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Abstract
Explosive loading in a confined internal environment is highly complex and is driven by nonlinear physical 

processes associated with reflection and coalescence of multiple shock fronts. Prediction of this loading is 

not currently feasible using simple tools, and instead specialist computational software or practical testing is 

required, which are impractical for situations with a wide range of input variables. There is a need to develop 

a tool which balances the accuracy of experiments or physics-based numerical schemes with the simplicity 

and low computational cost of an engineering-level predictive approach. Artificial neural networks (ANNs) 

are formed of a collection of neurons that process information via a series of connections. When fully trained, 

ANNs are capable of replicating and generalising multi-parameter, high-complexity problems and are able 

to generate new predictions for unseen problems (within the bounds of the training variables). This article 

presents the development and rigorous testing of an ANN to predict blast loading in a confined internal 

environment. The ANN was trained using validated numerical modelling data, and key parameters relating 

to formulation of the training data and network structure were critically analysed in order to maximise the 

predictive capability of the network. The developed network was generally able to predict specific impulses to 

within 10% of the numerical data: 90% of specific impulses in the unseen testing data, and between 81% and 

87% of specific impulses for data from four additional unseen test models, were predicted to this accuracy. 

The network was highly capable of generalising in areas adjacent to reflecting surfaces and as those close to 

ambient outflow boundaries. It is shown that ANNs are highly suited to modelling blast loading in a confined 

internal environment, with significant improvements in accuracy achievable if a robust, well distributed training 

dataset is used with a network structure that is tailored to the problem being solved.
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Introduction

Background

Recent high-profile terrorist incidents, such as the Manchester Arena bombing (2017, 22 fatalities) 

and the Brussels Airport attacks (2016, 33 fatalities), involved the use of high explosives detonated 
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in a crowded internal environment (Ben-Ezra et al., 2017; Kwon et al., 2017). Whilst the payload 

from vehicle-borne improvised explosive devices (VBIEDs) is considerably larger than those from 

person-borne explosives, the effects of a VBIED attack can be mitigated by enforcing a safe stand-

off distance through the use of hardened security checkpoints and anti-vehicle barriers (Cormie 

et al., 2009). Whilst security checkpoints can also deter or prevent access to those intending to use 

person-borne explosives, they remain impractical for sites where large volumes of people require 

ready access, for example, airport pick up and drop off zones, train stations and concert halls.

Accurate prediction of the blast load arising from detonation of a high explosive remains a cru-

cial step in assessing structural response (Rigby et al., 2019) and human injury (Pope, 2011). 

Detailed maps of the peak loading in an internal environment, and a comprehensive understanding 

of the factors affecting the magnitude of this loading, will allow for better provision of (active) 

mitigation systems, and will assist in planning interior layouts for enhanced (passive) blast protec-

tion strategies. Accordingly, a tool that can rapidly and accurately predict the complex loading in a 

crowded space is vital for risk-based engineering practice.

Existing semi-empirical approaches for predicting blast parameters, for example, the Kingery 

and Bulmash method (Kingery and Bulmash, 1984) and ConWep (Hyde, 1991), are known to be 

accurate only for far-field, geometrically simple scenarios (Rigby et al., 2014b).

When an explosion occurs in a complex environment, coalescence of multiple shock fronts that 

have reflected off or diffracted around obstacles is highly nonlinear (Larcher and Casadeia 2010) and 

hence simple superposition methods are unsuitable. Whilst methods for predicting confined loading 

exist in current design guidance, such approaches can only be used to calculate the average pressure 

acting on a single internal wall (assumed to be uniformly distributed and neglecting the walls parallel 

and opposite to the surface in question (US Department of Defence [US DOD], 2008), or the decay of 

quasi-static pressures, again averaged throughout the domain, for situations with high degrees of con-

finement and therefore low venting area (Anderson et al., 1983). Clearly, a more refined approach is 

required to consider situations which feature considerable interaction of blast waves, multiple reflec-

tions and development of increased specific impulses near the walls and the corners of the domain. 

Computational fluid dynamics (CFD) approaches offer the potential to develop a comprehensive and 

accurate description of an internal blast load, however it is impractical to use such approaches to 

inform risk-based engineering owing to the relatively high associated computational cost.

There is therefore the need to develop a predictive approach with the accuracy of a physics-

based numerical scheme and the low computational cost of a semi-empirical method. Artificial 

neural networks (ANNs) are suitable as they have a proven ability to accurately predict complex 

nonlinear problems for various scenarios with simulations times comparable to basic solvers (see 

Figure 1). Applications of ANNs include estimating thermal performance of buildings (Flood et al. 
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Figure 1. Desired performance of ANNs.
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2004), predicting blast-induced ground vibrations (Shahri and Asheghi, 2018) and quantification 

of blast loading on a building behind a blast wall (Remennikov and Rose, 2007) or along simple 

city streets (Remennikov and Mendis, 2006). Despite a clear applicability, the use of ANNs for 

internal explosions remains largely unexplored.

The first aim of this paper is to critically evaluate the design of an ANN trained to simulate a given 

internal blast scenario. This is achieved through consideration of how the training dataset is generated 

and formatted before being used in the development of the ANNs. Additionally, a range of network 

structures are developed using various neuron counts to identify an optimum network configuration. 

The second aim of the study is to demonstrate the applicability of ANNs for predicting blast loading in 

an internal environment. Predictions generated by the ANNs are directly compared to numerical data 

from 72 different explosive scenarios during the training process. This allows for a comprehensive 

evaluation of the network performance including an assessment of how the network’s accuracy is 

dependent on each of the input values. The best performing network configuration is then evaluated 

using unseen input data from four additional tests to show that the ANN approach is capable of simu-

lating specific impulse with percentage errors that are comparable to alternative methods.

Artificial neural networks

The progression of experimental techniques and bespoke modelling methods enable the use of ANNs 

for solving complex non-linear problems, especially those where the functional relationship between 

the input variables and output parameters is unknown (Alizadeh et al., 2017). They have applications 

involving data mapping, regression, classification and image processing (Dogan et al., 2017; Lee et al., 

2012). However, for this study, focus will be placed on feed-forward, backpropagation regression net-

works. Training will take place using a supervised learning regime that generates improvements to the 

ANNs predictive accuracy through comparisons between the model output and known targets.

ANNs are formed of many neurons that process information being translated via connections. 

An example of a typical network is shown in Figure 2, with a forward pass being from left to right. 

Each connection holds a numerical weight that defines how large the value being passed via a 

given connection is. At each neuron, the translated values from the incoming connections are 

summed with a predefined bias that provides the neuron with a baseline magnitude. Before this 

summation result is passed onto the next neuron, it is standardised by an activation function that 

helps to prevent the input variable’s magnitudes from skewing the results disproportionally. Hidden 

layers/neurons allow for the interdependencies of the input variables to be captured which enables 

predictions to be made for complex problems.

A summary of this calculation process for a given neuron is shown in Figure 3. It should also be 

noted that due to how the regression network will be required to predict continuous values, the 
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activation function used on the output layer of neurons will be linear so that the predictions remain 

unbounded. This differs from the sigmoid or rectified linear unit (ReLU) functions that are com-

monly used at each of the hidden or input neurons.

Initially, all weights and biases are given random values. The process of backpropagation is then 

used as part of the training process to reduce the output prediction errors using a gradient descent 

algorithm. By passing the output prediction errors from the forward pass back through the network, 

the weights and biases responsible for the inaccuracy are identified and optimised.

Once training is complete, testing of the network can take place using unseen input patterns. 

Rapid predictions can be formed by the network in this stage as the weights and biases are no 

longer being updated. The number of training patterns used, the complexity of the problem being 

modelled, and the network architecture will all influence the accuracy of a trained network because 

each of these factors control its ability to generalise from the training dataset (Remennikov and 

Rose, 2007).

Literature review

Field experiments provide the best chance at capturing the complex wave interaction processes 

associated with confined internal environments. However, they require specialist equipment and 

expertise that can often be very costly, and therefore simplifications are required. Experimental 

work by Anthistle et al. (2016), for example, utilised symmetry of the testing domain in order to 

model only a quarter of the environment. Here, it was found that good reproducibility was achieved 

between each test and therefore the use of symmetry constraints was considered acceptable.

Alternative approaches include modelling the entire domain at a scaled size. Fouchier et al. 

(2017) adopted this approach, using a range of wooden test structures at a 1:200 scale to analyse 

various street arrangements. It allowed for direct comparisons between each road/building layout 

to be conducted in a safer and more economical way. Hopkinson-Cranz scaling laws (Cranz, 1926; 

Hopkinson, 1915) were also shown to provide good agreement for the free-field and straight road 

arrangements meaning the results could be used for validation work in the future. It has been 

shown that numerical modelling of blast loading in an internal environment is highly complex, 

with the presence of multiple reflections requiring many equations and mathematical relationships 

to be solved in parallel (Larcher and Casadeia, 2010).

In situations where multiple field tests are not suitable, mathematical modelling presents a 

means of obtaining predictions for an unbounded range of scenarios, however experimental data is 

still required to rigorously validate these numerical approaches. A study by Xu et al. (2018) devel-

oped codes for 1D, 2D and 3D models based on finite difference schemes to analyse various test 

problems. The 3D code was then validated against experimental data for a confined chamber to 
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prove that the model produced reliable overpressure-time histories. Generally, the accuracy of 

these methods is controlled by the coarseness of the element mesh forming the environment or the 

step size used in the calculation process. This is discussed further by Caçoilo et al. (2018), who 

studied the propagation of blast waves inside a survival blast chamber using an LS-DYNA numeri-

cal model. Through comparing the numerical results to a physical experiment, the authors reported 

specific impulse errors below 19% when using a mesh size of 3.25 mm. A finer mesh may improve 

on this further, however there is a trade-off between accuracy and computation time that will 

change based on the general arrangement of the simulations and intended use of the results. In this 

case, for the highly complex wave interaction processes that within the chamber, the paper shows 

how numerical methods are able to provide reasonable predictions for blast loading parameters 

without the need for experimental programmes beyond the validation stage.

The continuous development of numerical methods is driven by the increasing use of probabil-

istic approaches for modelling blast scenarios. These approaches allow for the uncertainties associ-

ated with explosions to be accounted for in risk analyses or cost-benefit assessments which 

ultimately makes them very useful for blast design and building appraisal (Netherton and Stewart, 

2016). An example of this approach is detailed in a study by Alterman et al. (2019) where ProsAir 

was used to estimate blast loads, 1 m above the floor resulting from the detonation of an improvised 

explosive device (IED) in a typical ground floor foyer of a commercial or government building. A 

Monte-Carlo analysis framework was used to provide distributions of the model input parameters 

so that various conclusions could be made about the domain based on the likelihood of certain 

attacks taking place (Alterman et al., 2019). The need to simulate the same environment with a 

large number of varying input parameters does not lend itself to this sort of numerical approach as 

the computation times were reported to be between of 0.07 and 29.52 hrs for each model. A fast 

running deterministic model would therefore help to expedite the process of environment evalua-

tion whilst also increasing the number of input parameters that could be considered.

Recent studies, for example, Gault et al. (2020), have been focussed on provide new methods for 

complex environment predictions using experimental records to form relationships between various 

blast parameters. The targeted benefit being that they can quickly produce reasonable outputs with-

out a significant loss of accuracy. In this case, around 15% error is achieved for a tool that is flexible 

to allow the user to define a mesh and domain size in addition to a charge size and location.

Artificial neural networks (ANNs) present an alternative approach to providing rapid analyses 

without the need for relationships to be derived manually. The two broad categories for their use in 

blast engineering are for assessments of localised structural response to blast loads and for the 

prediction of key blast parameters. With the focus of this study being on the latter, papers by 

Remennikov and Rose (2007) and Remennikov and Mendis (2006) indicate that high predictive 

accuracy can be achieved both behind blast walls and along simple city streets. The former reports 

correlation coefficients in testing of 0.997 for overpressure, and 0.998 for specific impulse. Here 

the correlation coefficient is a numerical indication of the agreement between the output predic-

tions and targets, with a value of 1 suggesting total agreement. This was achieved using two hidden 

layers in fully connected regression networks.

Similarly, Flood et al. (2009) details the results from two separate studies that both looked at 

predicting blast loading parameters behind walls. The first utilised a dataset of 1365 training pat-

terns and 252 testing patterns that were gathered from numerical simulations, whereas the second 

used 195 for training and five for testing from scaled experiments. It was found that the testing 

phase correlation coefficient for peak overpressure decreased from 0.996 to 0.830 as the dataset 

size was reduced. It is also noted that the experimental dataset contained a larger variability in the 

spacing between each data point. The generalisation capability of the network was therefore 
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restricted due to the lack of data that is well distributed throughout the value boundaries associated 

with each input variable (Flood et al., 2009).

A study by Bortolan Neto et al. (2020) noted a similar conclusion as a network was trained to 

predict the mechanical response of mild steel plates experiencing localised blasts. Through supple-

menting sparse experimental data with validated numerical modelling data, it was found that a robust 

training dataset could be formed which included a greater amount of training patterns. The inclusion 

of a core of experimental data also helped to provide confidence that the network was modelling blast 

scenarios that are physically accurate. This stage therefore acted as validation for the developed 

ANNs.

Overall, a review of literature shows that the ability of ANNs to generate rapid predictions with 

engineering-level accuracy could benefit probabilistic methods that require consideration of the 

variability of key blast parameters. However, the need for a robust dataset means that numerical or 

experimental methods (rather than simple analytical tools) will still be required in the development 

of ANNs. Clearly an increase in computational power will also expedite the data generation and 

training/validation processes, hence ANNs are expected to remain advantageous over pure CFD 

approaches.

Numerical modelling

Validation of APOLLO Blastsimulator

Introduction and mesh sensitivity. Numerical analyses were performed using APOLLO Blastsimula-

tor (‘Apollo’ hereafter). Apollo is an explicit CFD software which specialises in the simulation of 

high-dynamic flow problems (Fraunhofer EMI, 2018). The conservation equations for transient 

flows of compressible, inviscid and non-heat conducting, inert or chemically reacting fluid mix-

tures are solved using a second-order finite-volume scheme with explicit time integration. Features 

such as dynamic mesh adaptation (DMA), 1D-to-3D mapping and 3D-to-3D staged mapping allow 

for efficient use of computational resources. DMA is controlled through the specification of a 

‘zone length’, L , which represents the element size at the coarsest resolution level, and a maxi-

mum resolution level, N max . The ‘ultimate cell length’ is the element size at the highest resolution 

level and is given as h L N max= 2− . Apollo has been extensively validated for near-field blast (Pan-

nell et al., 2019, 2020; Whittaker et al., 2019), and so this section is focussed on validation of 

Apollo’s far-field blast predictions.

A mesh sensitivity study was completed in order to determine required element sizes to achieve 

convergence. A series of numerical simulations were completed for a 0.35 kg hemispheres of PE4 

(modelled as a 0.7 kg sphere in Apollo), located at a stand-off distance, S , of 6 m (scaled distance 

Z = 8.51  m/kg 1/3 ) from a rigid reflecting surface. PE4 is a plastic explosive comprising 87% RDX 

and 13% mineral oil binder (Tyas, 2019) and was used throughout the mesh sensitivity analysis and 

validation using Apollo’s in-built model for C4 since the two explosives are nominally identical 

(Bogosian et al., 2016). In all numerical simulations the explosives were centrally detonated using 

the Chapman-Jouguet model and the mass of the detonator was not included.

The domain size was 6 6 6× ×  m, and eighth-symmetry was used, with symmetry planes located 

in the directions orthogonal and opposite to the reflecting wall, originating at the centre of the 

charge. In all models an integer number of zones was specified for each of the domain side lengths. 

Outflow boundaries were defined at the roof of the domain and the remaining boundary. A numeri-

cal pressure gauge was placed at the base of the wall directly opposite the charge centre. Apollo’s 

1D module was used with the limit defined at one zone length from the gauge (for a zone length of 

300 mm, the 1D stage extended 5700 mm from the charge centre), and the auto-staging module was 
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used throughout. In total 24 simulations were completed with the mesh information summarised in 

Table 1.

Results from the mesh sensitivity analysis are shown in Figure 4, each sub-figure shows: peak 

overpressure; peak specific impulse and total analysis time (termed ‘wall time’), all plotted against the 

ratio of stand-off distance, S , to ultimate cell length. The solid black line shows the average experi-

mental value from Rigby et al. (2015) and the dashed line shows a 10% variation from the experimen-

tal value. More information on the experiments is provided below in Experimental validation.

The study suggests that an ultimate cell length of h S= / 240  and h S= / 40  are required for 

10% convergence in overpressure and specific impulse respectively. As this research focusses on 

predicting specific impulse values, the less-stringent convergence requirement of h S= / 40  is 

implemented in later analyses. Whilst this requirement can be relaxed to h S= /16  in the near-

field, that is, Z < 0.5  m/kg1/3  (Pannell et al., 2020), a value of h S= / 40  is considered appropriate 

(albeit conservative) for the range of scaled distances in this study.

The benefits of the DMA module can be seen when wall time is considered: at h S= / 60  a 

noticeable reduction in wall time occurs when going from 200 mm to 400 mm zone length. Higher 

resolution levels allow Apollo to efficiently allocate computational resource, therefore a minimum 

level of 3 and a minimum ultimate cell length of h S= / 40  are recommended, provided an integer 

number of zones are specified for each of the domain side lengths.

Experimental validation. Rigby et al. (2015) present a series of experimental trials where pressure 

gauges, embedded flush with the surface of a large, reinforced concrete bunker wall, were used to 

record reflected pressure histories from 0.18 to 0.35 kg PE4 hemispheres located 2 to 10 m from the 

bunker wall. The experimental set-up is shown in Figure 5. For this validation exercise, only data 

from the normally reflected gauge, ‘G1’, was used.

Table 1. Ultimate cell length (element size at highest resolution level) and number of elements (between 
charge centre and normal gauge location) for initial mesh sensitivity study, Z = 8.5 m/kg1/3.

(a) Ultimate cell length (mm)

Zone length (mm)

Res. level 1000 600 400 300 200

0 1000 600 400 300 200

1 500 300 200 150 100

2 250 150 100 75 50

3 125 75 50 37.5 25

4 62.5 37.5 25 18.75  

(b) Number of cells between charge and target

Zone length (mm)

Res. level 1000 600 400 300 200

0 6 10 15 20 30

1 12 20 30 40 60

2 24 40 60 80 120

3 48 80 120 160 240

4 96 160 240 320  
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The experimental dataset consists of 19 tests at nine unique scaled distances, therefore nine 

numerical analyses were performed. In each, the domain size was a regular cube with side-length 

equal to the stand-off distance in each case. As in the mesh sensitivity study, eighth-symmetry was 

used, with symmetry planes located in the directions orthogonal and opposite to the reflecting wall, 

originating at the centre of the charge. Outflow boundaries were defined at the roof of the domain 

and the remaining side. A numerical pressure gauge was placed at the base of the wall directly oppo-

site the charge centre. Further information for each of the validation models is presented in Table 2, 

including resolution level, ultimate cell length and resulting stand-off/cell length ( S h/ ) ratio.

Results from example numerical analyses are compared to experimental data in Figure 6. Here, 

results from the 4 m stand-off scenarios are presented: PE4 hemispheres of 0.18 (a), 0.25 (b) and 

0.35 kg (c) corresponding to scaled distances of 7.08, 6.35 and 5.68 m/kg 1/3  respectively. It can be 

seen that the magnitudes and general form of the numerical pressure and impulse histories closely 

Figure 4. Mesh convergence study for 0.35 kg PE4 at 6 m stand-off from a rigid reflecting wall. Solid line 
indicates average experimental value (Rigby et al., 2015) and dashed line indicates 10% variation from the 
experimental value.

Figure 5. Pressure gauge location and general test arrangement of experimental data (Rigby et al., 2015).
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match the experiments giving confidence that Apollo is correctly modelling the mechanisms of 

normal reflection in far-field blast scenarios. In all cases, the well-known secondary shock (Rigby 

and Gitterman, 2016) can be seen to arrive later in the numerical models, indicating that afterburn-

ing of the explosive detonation products is being slightly underestimated (Schwer and Rigby, 2017, 

2018). However, the effect of on peak specific impulse is negligible since the secondary shock 

consistently arrives during the negative phase.

Additionally, a comparison of numerical and experimental scaled peak specific impulse values 

(divided by the cube-root of the charge mass) is presented in Figure 7. The numerically generated 

peak specific impulses can be seen to closely match the experimental data consistently across the 

entire range of scaled distance and therefore Apollo can be considered to provide accurate specific 

Table 2. Input parameters and meshing strategy used for validation models.

Stand-off 
(m)

Charge 
mass (kg)

Zone length 
(mm)

Res. 
level

Ultimate cell 
length (mm)

S/cell 
length

2 0.25 200 4 12.50 160

4 0.18 200 4 12.50 320

0.25 200 4 12.50 320

0.35 200 4 12.50 320

6 0.25 300 4 18.75 320

0.29 300 4 18.75 320

0.35 300 4 18.75 320

8 0.25 400 4 25.00 320

10 0.25 400 4 25.00 400

Figure 6. Experimental validation of numerical overpressure and specific impulse histories at 4 m stand-
off for: (a) 0.18 kg, (b) 0.25 kg and (c) 0.35 kg PE4 hemispheres.
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impulse values in this region of scaled distances, provided the mesh requirements outlined in 

Introduction and mesh sensitivity are satisfied.

Generation of dataset

Problem domain. A domain was selected in order to be representative of a typical internal environ-

ment whilst offering the capability to train and test an ANN over a wide range of input parameters 

and output targets. As such, preliminary testing led to a domain of 10 7 5× ×  m being specified, 

with rigid surfaces placed on the upper and lower surfaces (ceiling and floor), and two of the four 

walls, see Figure 8. The two remaining boundaries were specified to be ambient so sufficient vent-

ing is provided to the domain and energy increase through afterburning (Edri et al., 2013) and 

quasi-static pressure development (Anderson et al., 1983) is negligible. The domain can therefore 

be considered as ‘fully vented’ according to the definition in UFC 3-340-02 (US DOD, 2008). This 

ensures that loading durations are not excessive whilst also making the domain indicative of an 

environment with frangible glazing that shatters immediately upon impact, offering no resistance 

to the blast. This combination of boundary conditions allows the ANNs to be tested using a broad 

range of data that includes regions where pressure is alleviated through venting and also where 

pressure will stagnate and increase in magnitude due to confinement effects in the corners.

Whilst the ANN will be trained on a single domain and layout, the network will be tested on its 

ability to generalise by considering a range of charge masses and locations. Inclusion of additional 

parameters relating to the domain itself, for example, room size and wall/reflecting surface con-

figuration, is outside the remit of this study. However, the network architecture is highly adaptable 

and new parameters can be incorporated into the network by specifying a number of additional 

input nodes, provided the network demonstrates an ability to generalise to the initial reduced prob-

lem set.

Data harvesting and simulation specifications. Williams (2015) reported that most hand-held impro-

vised explosive devices are ~5 kg hence, in this study TNT explosive masses between 3 and 10 kg 

were used, as in Table 3, using Apollo’s in-built model for TNT. The range of charges were 

Figure 7. Validation of Apollo scaled peak specific impulse against experiments (Rigby et al., 2015).
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modelled in nine locations that form a grid around the centre of the domain, as shown in Figure 9, 

and were detonated from a height of 1 m above the floor. These charge locations correspond to a 

minimum normal scaled distance of 0.93 m/kg 1/3  (10 kg at 2 m) and a maximum normal scaled 

distance of 5.20 m/kg 1/3  (3 kg at 7.5 m).

To comply with the findings of Introduction and mesh sensitivity, the ultimate cell length for 

specific impulse convergence should be < 0.05  m when the shortest distance between charge and 

a rigid boundary is 2 m ( S / 40 = 0.05 ). A zone length of 0.24 m and resolution level of 3 (ultimate 

cell length of 0.03 m) was therefore specified for all 72 models to satisfy the impulse convergence 

requirement for the S = 2 m cases, ensuring that h S= / 40  was not exceeded in any scenario. It 

was found that this combination of parameters allowed for all tests to be performed within a week 

of continuous simulation.

Figure 8. Simulation model boundaries and dimensions.

Table 3. Training variable constraints.

Variable Variable options

TNT charge sizes ( kg ) 3, 4, 5, 6, 7, 8, 9, 10

Charge locations (x, y) [z = 1] (2.5, 2), (5, 2), (7.5, 2), (2.5, 3.5), (5, 
3.5), (7.5, 3.5), (2.5, 5), (5, 5), (7.5, 5)

0
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4

5

6

7

0 2 4 6 8 10

Figure 9. Charge locations within the chosen domain on plan. Black boundaries locate the rigid walls, 
clear boundaries represent ambient/outflow conditions [plan view].
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The positions of the gauges included in the sampling mesh will be explored as part of the study 

as they will directly influence the performance of the trained ANNs. The height of the gauges was 

set to be 1 m above ground level, that is, in line with the centre of the charge. Sampling data at a 

fixed height above the ground is a common technique for reducing complexity of the data harvest-

ing process for studies using numerical analyses or practical experiments (Alterman et al., 2019; 

Gajewski and Sielicki, 2020). Additionally, this decision does not significantly alter the architec-

ture and predictive ability of the ANN but considerably reduces the time required for training and 

validation.

Once the data had been harvested and compiled, it was randomly reordered and sorted into two 

subsets: one for training and one for testing. For this study, the former will utilise 75% of the data, 

with the remaining 25% left for testing. This ratio is typical for neural network studies as training 

percentages can range from 70% to around 85% depending on the quantity of data (Dehghanbanadaki 

et al., 2019; Zaleski and Prozument, 2018).

Output check. Figure 10 shows the locations of three points within the chosen domain, with 

Figure 11 displaying the associated pressure-time and impulse-time histories for an 8 kg TNT 

charge located in the centre of the domain. Also shown are the ConWep (Hyde, 1991) semi-

empirical predictions for positive phase incident overpressure and specific impulse for compari-

son. Note that the negative phase (Rigby et al., 2014a) has been omitted from the semi-empirical 

predictions as verifiable relations in the near-field are unavailable (Bogosian et al., 2002). The 

results differ significantly from the simple free-air case as expected. Gauge (a) shows the arrival 

of two clear pressure peaks, one from the primary shock wave, followed by a reflection from 

each of the rigid walls which arrive concurrently due to the position of the gauge. Gauge (b) 

shows a single, dominant pressure owing to its close proximity to the charge. Gauge (c) shows a 

simple free-air-type blast load with low-level, late-time pressure loading due to the partially-

confined nature of the domain. In all cases, the pressure load initially appears similar to the 

ConWep incident pressure, with significant differences developing thereafter. This demonstra-

tion gives confidence that the physical processes are occurring and being modelled as expected, 

and that there is a clear, tractable dependency of the results on gauge location.

Development of artificial neural network

Base network structure

The feed-forward, backpropagation, fully connected network developed by this study is shown in 

Figure 12. To limit the amount of structural trial and error, the number of hidden layers was fixed 

at two, with the number of neurons being varied during the development of the ANN. Two hidden 
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Figure 10. Charge positioning and labelled gauge locations of the model output check [plan view].
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layers were specified as Remennikov and Rose (2007) found this arrangement to perform better 

than when one, or three hidden layers are used. The location of the point of interest within the 

domain, and the size and positioning of the explosive charge form the input pattern and the peak 

specific impulse forms the solitary output.

Bewick et al. (2011) found that the use of non-scaled input parameters leads to improved correla-

tions between targets and predictions. Additionally, the errors related to charge size may be obscured 

if scaled values are used. As a result, non-scaled inputs have been specified for all networks being 

developed in this paper. The used ANN code was written in Python using the Tensor Flow package 

for Machine Learning. Table 4 shows the network parameters that remained unchanged when train-

ing the ANNs.
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Figure 11. Apollo overpressure-time and specific impulse-time histories for three gauges shown in Figure 
10 and ConWep (Hyde, 1991) incident wave overpressure-time and specific impulse-time histories at the 
corresponding stand-off distances.
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The number of training steps used in this study dictates how many times the weights and biases 

are updated given the error obtained from a randomly selected batch of 100 input patterns. In addi-

tion to using L2 regularisation terms, dropout is utilised to prevent overfitting. A dropout rate of 0.1 

determines the number of neurons that are excluded and not updated in a given step of the training 

process. This helps to prevent ‘brittle co-adaptations that work for the training data but do not 

generalise to unseen data’ (Srivastava et al., 2014). Once training is complete, the testing dataset 

will be simulated in a single batch so that the network is assessed with unseen data that does not 

impact the weights and biases.

The AdaGrad (Adaptive Sub-gradient Descent) algorithm has been chosen as it adapts the learn-

ing rate and therefore the magnitude of variable updates during training so that common features 

within the dataset have smaller impacts whilst the rare features have larger impacts (Hadgu et al., 

2015). It can therefore produce well-trained ANNs for datasets featuring localised effects and wide 

variations in output values. Further information concerning this algorithm can be found in a paper 

by Duchi et al. (2011).

Dataset development

Performance evaluation. To explore multiple methods of forming the training dataset with limited 

computational expense, a preliminary development stage has been implemented. It involves the use 

of 27 of the 72 simulations corresponding to the 3, 6 and 10 kg tests for all 9 charge locations. Neural 

networks trained using the various datasets are given a fixed number of neurons per hidden layer 

(100) based on initial testing of the training process that found training times remain below 20 mins. 

Maintaining consistency with this parameter allows for effective performance comparisons to be 

made. Then, once the best performing dataset configuration is identified, the full range of charge 

sizes will be used to explore the impacts of changing the hidden neuron count before the network is 

evaluated at the conclusion of this paper. Performance evaluation will initially take place using two 

metrics. The first is the Youngs Correlation Coefficient, calculated using equation (1).
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Where Rt
2  is the correlation coefficient, mn  is the predicted specific impulse, on  is the target 

specific impulse that is obtained from the Apollo simulations and N  is the total number of data 

points. The second measure is the Mean Absolute Error, calculated using equation (2).
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Table 4. Fixed network parameters.

Activation function ReLU (Linear at output)

Error function Mean squared error

Gradient descent algorithm AdaGrad

Learning rate Variable

Number of training steps 1000

Training batch size 100

Dropout rate 0.1
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Gauge spacing. The ability of a network to accurately model unseen situations is directly related to 

the quality and quantity of training data. The choice of a suitable resolution of gauge points is 

therefore key for the latter aspect, with each gauge providing a single data point that corresponds 

to the point of interest inputs of the network.

Figure 13 shows how gauges spaced at 1 m (a) provide 70 points per simulation, whereas a 0.5 m 

spacing (b) provides 280 points. For the 72 tests being simulated these correspond to either 5040 or 

20,160 total input patterns for this domain. Sufficient gauge resolution is required to capture the 

spatial distribution of peak specific impulse across the entire domain, however, too fine a resolu-

tion will increase the prevalence of low magnitude impulse values and may limit the network’s 

ability to learn interdependencies between the two ‘point of interest’ input nodes and specific 

impulse. This would result in poorer predictions for higher-magnitude, spatially concentrated val-

ues of specific impulse, in particular in areas where shock fronts coalesce and superimpose, that is, 

along the two rigid walls of the domain and in the corner between them.

Table 5 presents the achieved performance from networks trained using both dataset options. It 

is worth stating that despite the presented results being taken from the first network trained using 

the given conditions, the networks critiqued in this study have been trained multiple times to 

ensure that the reported performance statistics are not unique.

In this case, providing a greater number of data points with the finer mesh of gauges leads to an 

improved network performance in terms of MAE and correlation between targets and predictions. 

Overfitting is also avoided as in both instances, as the testing performance surpassed that which 

was achieved in training. All subsequent networks trained in this study therefore use data from 

gauges spaced 0.5 m apart with an origin at (0.25, 0.25).

Limited peak specific impulse. Figure 14 shows the distribution of testing predictions and targets 

for the network trained with 0.5 m gauge spacing with the solid black line representing a perfect 
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Figure 13. Gauge spacing options for the chosen domain [plan view].

Table 5. Network performance results achieved for ANNs using varied gauge spacing training datasets.

Network variable Development 
stage

R t
2 MAE 

(kPa.ms)

Gauge spacing: 1 m Training – 80.18

Testing 0.9539 76.56

Gauge spacing: 0.5 m Training – 76.55

Testing 0.9683 64.31
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prediction. This shows that larger specific impulse values appear to be predicted with considera-

bly less accuracy. It is suggested that this is due to the reduced number of higher magnitude spe-

cific impulses included in the training dataset. The network weights and biases are updated less 

frequently for these predictions and, despite the AdaGrad descent algorithm being used to miti-

gate the implications of this, generalisation of the network for higher specific impulses appears 

unsatisfactory.

The largest magnitudes of specific impulse, directly around the charge, will far exceed any 

human injury criteria. It is also not practical to design a protective structure to resist such loading. 

The focus of the paper is therefore placed on the points outside of the zone immediately surround-

ing the charge. Through removing the influence of high specific impulses on the trained network 

variables, better predictive accuracy may be observed for points close to the dataset mean. To test 

this theory an impulse limit has been applied to the training dataset, defined as the mean plus two 

standard deviations ( µ σ+ 2 ). All targets above this value will be set to the limiting value itself, 

which for the charge sizes of 3, 6 and 10 kg, corresponds to 1088.5 kPa.ms.

The distribution of targets and predicted points for the network which utilises the impulse limit 

is shown Figure 15. It can be seen that the larger target values are still predicted with reduced accu-

racy compared to the rest of the data. However, when viewed against the results in Figure 14, it 

becomes clear that removing 44 data points that from the testing dataset that exceeded the impulse 

limit (of 1890 points in total) results in significant improvement. Table 6 presents the performance 

metrics from the initial and limited impulse analyses. In limiting the maximum impulse, the correla-

tion coefficient has increased from 0.9683 to 0.9817, and the MAE has decreased from 64.31 kPa.

ms to 56.99 kPa.ms. This proves that setting an impulse limit results in general improvements in the 

ability of the ANN to predict the entire dataset, and also leads to increased generalisation.

Network performance assessment

Accuracy evaluation. Following the configuration of the training dataset, an exploration of the neu-

ron count for both hidden layers was performed. A training dataset made up of 15,120 points from 

all 72 tests using gauge spacing of 0.5 m was used with the associated impulse limit ( µ σ+ 2 ) also 
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Figure 14. Testing targets and predictions from the ANN developed using 0.5 m gauge spacing in the 
training dataset.
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being applied. The aim here is to prove that ANNs are capable at modelling internal blast loading 

by training a network to a similar standard as other rapid analysis methods for blast loading predic-

tions. It is shown by Rigby et al. (2014b) that the commonly used predictor ConWep (Hyde, 1991) 

can reproduce free-field values with a maximum error of 7%. Here, this shall be increased to a 

targeted 10% maximum error due to the added complexities of internal explosions and associated 

challenges to the numerical models. The formula for calculating the percentage error is given by 

Equation 3.
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Where En  is the percent error, mn  is the predicted specific impulse, and on  is the target specific 

impulse that is obtained from the Apollo simulations corresponding to point n.

Using this method of accuracy evaluation, the following sections will assess the performance of 

the ANNs with a view to quantifying typical differences between predicted and numerical data.

Hidden neuron count experimentation. Figure 16 shows that increasing the neuron count for both 

hidden layers leads to a continual decrease in the average percent error achieved when using the 

trained network with unseen inputs from the testing dataset. The number of points being predicted 

within a 10% error envelope also continuously increases as more neurons are added, albeit with 

decreasing improvements as the number of neurons increases.

Unlike many other studies using experimental data, here the training patterns comprise of incre-

mentally stepped values in all variable space required for the network to operate. It is not common 

Table 6. Testing network performance results with and without a specific impulse limit.

Network variable R t
2 MAE (kPa.ms)

No impulse limit 0.9683 64.31

Impulse limit = µ σ+ 2  = 1088.5 kPa.ms 0.9817 56.99
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Figure 15. Testing targets and predictions from the ANN developed using a specific impulse limit.
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for a study to have such a detailed overview of the entire problem, and in many cases, it is com-

mented by researchers that the reason for inconsistent performance is related to sparse datasets 

(Bewick et al., 2011). This may be why improvements in testing performance are seen in this man-

ner for uncommonly large networks as the mean percentage error reaches 4.81% for a total of 3000 

hidden neurons (MAE in testing was 29.9 kPa.ms for an average specific impulse of 591.5 kPa.ms).

Ultimately there is a diminishing return in performance improvement as the neuron count 

increases. The 1500/1500 structure required a training time of 190 mins to achieve the aforemen-

tioned accuracy level, whereas the 500/500 structure required 17 mins to achieve a mean percent-

age error of 5.90% and MAE of 36.3 kPa.ms. However, as the aim of this article is to demonstrate 

the effectiveness of ANNs for predicting blast loading in an internal environment, the most accu-

rate network (1500/1500 neurons) is adopted for further study.

Figure 17 shows the training progress of the chosen network. It is clear that whilst rapid learning 

occurs to reduce the testing MAE from an initial value of > 80  kPa.ms to < 40 kPa.ms in ~180 

steps, the additional steps, up to 1000, provide additional improvements that allow the network 

testing MAE to reach 29.9 kPa.ms. The network does not appear to be overfitted with the MAE at 

the end of the training process equalling 32.8 kPa.ms. This value is derived from the final batch of 

100 randomly selected input patterns whereas the testing MAE is from all 5040 patterns that form 

the testing dataset. Whilst it is desirable to include a more detailed k-fold cross-validation and 

overfitting assessments, the aims of this paper are to demonstrate the use of ANNs for internal blast 
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Figure 16. Error assessment of network predictions against unseen testing data: (a) mean percentage 
error, (b) percentage of points within a 10% error envelope.
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predictions and to evaluate the general design of the ANNs being used for internal modelling, and 

so these details are omitted in this manuscript.

Impulse magnitude error variation. Figure 18 shows the 10% error envelope with the predictions and 

targets from testing for the 1500/1500 network. Details of how the error varies depending on spe-

cific impulse magnitude are given in Table 7. For specific impulses below 800 kPa.ms, over 90% 

of predictions are within 10% of the target value. For values > 800 kPa.ms this decreases to 84.5% 

of points within the 10% bracket. It is thought that the drop in performance could be linked to how 

there are only 760 data points with specific impulse above 800 kPa.ms in the testing dataset, which 
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Figure 17. Training progress of the 5-1500-1500-1 structured network.
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is relatively low compared to the other ranges. A similar distribution of magnitudes will present in 

the training dataset (since both are randomly generated) meaning the network variables are not 

being updated as many times for specific impulses > 800 kPa.ms as they are for other ranges. It is 

shown here that this leads to reduced prediction accuracy following training.

For specific impulse values less than 400 kPa.ms, 94% of predictions are within 10% of the 

target value. This is the highest accuracy of any specific impulse range, despite being occupied by 

the second lowest number of testing data points (with the range i > 800 occupying the lowest). 

This suggests that the network is more capable of predicting lower magnitude specific impulses 

than it is at predicting higher magnitude specific impulses, regardless of the amount of data points 

involved in training. It is hypothesised that the network is better able to predict lower impulse 

values ( < 400  kPa.ms) as these are regularly recorded at gauge locations nearest the ambient 

boundaries, therefore the network can rapidly learn relationships between gauge location and spe-

cific impulse, independent of charge size/location (i.e. it is dependent on only 2/5 of the input 

nodes and can rapidly generalise). In contrast, larger values of specific impulse are predominantly 

recorded around the position charge, which varies in each analysis, that is, the relationship is 

dependent on all five input nodes and therefore generalisation is more difficult with limited data.

Overall, the network predicted 89.9% of points in the testing dataset to within 10% of the target 

(numerical) impulse. This shows how the approach is largely successful even in this first assess-

ment of its use for internal blast predictions.

Charge size error variation. The previous section leads into the need to assess if there is a variation 

in the predictive performance on the ANN based on the size of the explosive. Table 8 shows that 

for explosive masses less than 10 kg, performance is largely consistent, with only slight variations 

in accuracy for each range and charge mass. This shows that the network is able to generalise 

between the similar charge sizes well, particularly at the centre of the variable space (6 kg). How-

ever, for samples from the 10 kg tests, there is around a 5% reduction in the number of values being 

predicted with 10% error, despite there being a similar number of patterns used for each charge size 

in both training ( 1890) and testing ( 630) for all charges.

This performance reduction may be caused by an increased number of higher peak specific 

impulse readings within the domain, which was shown in the previous section to lead to less accu-

rate predictions. If this study were to have included charge sizes > 10  kg, it is anticipated that 

predictions for the 10 kg charge mass would improve since the dataset mean and standard deviation 

would also be increased. Therefore, the distributions of specific impulse from the 10 kg models 

would better compare to the mean. This highlights a slight deficiency in ANNs for this application 

in that they are less capable of predicting values towards the upper-end of the parameter range as 

discussed previously.

Table 7. Variation of network predictive performance relative to the target specific impulse magnitude.

Peak specific 
impulse range 
( kPa.ms )

Number 
of testing 
dataset points

Percentage of training dataset points within percentage error 
range (%)

0 ≤ E < 5 5 ≤ E < 10 10 ≤ E < 20 E ≥ 5 E < 10

i ≤ 400 969 74.5 19.5 5.3 0.7 94.0

400 < i ≤ 600 1718 76.5 13.5 6.2 3.8 90.0

600 < i ≤ 800 1593 75.8 14.2 5.4 4.6 90.0

800 < i 760 51.2 33.3 10.8 4.7 84.5
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Charge location error variation. The 9 charge locations have also been analysed separately to iden-

tify any performance variations. These locations are shown in Figure 19, with the results from the 

analysis presented in Table 9.

Table 8. Variation of network predictive performance relative to the input charge size.

Charge 
size (kg)

Number of 
testing dataset 
points

Percentage of training dataset points within percentage error range (%)

0 ≤ E < 5 5 ≤ E < 10 10 ≤ E < 20 E ≥ 20 E < 10

3 644 66.9 23.3 8.7 1.1 90.2

4 605 75.6 15.3 5.3 3.8 90.9

5 614 77.0 13.8 5.1 4.1 90.8

6 621 77.6 14.0 4.2 4.2 91.6

7 646 74.7 15.9 6.2 3.2 90.6

8 649 69.1 20.2 6.5 4.2 89.3

9 596 70.8 19.6 6.4 3.2 90.4

10 665 65.7 19.9 9.2 5.2 85.6
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Figure 19. Labelled charge locations 1–9 within the chosen domain [plan view].

Table 9. Variation of network predictive performance relative to the charge location.

Charge 
Location

Number of 
testing dataset 
points

Percentage of training dataset points within percentage error range (%)

0 ≤ E < 5 5 ≤ E < 10 10 ≤ E < 20 E ≥ 20 E < 10

1 538 69.7 18.0 7.8 4.5 87.7

2 523 69.6 21.4 6.5 2.5 91.0

3 593 69.0 21.4 4.4 5.2 90.4

4 583 73.6 15.4 7.1 3.9 89.0

5 557 66.8 18.9 10.2 4.1 85.7

6 588 64.5 21.7 9.9 3.9 86.2

7 566 80.4 12.0 4.4 3.2 92.4

8 526 81.6 13.5 3.0 1.9 95.1

9 566 74.4 17.8 4.6 3.2 92.2
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The network appears to display some dependency on charge position, with the performance for 

positions 7 to 9 exceeding all others. The reason for this is not immediately clear, however it may 

be due to the larger distance between the charge locations and the longer outflow boundary (see 

Figure 19), thus increasing the prevalence of lower magnitude impulse values for which the net-

work is better able to generalise. This theory does not extent to charge locations 1 and 4, however, 

which are the charge locations most remote from the shorter outflow boundary. It is suggested that 

this is due to the influence of the longer reflecting wall along the top edge of the domain, which 

will likely have a more significant effect on the pressure fields further downstream.

As the charge in location 5 is in the centre of the domain, this leads to a more balanced distribu-

tion of points, with some experiencing additional reflections and confinement effects, and others 

exhibiting more simple free-air-type loading. This will lead to a larger range of specific impulses 

to train over, hence making generalisation more difficult. Despite this, the model is still able to 

predict 85.7% of the specific impulses to within 10% of the numerical data (Table 9).

Final network design

Based on the findings outlined in the previous sections, the final network design is as follows:

 • Inputs: charge size (kg TNT); charge x  coordinate (m); charge y  coordinate (m); point of 

interest x  coordinate (m); point of interest y  coordinate (m)

 • Output: peak specific impulse at the point of interest (kPa.ms)

 • Hidden layer structure: 1500/1500 (two layers)

 • Activation function: ReLU (linear at output)

The associated network restrictions are then as follows:

 • Usable charge size range: 3 to 10 kg of equivalent TNT

 • Predictable points of interest: no closer than 0.25 m to a boundary and at 1 m height

 • Charge origin ( z  coordinate): 1 m

 • Predictable impulse limit derived from the training dataset (given as µ σ+ 2 ): ~1040.2 kPa.ms

Predicting blast loading in an internal environment using the ANN

With the network demonstrating a high level of accuracy when considering training data that was 

obtained from the original 72 simulations, it is essential that the approach is also tested on its abil-

ity to predict unseen data from new analyses. This involves using the trained network to predict 

four additional sets of values from scenarios where the variables are new to the network, but still 

within the respective variable spaces. The variable constraints that were implemented during train-

ing and testing are shown in Table 10, with Table 11 indicating how these values have been altered 

in each of the new test cases studied in this section.

Each of the first three tests are intended to investigate how the network copes with one change 

from the training variables. The final test then combines each of these alterations to present an 

entirely new input pattern to the network. Through assessing each of these variables it will high-

light how well the network can interpret new inputs by relating them to the training variables it has 

seen before.

Figure 20 displays the obtained distributions from Apollo and the trained ANN. As per the pre-

vious simulations, the new models were run with a zone length of 0.24 m and resolution level of 3. 
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Note that the maximum value of the colourbar is limited to 1000 kPa.ms for ease of interpretation, 

despite the limiting specific impulse used in the analysis equalling 1040.2 kPa.ms. The numerical 

and predicted specific impulse distributions are presented alongside a visualisation of percentage 

error. The error assessments of each test are provided in Table 12.

It can be seen that the ANNs are able to reproduce the modelling results to a high level of accu-

racy across the entire domain both qualitatively and quantitatively. It is shown in Table 12 that at 

least 81.4% of the predicted impulses were within 10% of the numerical values for all four test 

models. Generally, the ANN is able to provide highly accurate predictions in areas where specific 

impulse is dominated by high magnitude, nonlinear superposition of reflected shocks, that is, along 

each reflecting wall and, in particular, in the corner between the two walls. In these regions, the 

complex interaction processes present many challenges to existing modelling approaches. Here, 

typical errors are < 20% for all locations along the reflecting walls, in all tests, indicating a good 

degree of generalisation of the predictive method. Furthermore, all tests show that an error of less 

than 10% is attainable near to the ambient boundaries and in areas of generally low specific 

impulse. It was shown previously that the ANN was more capable at generalising specific impulse 

predictions in regions of low complexity.

The agreement is less satisfactory in regions immediately adjacent to the charge, with errors 

consistently above 20%, albeit only in a relatively focussed area of the domain. The true magni-

tudes of these errors are not known due to the use of the impulse limit as explained previously. 

However, as discussed in Limited peak specific impulse, this is deemed acceptable as the areas 

surrounding the charge will be subjected to excessive specific impulses for which designing pro-

tective structures or preventing human injury would be impractical.

In total, each ANN was able to generate the predicted specific impulse distributions within 

4 mins. The rapid generation of results and high level of agreement attained, both with the testing 

dataset and the additional test models presented in this section, shows that ANNs can be a highly 

useful tool for generating blast loading predictions in confined internal environments. The general 

structure of the network permits the inclusion of more complex analysis cases through the use of 

Table 10. Training variable constraints.

Variable Range of permissible values

TNT Charge sizes (kg) 3, 4, 5, 6, 7, 8, 9, 10

Charge locations (x, y) [z = 1] (2.5, 2), (5, 2), (7.5, 2), (2.5, 3.5), (5, 3.5)

(7.5, 3.5), (2.5, 5), (5, 5), (7.5, 5)

Gauge spacing (m) 0.5

Gauge origin (x, y)[z = 1] (0.25, 0.25)

Table 11. Details of input variables used in additional unseen tests.

Variables Test 1 Test 2 Test 3 Test 4

 New charge 
size

New gauge 
locations

New charge 
location

All new 
variables

Charge size (kg) 5.75 6 6 5.75

Charge location (x, y) (5, 3.5) (5, 3.5) (4, 3) (4, 3)

Gauge spacing (m) 0.5 1 0.5 1

Gauge origin (x, y) (0.25, 0.25) (0.5, 0.5) (0.25, 0.25) (0.5, 0.5)
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Figure 20. (a) Numerical specific impulse distributions, (b) ANN predicted specific impulse distributions, 
and (c) percentage error. Colourbar maximum is set to 1000 kPa.ms for ease of interpretation (limiting 
specific impulse is 1040.2 kPa.ms).

Table 12. Additional test percentage error results.

Test 
Number

Total 
data 
points

Percentage of additional test dataset points within percentage error 
range (%)

0≤E<5 5≤E<10 10≤E<20 E≥20 E<10

1 280 63.2 23.2 9.3 4.3 86.4

2 70 65.7 21.4 10.0 2.9 87.1

3 280 52.9 33.6 9.6 3.9 86.5

4 70 52.8 28.6 12.9 5.7 81.4
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additional input nodes, for example, those representing the presence of internal reflecting obsta-

cles, and more complex confinement and venting around the edges of the domain. Further explora-

tion of alternative regularisation techniques, or activation functions that do not include a 

linearisation effect, also present many ways for future work to achieve more robust predictive 

performance for highly nonlinear cases.

Summary and conclusion

This study presents an evaluation of artificial neural networks (ANNs) for predicting the complex 

blast loading in a confined internal environment. Design of the ANN was rigorously evaluated 

through considerations of parameters such as gauge spacing (for the training and testing dataset), 

limited peak specific impulse, and number of hidden neurons, set domain size considered to be 

‘fully vented’ according to the terminology in UFC 3-340-02 (US DOD, 2008).

Apollo Blastsimulator was used to gather training and testing data for the ANN. Firstly, Apollo 

was validated against available experimental data (Rigby et al., 2015) and shown to be in good 

agreement for far-field blast predictions. A full dataset was then harvested from 72 separate models 

from eight different charge sizes, each located at nine different positions within a 10 7 5× ×  m 

computational domain with floor, ceiling and two adjacent walls specified as rigid reflecting 

boundaries. Thus, 20,160 individual datapoints were generated, with 75% randomly assigned to 

train the network and the remaining 25% retained for testing.

It was found that both increasing the quantity of the available data and setting a limit on the 

maximum peak specific impulse (equal to the mean specific impulse plus two standard deviations) 

resulted in an improved performance of the network. Following this, the an optimised network 

structure was identified to include two hidden layers of 1500 neurons each, with five input neurons 

and a single output neuron. The network was able to predict the specific impulse for  90 % of the 

gauge locations to within 10% of the numerical values during the testing phase of the training 

process. It was found that the network was able to generalise for a wide range of specific impulse 

values, and was particularly accurate for areas of low specific impulse (e.g. those located close to 

the outflow edges of the domain), although its ability to generalise for larger specific impulses (and 

for the model with the largest charge mass) was inhibited by a general lack of high impulse data-

points for training.

The benefits of using ANNs to predict unseen data were clearly demonstrated with four new 

models. Here, the numerical analyses each took approximately 2 hrs, whereas the network was able 

to generate predictions within 4 mins. In each case, specific impulse was predicted to within 10% 

accuracy for between 81% to 87% of the gauge locations, with a high level of accuracy demon-

strated along the rigid reflecting walls and in the corner between the two. Errors were found to be 

< 20% in all tests for every point that was not immediately adjacent to the charge. It has therefore 

been proven that ANNs are highly suited for predicting blast loading in a confined internal environ-

ment, with significant improvements in accuracy achievable if the network structure and training 

dataset are tailored to the problem being solved.

The ANN method is highly flexible and can be readily adapted to incorporate a wider range of 

input parameters. Extension of this method to account for charge shape effects, to predict loading at 

a range of heights within the domain, and to model different domain sizes with differing degrees of 

confinement, can be achieved by adding relevant input nodes to describe the new parameters. Such 

changes will not require substantial adjustments to the remaining architecture of the ANN, nor will 

the process of generating and format training/validation data differ from the methods we present in 

this article, and therefore the findings presented herein can also be considered as valid for ANNs 

developed to predict blast load parameters in scenarios which differ to those presented herein.
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