via their

interactions with Neutrophil Extracellular Traps (NETs). NETs are formed of host DNA and granule

proteins and are produced by PMNs in response to infection [101]. They bind to and aggregate invading

bacteria, targeting them for host cell destruction. NETs play a particularly important role in P. aeruginosa

keratitis, preventing the spread of bacteria to the brain [102]. S. aureus circumvents NET activity

via the production of nuclease and adenosine synthase enzymes, which degrade the NET DNA into

deoxyadenosine (dAdo) [103,104]. This molecule is pro-apoptotic and causes the caspase-3-mediated

cell death of PMNs and macrophages [105], thereby preventing the phagocytic clearance of S. aureus

biofilms. Furthermore, biofilm bacteria are able to modulate immune cell behaviour via the production

of second messenger molecules such as cyclic diadenylate monophosphate (c-di-AMP). C-di-AMP

stimulates a type I interferon response in host cell macrophages and this is associated with an

anti-inflammatory M2 phenotype that facilitates the intracellular survival of S. aureus [106]. This is

an example of immune polarization, a phenomenon that is becoming increasingly recognised in the

persistent nature of biofilm infections. Various immune cells are able to adopt distinct phenotypes

(e.g., M1 vs M2 macrophages) and it appears pathogenic bacteria (including S. aureus and P. aeruginosa)

are able to skew the immune response towards a balance that facilitates chronic infection [107].
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5. Modelling Biofilm Infections

Bacteria have been shown to colonise the cornea as biofilm populations during bacterial keratitis.

To study corneal biofilm infections in a meaningful way, it is important that biofilm models are

representative of the true infectious scenario. Since abiotic models do not allow host–pathogen

interactions to be studied, they are unsuitable for many elements of infection research. Fortunately,

several biotic biofilm models that use in vitro, ex vivo or in vivo corneal systems have been developed.

However, there are various advantages and disadvantages associated with each of these models that

must be carefully considered (Table 1).

5.1. In Vitro Models

In vitro models use well-defined cell culture techniques to generate 3D corneal constructs. These

models are a popular choice for ophthalmological research due to their relative cost-effectiveness and

limited use of animals. The human cornea is composed of six distinct layers: epithelium, Bowman’s

layer, stroma, Pre-Descemet’s layer, Descemet’s membrane and endothelium [108,109] (Figure 2). As the

outermost layer, the corneal epithelium constitutes the first line of defence against external pathogens

and also acts as the major barrier against ocular drug penetration [110]. Therefore, many in vitro models

have focused solely on the cultivation of human corneal epithelial cell (HCE) multilayers [111,112].

However, 3D organotypic models have also been developed which incorporate epithelial, stromal and

endothelial cells, providing whole-tissue models [113–115].

 

 

Figure 2. Human corneal layers: (A) Schematic representation, and (B) haematoxylin and eosin staining.

The cornea has six distinct layers and the outermost layer is the corneal epithelium, which is made up of

5-7 rows of tightly packed corneal epithelial cells. These cells lie on an acellular, collagenous layer named

the Bowman’s layer and together the epithelium and the Bowman’s layer are essential in the protection

of the underlying stromal tissue. The stroma constitutes 90% of the overall thickness of the cornea

and is composed of mainly type I collagen and differentiated keratocytes. Beneath the stroma is the

Pre-Descemet’s layer (also known as Dua’s layer) and the Descemet’s membrane. These collagen-rich,

acellular layers separate the stromal tissue from the endothelium. The endothelium is composed of a

single layer of cells, which are mainly hexagonal in shape. This layer is adjacent to the anterior chamber

and constitutes the final layer of the cornea. Created with Biorender.com.

Another source of model diversity is the use of primary cells versus immortalized cell lines.

Primary cells are extracted directly from donor corneal tissue and therefore share the same phenotypic

and genotypic characteristics as the donor tissue. The drawback is that these cells have a finite lifespan

and reach senescence after only a few passages [116]. Furthermore, the availability of human corneal

tissue is highly limited as healthy tissue is generally reserved for keratoplasty. This means animal

corneas are often used as a source of primary corneal epithelial cells.
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The production of an immortalized cell line involves transfection/transformation of cells with a

virus or plasmid that induces the cells to enter a continuously growing state by activating telomere

maintenance mechanisms [117]. As a result, the cells may be continuously passaged, and cell lines are

commercially available. This makes immortalized cell lines attractive model systems, as they are easy

to assemble and economical. However, the underlying assumption that cell lines mimic all aspects of

the normal cornea has not been proven and with each passage, genetic drift occurs, causing cells to

become phenotypically distinct from the original cell population [118]. A study comparing the gene

expression profile of the HCE-T cell line to gene expression in the healthy human cornea, found changes

in gene expression for 36% of probed genes [119]. This is a reminder of the importance of characterising

cell lines to ensure they remain suitably representative of the ocular surface in vivo.

Existing In Vitro Infection Models

Drug permeation studies have been a key driver in the development of in vitro corneal models.

Curved filters have been used to produce monolayers that share the curvature of the cornea [120]

and optimisation of cell culture conditions has led to the development of corneal models with tight

cell junctions, epithelial barrier integrity and permeation profiles comparable to those of the excised

cornea [121,122]. The development of in vitro models for studying corneal absorption has been reviewed

previously [123,124] and optimised cell culture techniques are transferable to the development of

in vitro infection models. Such models have been used to investigate host–pathogen interactions at the

corneal epithelial surface. Immortalized HCE cell lines have been used to investigate receptor-mediated

adhesion mechanisms and identify key bacterial virulence factors (VFs) involved in invasion [125,126].

Modulation of the host response has also been studied, with a recent study demonstrating that the

type-III secretion system (T3SS) of P. aeruginosa is involved in subversion of antimicrobial peptide

(AMP) expression [127]. Furthermore, in vitro studies have demonstrated the importance of host cell

defences such as cell surface mucins and tear fluid. Knockdown of MUC16 in the HCLE cell line causes

significant decreases in epithelial barrier function [128] and exposure of primary rabbit corneal epithelial

cells to human tear fluid has been shown to confer significant cytoprotective effects, as well as reducing

the translocation of P. aeruginosa [129,130]. These in vitro infection models have helped to progress our

understanding of bacterial keratitis, but they are limited by the absence of a biofilm component. To the

best of our knowledge, an in vitro model that combines live HCE cells and the formation of bacterial

biofilm is yet to be reported. In contrast, multiple keratitis studies have investigated biofilm formation

on abiotic surfaces in the absence of cells [131,132]. As in vitro modelling techniques continue to

improve, co-culture models may be reported but there are various limitations associated with the use

of in vitro systems for studying biofilm infections [133]. For instance, characteristics of the biofilm

microenvironment (e.g., nutritional cues, presence of immune cells) [134–136] have been shown to

influence biofilm morphology and so differences in specific biofilm-forming conditions may limit

model applicability.

5.2. Ex Vivo Models

Ex vivo studies make use of whole, excised corneas that are maintained in an artificial environment

before experimentation. Animal corneas are often used due to the limited availability of human

corneas and so interspecies variation is one of the main problems with ex vivo studies. A lack of

standardised methods and paucity of information on animal models means comparing ex vivo studies

is difficult, and there is dispute regarding the suitability of different animal models. ex vivo models

used to investigate bacterial keratitis include mice [137–141], rabbits [140–146], goats [147], cows [148]

and pigs [149–151]. It is currently unknown if interspecies differences in the thickness of the corneal

epithelium [108,152] and stroma [153–155] play a major role in development and progression of infection

in the ex vivo cornea. Morphological aspects that may affect the development of infection between

species have been discussed previously [156] but many questions remain unanswered. Of particular

importance is the presence or absence of the Bowman’s layer. The Bowman’s layer is typically found in
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primate species but has not been found in all animals [157,158] and there is evidence that it functions

as an additional barrier to bacterial traversal [159]. The importance of this layer is influenced by the

method of infection. Popular infection methods include corneal scarification or intrastromal injection,

which bypass the Bowman’s layer and provide direct access to the corneal stroma. In these instances,

the protective role of the Bowman’s layer is less important, but other studies have used contact lenses

or blotting paper to introduce bacteria without prior wounding of the cornea. Such methods are

important for studying intrinsic corneal resistance and/or initial bacterial adhesion, and in these

studies, interspecies differences in the Bowman’s layer may compromise model suitability. There are

conflicting reports for rabbit and porcine corneas with some studies claiming the Bowman’s layer is

absent [160–163], while others report it as present [164,165]. Given the popularity of these two animal

models, it is important that resolution be reached on this topic.

Existing Ex Vivo Infection Models

Various techniques have been used to induce bacterial infection in ex vivo corneas,

including prolonged exposure to bacteria [166,167], use of infected contact lenses [149], superficial injury

(e.g., tissue paper blotting) [168], corneal scarification [146,147,151] and intrastromal injection [143].

Differences in infection method, inoculum size, culturing techniques, incubation times and bacterial

strains mean that comparing ex vivo studies is challenging. For example, Pinnock et al. [143] found

that more bacteria are recovered after injecting the inoculum into the stroma than after corneal

wounding. In contrast, similar infection outcomes were reported for both rabbit and human corneas.

Colony Forming Units (CFU) were measured following 24 or 48 h infection and variations in CFU

were small despite differences in bacteria and handling techniques for each model [143]. In agreement

with Pinnock et al., we recently demonstrated that there was no significant difference in viable cell

count between ex vivo porcine and rabbit cornea models after 24 h infection, nor when two different

strains of P. aeruginosa were used [151]. Furthermore, while some studies have reported that infection

in ex vivo corneas is easy to establish and that progress is visible within less than 24 h [143,151,167],

Madhu et al. found that incubation time could be extended by a few days if a smaller inoculum was

used [147]. Despite issues with standardisation, ex vivo models have been used to study various aspects

of bacterial keratitis. This includes: epithelial barrier function [137,169], effect of bacteria on epithelial

cell migration [150], bacterial transmission from contact lenses [145,149,170], bacterial adherence to

corneal epithelium [168], movement of bacteria in stroma [146], role of virulence factors [139,147] and

drug testing of new ophthalmic antimicrobials [132,148]. Despite the popularity of ex vivo corneal

infection models, biofilm formation under these conditions remains to be characterised. However,

our group is currently using an ex vivo porcine infection model to study bacterial distribution and

biofilm formation at the corneal surface [151] (Figure 3). Scanning Electron Microscopy (SEM) depicts

bacterial colonization under different infection conditions, indicating that ex vivo porcine models could

be useful in the study of established bacterial keratitis infections.

5.3. In Vivo Models

In vivo modelling involves the use of live animals. Rat [171] and rabbit [172–174] models have

been reported, but mouse models currently dominate the literature [131,137,138,175–178]. Despite its

smaller size, the murine cornea contains more corneal epithelial cell layers than the human cornea and

the ratio of epithelial to stromal cells is larger [179]. As with other animal models, there is a dispute

regarding the presence of a Bowman’s layer [164,165] and there are large interspecies differences in

immune response that must be considered [180]. However, murine models remain a popular choice

for in vivo work because of their small size, ease of breeding and the existence of large genetic mutant

libraries. Various techniques have been developed for studying bacterial keratitis in vivo. Animals are

first anesthetized so that corneal wounding/bacterial inoculation can be performed, and infection

progresses in the living model. Following scarification, the eyes are enucleated and analysed ex vivo or

alternatively, intravital imaging techniques have now been reported which allow microscopic analysis
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to be conducted in vivo [181]. in vivo corneal models are ideal for studies of host immune defences,

inflammation and corneal healing processes. However, these models are not suitable for studying the

early stages of infection, as the healthy, intact cornea is difficult to infect unless contaminated contact

lenses are used [138,182,183]. Additionally, initiating and developing infection takes days and is not

always guaranteed [182].

 

 

 

Figure 3. Scanning electron micrographs of ex vivo porcine corneas after 4 h Methicillin-Resistant

Staphylococcus aureus (MRSA) infection (A), 6 h MRSA infection (B), 24 h Pseudomonas aeruginosa infection

(C) and the uninfected porcine cornea (D). Arrows show MRSA adhering to corneal epithelial cells.

Existing In Vivo Infection Models

Increasing interest in ocular biofilms over the past decade has resulted in the development of an

established in vivo cornea model [177], followed by improved methods of imaging bacteria and biofilm

formation [22,131,137,139,176,181]. This has allowed researchers to begin to characterise the process of

biofilm formation at the ocular surface (Table 2). in vivo infection models have also played an integral role

in other areas of bacterial keratitis research, including: biofilm formation on contact lenses in rabbit [172]

and mice [175], host–pathogen interactions on ocular samples using proteomics [184,185], activation of

immune signalling pathways [186], the role of virulence factors in keratitis [142,173,178,187] and drug

testing of new ophthalmic antimicrobials [174,176,188]. Drug testing has included synthetic analogues

of host antimicrobial peptides, with one study reporting reduced corneal bioburden and improved

ocular scores following treatment with their lead peptide [188]. This suggests that synthetic AMP

analogues could provide valuable alternatives/adjuncts to antibiotics and highlights the importance

of ocular surface proteins in defence against bacterial keratitis [137,169,189]. For instance, surfactant

protein D (SP-D) present in tear fluid has been shown to take part in clearing P. aeruginosa from the

murine ocular surface [182], while exogenous vasoactive intestinal peptide regulates expression of

other proteins involved in infection [190]. However, it was recently found that there are differences

in protein expression between human and mouse stroma in vascularized and healthy corneas [191].

These differences are likely to affect pathophysiology between species and may limit the clinical

relevance of murine in vivo models.
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Table 1. Evaluation of in vitro, ex vivo and in vivo corneal models for the study of bacterial keratitis infections.

Advantages Disadvantages

in vitro cell culture models

� Economical.
� Reduced use of animals.
� Cell lines can be used continuously.
� 3D organotypic models can be developed using multiple
cell lines.
� Many host defence mechanisms remain investigable, e.g.
expression of mucins, AMPs, pro-inflammatory cytokines and
microRNAs, investigation of cell surface receptors and PRR
signalling pathways.

� Problems with cell lines and genetic drift.
� Primary cells reach senescence after a few passages.
� Reduced cell viability and increased susceptibility to infection.
� Absence of resident and infiltrative immune cells.
� Absence of conjunctiva.
� Absence of tear fluid and lacrimal glands.
� Infection normally occurs under static conditions.
� Differences in the biofilm microenvironment (e.g. nutritional
cues, absence of immune cells) may affect biofilm morphology.

ex vivo models

� Whole-tissue model.
� Complex 3D surface topology of the cornea is preserved.
� Increased cell viability facilitates longer infection periods.
� Presence of resident immune cells.

� Low availability of human corneas means animal models are
commonly used.
� Lack of standardised infection methods.
� Dispute regarding corneal anatomy of animal models.
� Interspecies differences in corneal anatomy, functional
characteristics and immune response may affect applicability to
human infections.
� Absence of infiltrative immune cells.
� Absence of conjunctiva.
� Absence of tear fluid and lacrimal glands.
� Infection normally occurs under static conditions.
� Differences in the biofilm microenvironment (e.g. nutritional
cues, absence of immune cells) may affect biofilm morphology.

in vivo models

� Complete immune response (resident/infiltrative immune
cells, tear film, conjunctiva and lymphatic vessels).
� Infection occurs under dynamic, shear stress conditions.
� Biofilm morphology should be highly similar to the true
infectious scenario.

� Animal models must be used, raising ethical issues.
� Interspecies differences in corneal anatomy, functional
characteristics and immune response may affect applicability to
human infections.
� Expensive.
� Time-consuming.
� Infections can be difficult to establish and prior wounding of the
cornea is often required.
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Table 2. Biofilm characteristics of in vivo corneal infection models.

Animal
model

Pathogen Biofilm Characteristics Ref.

C57BL/6
black mice

Pseudomonas aeruginosa
ATCC 9027

� Rapid shift from planktonic to biofilm lifestyle
observed for all corneas.
� Microcolonies present on day 2 post-infection and
fibrous extracellular substances visible.
� Mature biofilm structures present on day 3. Bacteria
form as “mushroom shaped bodies” and “tower like
structures” and are embedded in a web of extracellular
polysaccharides.
� A thick, dense biofilm layer is observed on days 5-6.
Bacteria become static within this structure.
� Neutrophils migrate into the corneal stroma and
production of NETs is observed at early time points.
Neutrophils are localised to the biofilm surface once
mature biofilm structures develop.

[22]

C57BL/6
and Swiss
Webster

(SW) mice

Pseudomonas aeruginosa
PAO1-GFP and 6294-GFP

(clinical isolate)

� Early (12 h) biofilms are composed of bacterial
clusters/microcolonies that are thought to emanate from
the infected epithelial cells.
� Late (24 h) biofilms are composed of bacterial sheets.
� Biofilm bacteria are surrounded by Psl
polysaccharide but there is a low abundance of alginate.
� Biofilms are resistant to neutrophil infiltration.

[176]

BALB/c
mice

Staphylococcus aureus and
Fusarium falciforme
(clinical isolates)

� A mixed biofilm is observed after 72 h.
� S. aureus: Bacteria colonise the corneal epithelium
and a part of the stroma. Bacterial clusters observed,
including a large cocci aggregate at the site of the corneal
lesion. Bacteria secrete exopolysaccharides that form
“halos” around the bacteria and then merge with the
extracellular matrix of other cocci. Development of a
new blood vessel in the stroma is observed and
attributed to the host immune response.
� F. falciforme: Hyphae and conidia observed and
hyphae migrates through stroma to reach the
endothelium. F. falciforme structures are embedded in a
fibrin matrix within the stroma. Presence/growth of
fungi causes corneal collagen fibres to become
disorganised.

[131]

6. Conclusions

Bacterial keratitis is a serious corneal infection, characterised by biofilm formation at the ocular

surface. Biofilms are notoriously difficult to eradicate because of their increased resistance phenotype.

This includes an increased resistance to antimicrobials and biofilm-specific immune evasion mechanisms.

To study bacterial keratitis in a meaningful way, it is important that suitable test models exist.

The development of in vitro, ex vivo and in vivo models have all made significant contributions to our

understanding of bacterial keratitis. Infection models have allowed us to study the role of specific

bacterial virulence factors and constituents of the host immune response, as well as the complex

interactions that occur between them. However, there are various limitations associated with existing

infection models and these limitations must be carefully considered during experimental design

and interpretation of results. One particular challenge in the field is the development of co-culture

models that display mature biofilm architecture without compromising host viability. As a result,

the characterisation of corneal biofilms has mainly been explored in vivo. It is important that we

continue to optimise corneal biofilm models, as they represent a valuable tool for ophthalmological
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drug testing. The development of representative models will allow novel therapeutics to be identified

more easily and could ultimately help to reduce corneal blindness.
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