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Photonic Hybrid State Entanglement Swapping using Cat

State Superpositions

Ryan C. Parker1
∗
, Jaewoo Joo2, Timothy P. Spiller1

1York Centre for Quantum Technologies, Department of Physics, University of York, York, YO10 5DD, U.K.
2School of Mathematics and Physics, University of Portsmouth, Portsmouth, PO1 3QL, U.K.

We propose the use of hybrid entanglement in an entanglement swapping protocol, as means of dis-
tributing a Bell state with high fidelity to two parties. The hybrid entanglement used in this work is
described as a discrete variable (Fock state) and a continuous variable (cat state superposition) entangled
state. We model equal and unequal levels of photonic loss between the two propagating continuous vari-
able modes, before detecting these states via a projective vacuum-one-photon measurement, and the other
mode via balanced homodyne detection. We investigate homodyne measurement imperfections, and the
associated success probability of the measurement schemes chosen in this protocol. We show that our en-
tanglement swapping scheme is resilient to low levels of photonic losses, as well as low levels of averaged
unequal losses between the two propagating modes, and show an improvement in this loss resilience over
other hybrid entanglement schemes using coherent state superpositions as the propagating modes. Finally,
we conclude that our protocol is suitable for potential quantum networking applications which require two
nodes to share entanglement separated over a distance of 5− 10 km, when used with a suitable entangle-
ment purification scheme.

1 Introduction

The future of large-scale quantum communications will almost certainly involve distribution and manipula-
tion of entangled pairs of photons within a quantum network; such a quantum network is likely to include
small clusters of quantum processors (perhaps in a local network of quantum computers) which may require
shared entanglement, and could then be connected to other network clusters, potentially via satellite commu-
nications [1–3]. However, despite the undeniably useful non-classical properties which entanglement-based
quantum systems offer (such as for quantum key distribution [4–7], quantum secret sharing [8–10], quantum
repeaters [11–14], quantum computing [15–18] and quantum teleportation [19–22]), entanglement is a highly
fragile resource, and breaks down rapidly in the presence of noise and losses [23].

One particularly useful proposal for circumventing the intrinsic fragility of distributing entangled pho-
tons around a quantum network is by performing entanglement swapping (ES). In ES, there exist two parties,
Alice and Bob, each of whom begin the protocol with a separately entangled pair of photons, AB and CD re-
spectively. They each send half of their entangled pair (i.e. modes B and D) to a central location, where these
propagating modes are mixed at a 50:50 beam-splitter, before subsequently being measured, as described in
the schematic of Fig. 1. This mixing and measurement step is key to ES, as it causes projection of the states
in modes B and D, thus projecting modes A and C into an entangled state.

This distributed entanglement, now shared between modes A and C, can then be used for further quan-
tum communications and quantum computational purposes. Moreover, performing ES to share entangle-
ment enhances the secrecy and security of the post-entangled state shared between Alice and Bob; if an
adversary, Eve, were to measure modes B and D, she gains no useful information on states A and C, and in
fact by carrying out this measurement Eve has actually assisted Alice and Bob in sharing an entangled state
[24].

This in fact is a form of measurement-device independence [25–27], and is a direct consequence of the
monogamy of entanglement: if Alice and Bob share an entangled state of high fidelity, then Eve must be
disentangled from this state. As a result of this, Alice and Bob need not trust the source of entanglement.
However, Eve, as the source of entanglement, could simply deny service, and there is no way to circumvent
this form of attack.

ES, first performed experimentally in 1993 [28], has since been executed with discrete variables (DVs)
[29–31], and also with continuous variables (CVs) [32, 33]. CV systems typically pose the advantage of
high success probability, whereas DVs are often robust against lossy channels; hence, an advantage could be
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Figure 1: Schematic to represent the
six channel system (in which the initial
hybrid entangled states are denoted as

|Ψ〉HE
AB and |Ψ〉HE

CD) undergoing entan-
glement swapping. Modes A and C

are the discrete variable post-entangled
modes, and B and D are the propagat-
ing continuous variable modes. Losses
are modelled through leakage of modes
B and D into modes EB and ED respec-
tively. The lossy modes B and D then

meet at a 50:50 beam-splitter (BS
1/2
B,D)

before subsequently being measured via
a projective vacuum measurement and
balanced homodyne detection (DB and
DD , respectively).

gained from using both CV and DV states in what is referred to as a hybrid entanglement scheme [34], and
will be investigated in this work.

The practicality of using CVs is also worth noting; they are compatible with current standard optical
telecommunication technologies, and so could be suitable for large-scale communication protocols, and could
offer greater resistance to photonic losses compared to DV states [35, 36]. Moreover, preparation of DV entan-
glement often requires heralded approaches (whereas CV entangled states are typcially prepared determinis-
tically), and therefore result in lower success probabilities, however the fidelity against the desired state to be
produced often approaches unity [37]. Both, DVs and CVs, have been extensively researched when used in
entanglement swapping protocols together in the form of hybrid entanglement [38, 39], and have also been
demonstrated experimentally [40].

In this work we present a new ES protocol based on hybrid entangled cat states. We show that we can
produce a Bell state of high fidelity when allowing for low levels of photonic losses in the propagating CV
(cat state superposition) modes, as well as allowing differences in the losses between the two propagating
modes.

This paper is organised as follows: in Section 2 we introduce our proposed ES protocol, as well as our
model for photonic losses in the propagating modes, and the detection methods used; we extend this model
for loss, and include averaged unequal losses between modes B and D, in Section 3; in Section 4 we show
that, following our proposed ES protocol, Alice and Bob can share a Bell state of high fidelity, when allowing
for low levels of equal and unequal losses, as well as investigating homodyne measurement imperfections;
we discuss the practicality of our protocol for distributing entanglement in a future quantum network in
Section 5; our conclusions are given in Section 6.

2 The Entanglement Swapping Protocol

A space-time schematic describing the process of our proposed ES protocol, from initial hybrid entangled
state generation through to detection, is given in Fig. 1, in which each arrow indicates a channel/mode.
Within Fig. 1, the arrows illustrating modes A and C indicate a movement in space; this is to represent
the possibility that these modes may be sent on for further uses in quantum communications protocols or
quantum computing, or perhaps even to a potential customer (or indeed separated customers), requiring an
entangled pair of qubits.

We now discuss each stage of our proposed protocol, starting with the production of the initial hybrid
entangled states, before moving on to discuss how we model photonic losses in the propagating modes, and
our subsequent detection methods.

2.1 Hybrid States with Superposed Cats

In this work we rely on coherent state superpositions (also referred to as Schrödinger cat states) as the prop-
agating mode of quantum information. A coherent state |α〉 is the unique eigenstate of the annihilation
operator â, with eigenvalue α, thus being described as â |α〉 = α |α〉, where:

2



|α〉 = e−
|α|2

2

∞
∑

n=0

αn

√
n!

|n〉 , (1)

in which we have represented the coherent state |α〉 of amplitude α (where α is complex [41]) as a summation
of the discrete variable Fock state |n〉 [42], which is vital for the analyses required in this work. We define
the creation and annihilations operators as â = x̂ + ip̂ and â† = x̂ − ip̂ respectively, where x̂ and p̂ are the
dimensionless field quadratures which we are able to measure via homodyne detection (see Appendix B),
and are described as x̂ = 1

2 (â+ â†) and p̂ = i
2 (â

† − â) [43].
Two-component states are coherent state superpositions with opposite phase, and as such we describe

the cat states used in this work mathematically as:

|Ψα〉 = Nα(|α〉+ |−α〉),
|Ψiα〉 = Nα(|iα〉+ |−iα〉), (2)

where, Nα is the normalisation factor, given asNα = 1/
√
2 + 2e−2α2 . We importantly note that, unless stated

otherwise, α is real throughout this work.
We highlight here that freely propagating optical mode cat states have been producible experimentally

since their realisation in 1986 by B. Yurke and D. Stoler [44], via use of the optical Kerr effect, applying a uni-
tary evolution of a single coherent state. More recently however, there have been a multitude of experimental
procedures undertaken to produce optical cat states. One such method is via photon subtraction of an optical
squeezed state [45–50]; this method is usually suitable for producing low-amplitude cat states, which in fact
is more applicable to this work, as we show in our results that cat states of amplitude 1.0 < |α| < 2.5 yield
the best fidelity for our proposed protocol. A further proposed method is given in [51], in which squeezed
cat states are shown to be generated from Fock states, via use of a single homodyne detector. For a highly
comprehensive review on generating cat states, refer to [52].

Within this ES protocol, we propose the use of so-called hybrid entangled states. These quantum states are
described as having entanglement shared between DV and CV degrees of freedom. Extensive experimental
research has been carried out preparing various hybrid entangled states, and one such commonly investi-
gated state is the |ψ〉AB = 1√

2
(|0〉A |α〉B + |1〉A |−α〉B) state, which shows bipartite hybrid entanglement

between a qubit and a CV mode (commonly referred to as an entangled “Schrödinger cat state”). This can be
prepared in a multitude of ways, such as via use of polarisation photons, probabilistic heralded single photon
measurements and Hadamard gates [53], by relying on Kerr non-linearities [54–57], or by exploiting entan-
gled polarisation qubits with a series of beam-splitters (BSs) and auxiliary modes [58]. In fact, previous work
has investigated this particular hybrid state in the same ES protocol as followed in this work, demonstrating
that this simple hybrid state is theoretically resilient to low levels of photonic losses [59, 60].

2.2 Stage 1: Preparation of Hybrid Entanglement

In this work we consider hybrid entangled cat states, in which the CV components in the superposition are
themselves cat states, as discussed in the previous section.

Alice’s input quantum state to our proposed ES protocol is then described mathematically as follows:

|Ψ〉HE
AB =

Nα√
2

[

|0〉A
(

|α〉B + |−α〉B) + |1〉A (|iα〉B + |−iα〉B
)]

, (3)

in which Nα = 1/
√
2 + 2e−2α2 is the normalisation of an even (or odd) cat state. Furthermore, Bob’s hybrid

state of modes C and D
(

|Ψ〉HE
CD

)

is identical to that of Alice’s in modes A and B, as described in Eq. 3, and

so our total quantum state at this stage is:

|Ψ〉HE
ABCD = |Ψ〉HE

AB ⊗ |Ψ〉HE
CD . (4)

The hybrid states utilised in the protocol discussed here have increased complexity and thus require ad-
ditional preparation steps, compared to the usual hybrid states. We therefore propose a sequence of quantum
operations capable of producing such complex hybrid states, as the first stage of our protocol, as follows:

1. Begin with an initial product state of:

|Ψ〉AB = Nα[|0〉A (|α〉B + |−α〉B)]. (5)
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2. Apply a Hadamard gate (Ĥ) to mode A, such that |0〉A
Ĥ−→ 1√

2
(|0〉A + |1〉A). Although a Hadamard

gate performed on a single mode Fock state to produce a superposition state is not trivial, it is still
practically possible to perform, and a feasible experimental method is given in [61]. The state after this
is then:

|Ψ〉AB
Ĥ−→ Nα√

2
[|0〉A (|α〉B + |−α〉B) + |1〉A (|α〉B + |−α〉B)]. (6)

3. Finally, perform a conditional (controlled) π
2 rotation on mode B, such that when the qubit in mode A

is |1〉A then this rotation is performed on mode B. This can be shown as:

Nα(|α〉B + |−α〉B)
R̂π

2−−→ Nα |iα〉B + |−iα〉B . (7)

The final hybrid entangled state produced from this sequence of quantum logic gates is then that of Eq.
3.

This process can be shown as a quantum circuit as per Fig. 2:

Figure 2: A quantum circuit which could be used to prepare the initial hybrid entangled states (|Ψ〉HE
AB and |Ψ〉HE

CD , as given in Eq. 3) for

our proposed entanglement swapping protocol, using a Hadamard gate (Ĥ) and a controlled π
2

rotation gate (R̂π
2
).

This circuit therefore demonstrates that these particular hybrid states can be produced using standard quan-
tum operations.

2.3 Stage 2: Lossy Optical Modes

In any practical demonstration of this protocol, there will be intrinsic photonic losses that occur in the propa-
gating modes (such as within optical fibres), and so we model these losses to investigate the tolerance of our
protocol to this (see Stage 2 of Fig. 1).

To model photonic losses we combine the lossy modes (B and D) with beam-splitters of transmission
T , along with input vacuum states in modes EB and ED (|0〉EB

and |0〉ED
), for losses in modes B and D

respectively, and then trace out the loss modes as lost to the environment. Therefore, by decreasing the value
of T from unity we introduce greater levels of photonic loss in the system.

For now, we will consider the case in which the two beam-splitters (BSTB

B,EB
and BSTD

D,ED
) induce equal

amounts of loss between modes B and D, thus TB = TD. In Sec. 3 we discuss the more realistic circumstance
in which TB 6= TD.

To demonstrate how we mathematically account for photonic losses, consider an arbitrary coherent state
|β〉i of complex amplitude β in mode i, which we combine with a BS of transmission Ti, along with a vacuum
state in mode j:

BSTi
i,j |β〉i |0〉j =

exp
[

√

Ti βâ
† −

√

Ti β
∗â
]

× exp
[

√

1− Ti βb̂
† −

√

1− Ti β
∗b̂
]

|0〉i |0〉j = |
√

Ti β〉i |
√

1− Ti β〉j , (8)

where â† (b̂†) and â (b̂) are the creation and annihilation operators for modes A and B, respectively.
The total quantum state of the ES protocol after inducing photonic losses is then described as:

|Ψ〉ABEBCDED
= BSTB

B,EB
|Ψ〉HE

AB |0〉EB
⊗BSTD

D,ED
|Ψ〉HE

CD |0〉ED
, (9)

in which,

|Ψ〉ABEB
=

(Nα)
2

2
×
[(

|0〉A ( |
√

TB α〉B |
√

1− TB α〉EB
+ |−

√

TB α〉B |−
√

1− TB α〉EB
)

+ |1〉A ( |i
√

TB α〉B |i
√

1− TB α〉EB
+ |−i

√

TB α〉B |−i
√

1− TB α〉EB
)
)]

, (10)

and the above state is identical to that describing modes C, D and ED.
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2.4 Stage 3: 50:50 Beam-Splitter

Following the introduction of loss into the propagating modes (B andD), we then mix these modes at a 50:50
BS (as per Stage 3 of our protocol, outlined in Fig. 1). Consider now two arbitrary coherent states, of complex

amplitudes α and η in modes i and j respectively - the 50:50 BS (BS
1/2
i,j ) convention we use here can be shown

mathematically as:

BS
1/2
i,j |α〉i |η〉j =

∣

∣

∣

∣

α− η√
2

〉

i

∣

∣

∣

∣

α+ η√
2

〉

j

. (11)

2.5 Stage 4: Detection Methods

After mixing the lossy modes B and D via use of a 50:50 BS, we then need to detect these quantum states
(Stage 4, Fig. 1) to project their respective wave-functions, thus ensuring successful ES to modesA and C. We
measure modeB via a projective vacuum state measurement, and modeD via balanced homodyne detection.
For a detailed discussion of how we mathematically derive and implement both of these measurement tech-
niques, refer to Appendix A and Appendix B for the vacuum state detection and homodyne measurement
schemes respectively.

3 Modelling Unequal Photonic Losses

In a practical setting, the two propagating modes B and D will not exhibit the exact same levels of photonic
losses. For example, different lengths of optical fibres correspond to varying levels of loss - shorter fibre
intrinsically exhibits lower losses. In fact, optical fibres of equal length may even exhibit differing photonic
losses. There are also potential errors when coupling optical fibre to components, such as the 50:50 BS used
to mix modes B and D, or fibre splices within these modes. Hence, even if the lengths of fibre are identical,
slightly different optical coupling in the two modes could give a small mismatch in losses. We could even
consider the free-space ES scenario, in which the path lengths of modes B and D differ, and as such would
exhibit varying levels of loss.

As such, the two BSs used to model this loss theoretically (BSTB

B,EB
and BSTD

D,ED
) will not have equal

transmission coefficients - that is to say that TB 6= TD. We therefore now determine whether allowing for
a small difference in the losses experienced in these modes, which we denote υ, impacts the quality of the
entangled state shared between Alice and Bob post-protocol.

To avoid transmission coefficients exceeding unity (which is clearly unphysical), we parametrise our un-
equal loss parameter such that TB = T and TD = T − υ, in which 0 ≤ T ≤ 1 and 0 ≤ υ ≤ 1. When allowing
for this “loss mismatch”, our total quantum state, after the lossy BSs, is then:

|Ψ(υ)〉ABEBCDED
=

(Nα)
2

2
×
[(

|0〉A ( |
√
T α〉B |√γ α〉EB

+ |−
√
T α〉B |−√γ α〉EB

)

+ |1〉A ( |i
√
T α〉B |i√γ α〉EB

+ |−i
√
T α〉B |−i

√
γ α〉EB

)
)]

⊗
[(

|0〉C ( |
√
T − υ α〉D

∣

∣

√
γ + υ α

〉

ED
+ |−

√
T − υ α〉D

∣

∣−√γ + υ α
〉

ED
)

+ |1〉C ( |i
√
T − υ α〉D

∣

∣i
√
γ + υ α

〉

ED
+ |−i

√
T − υ α〉D

∣

∣−i
√
γ + υ α

〉

ED
)
)]

, (12)

where γ = 1− T . Of course, in the limit of υ = 0 we return to the equal loss scenario.
As opposed to selecting a specific value for this loss mismatch, it is logical to explore an average over υ by

means of a one-sided (positive) Gaussian distribution, in which the width associated with this distribution
corresponds to our ensemble-averaged loss mismatch value, which we denote Υ. Considering this value as an
ensemble average means that an experimentalist performing this ES protocol could have in mind a threshold
of Υ for which they would know to not allow the mismatch in the loss to fall below.

The function for this Gaussian profile is calculated as:

f(υ,Υ) =

√

2

πΥ2
e−

υ2

2Υ2 , (13)

which is normalised for
∫∞
0
f(υ,Υ)dυ = 1.

Therefore, the final state for our overall ES protocol, when accounting for unequal (averaged) losses be-
tween the propagating CV modes (B and D), and after having performed vacuum state detection and a
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homodyne measurement, is:

ρ̄AEBCED
(Υ) =

∫ ∞

0

f(υ,Υ)ρAEBCED
(υ)dυ, (14)

where ρAEBCED
(υ) = |Ψ(υ)〉AEBCED

〈Ψ(υ)|.
Lastly, we trace out the lossy modes (EB and ED) as lost to the environment, using the coherent state to

trace, thus giving our final density matrix as:

TrEB ,ED
[ρ̄AEBCED

(Υ)] = ρ̄AC(Υ), (15)

which we use to determine all subsequent results presented throughout this work.
Due to the length of many of the mathematical expressions within this protocol, we do not include these

in this work. We direct the reader to the work of [60] for an in-depth discussion, including all mathematical
detail, of each step of this proposed protocol.

4 Results and Discussion

Having performed successful ES, as per the protocol outlined in the prior sections, the state which Alice and
Bob share (in the ideal, no loss, perfect measurements limits) is a phase-rotated Bell state:

∣

∣Φ+(α)
〉

AC
=

1√
2

(

e−iα2 |00〉AC + e+iα2 |11〉AC

)

, (16)

and the orthogonal Bell state to this is:

∣

∣Φ−(α)
〉

AC
=

1√
2

(

e−iα2 |00〉AC − e+iα2 |11〉AC

)

. (17)

This phase in the ideal outcome state (Eq. 16) could be corrected for via a suitable quantum operation (i.e. a
phase-space rotation), or tracked through the protocol which the post-entangled state is being used for, such
that the outcome state would be the maximally entangled |Φ+〉AC = 1√

2
(|00〉AC + |11〉AC) Bell state.

4.1 Fidelity

As the aim and purpose of our proposed ES protocol is to produce a specific Bell state of the highest quality
(and therefore highest level of entanglement), the most useful measure of the quantum state shared between
Alice and Bob is fidelity.

We calculate the fidelity (F ) using the standard formula of:

F =
〈

Φ+(α)
∣

∣ ρ̄AC(Υ)
∣

∣Φ+(α)
〉

, (18)

in which |Φ+(α)〉 is the desired protocol outcome, and ρ̄AC(Υ) is the final density matrix of our ES protocol,
given in Eq. 15. In the limit in which our protocol outcome is identical to |Φ+(α)〉 the fidelity is F = 1, and
as the closeness of these quantum states the fidelity drops from unity and approaches zero.

Fig. 3 shows the fidelity against the phase-rotated Bell state, and the state orthogonal to this Bell state
(|Φ−(α)〉), as a function of the coherent state amplitude α of our final density matrix (Eq. 14), but in the limit
of Υ = 0 (i.e. the losses experienced in modes B and D are equal).

Firstly, we can see in Fig. 3 that the plot of fidelity against the |Φ+(α)〉 state plateaus at unity for T = 1 and
α ≥ 2.3. This confirms that in the ideal limit (i.e. no loss) we can indeed produce the maximally entangled
|Φ+(α)〉 Bell state, following our ES protocol. What is also evident in Fig. 3 is that in the limit of very large
α, and for non-unity T the fidelity of both plots (for |Φ+(α)〉 and |Φ−(α)〉) tends to F = 0.50; in fact, this
50:50 mixture of both Bell states is a mixed state, and exhibits no entanglement, and so is undesirable as the
protocol outcome.

Moreover, we can also see in Fig. 3 that as we increase the level of losses in modes B and D, the fi-
delity against the desired Bell state is lower for all α - correspondingly, the fidelity therefore increases for the
orthogonal Bell state, indicating the increased level of mixing.

If we consider the plot of Fig. 4, in which we now allow for an averaged loss mismatch between modes
B and D, we can see that increasing this loss mismatch value (Υ) merely causes the fidelity plots to plateau
to F = 0.50 more rapidly as a function of α. In fact, this result is positive for the performance of this protocol
- allowing for unequal losses between modes B and D does nothing more to impact the outcome of our
protocol than simply increasing the level of equal losses between these modes.
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Lastly, noticeable in both the equal loss and unequal loss plots (Figs. 3 and 4 respectively) is that there is
a double peak present, for all values of T and Υ investigated (although we recognise that the second peak
becomes less pronounced as T decreases and/or Υ increases).

Mathematically, this is a direct consequence from the numerous exponential terms that are present in
the final density matrix describing the resultant two qubit matrix - we do not explicitly present this density
matrix, as each of the matrix terms contains a vast number of complicated exponential terms, however, in
Appendix C we include the final quantum state (prior to tracing out the lossy modes), for the equal loss
scenario. We also direct the reader to [60] for the mathematical detail of each stage of this ES protocol,
including the final state generated.

These exponential terms present in the equal loss case of Eq. 32 (which are also present in the unequal
loss scenario) can be seen as somewhat competing with each other; instead of seeing a simple peak followed
by a decay due to exponential dampening, as a result of the introduction of loss into our system, we see a
dip which is a consequence of exponential interference. This dip becomes less pronounced as the level of loss
increases (for example, in the T = 0.95, Υ = 0.10 plot of Fig. 4) - this is due to the exponential dampening
effect, dependent on the level of loss, having a stronger impact on the final density matrix compared to the
smaller effect of exponential interference.

Of course, this too is a positive result, as it means that we have a wide acceptance window of the coherent
state amplitudes to prepare our initial states in, whilst still giving a tolerable fidelity. The maximum fidelity
value varies as a function of α, dependent on the level of loss considered: for T = 0.97 the second peak gives
the maximum fidelity, and for T ≤ 0.96, the first of these peaks gives the best outcome state, as shown in Fig.
3.

Finally, we also plot the fidelity against the desired |Φ+(α)〉 Bell state, as a function of both α and the
averaged unequal loss value Υ, for T = 1, in Fig. 5.

The plot of Fig. 5 does not quite reach unity, even at the peak α value. The reason for this is that the
numerical calculation cannot be evaluated for Υ very close to 0, as the Gaussian function then becomes a
delta function (i.e. no longer a continuous spectrum, but instead is zero everywhere except for υ = 0).
Intrinsically, we expect that in the limit of Υ = 0 we return to the results shown in the equal loss scenario
(Fig. 3), and so we would indeed then expect the plot of Fig. 5 to reach, and plateau at, unity.

From Figs. 3, 4 and 5, we can conclude that we do not desire an averaged loss mismatch value of Υ > 0.10,
as this gives an unacceptably low fidelity (F ≤ 0.80) for all α. We consider an acceptable fidelity result to
be F ≥ 0.80, as we could use any of the multitude of entanglement purification protocols available [62–66]
to increase this fidelity to a sufficient level for further quantum communication/computation uses (i.e. to
F ≥ 0.95).

We acknowledge here that this limit we have for unequal losses Υ ≤ 0.10 to give an acceptable protocol
output fidelity is not detrimental to the usefulness of our ES protocol: as previously stated, we refer to Υ
as an average for unequal losses, as this variable is intended to reflect the practical perspective of running
this protocol as an experiment, in which one would perhaps have a range of optical fibres, each of differing
length, for example. It then follows that an averaged loss mismatch value of Υ > 0.10 represents quite a
large range of optical fibre lengths, and so it would be possible for an experimentalist to avoid unequal losses
greater than this limit proposed in any case.

Figure 3: Fidelity against the
∣

∣Φ+(α)
〉

(Eq. 16) Bell state (solid lines), and the orthogonal
∣

∣Φ−(α)
〉

(Eq. 17) Bell state (dashed lines), as
a function of the coherent state amplitude α, for the final state generated via our entanglement swapping protocol (Eq. 15), for varying
levels of equal losses between modes B and D.
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Figure 4: Fidelity against the
∣

∣Φ+(α)
〉

(Eq. 16) Bell state, as a function of the coherent state amplitude α, for the final state generated via
our entanglement swapping protocol (Eq. 15), for varying levels of equal loss, and averaged unequal loss (Υ).

Figure 5: Fidelity against the
∣

∣Φ+(α)
〉

(Eq. 16) Bell state, as a function of the coherent state amplitude α and the averaged unequal loss
value Υ, for the final state generated via our entanglement swapping protocol (Eq. 15), for T = 1.

4.2 Imperfect Homodyne Detection

Thus far in the results and discussion, we have only analysed the scenario in which the homodyne mea-
surement outcomes are the average perfect case. As detailed in Appendix B, to allow for imperfections in
the homodyne measurement outcome, we follow the method outlined in [67], and consider a resolution
bandwidth (∆x) around the average measurement outcome. The final state of our protocol when analysing
homodyne imperfections is given in Appendix C Subsec. C.1, as a density matrix in Eq. 35.

Analysis of homodyne measurement imperfections are vital within this work, as no practical homodyne
detector is able to measure with a bandwidth equal to ∆x ≈ 0. Hence, in this section we investigate the
tolerance our protocol has to increasing this measurement bandwidth, whilst still producing a final state of
acceptable fidelity. As we reduce ∆x we are effectively allowing for fewer possible measurement outcomes
when performing the protocol practically, and this is how we determine success probability of the homodyne
measurement, as discussed in Subsec. 4.3.

Firstly, we plot the scenario of no loss (Fig. 6), to investigate the impact on output fidelity when increasing
∆x to investigate the impact in the most idealised circumstance. From Fig. 6 we can see that the fidelity
against the ideal Bell state ( |Φ+(α)〉) begins to oscillate as we increase ∆x. Intuitively we can conclude that
these oscillations are present as a result of the numerous competing exponentials, which are dependent on
∆x and also α within our final state (see Eq. 34).

Interestingly, this oscillatory behaviour is not present when observing higher values of loss (T = 0.95) as
per Fig. 7. This is because the dampening exponentials introduced when accounting for losses, after having
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traced out the lossy modes, have a stronger influence on the final density matrix compared to the competing
exponentials which produce the oscillations.

Promisingly, we find that introducing a relatively high level of detection imperfection (∆x ≤ 0.25) does
not significantly impact the resultant state fidelity against the ideal Bell state, even in the higher loss scenario.
In fact, it is still evident that there is a peak α value as noticed in the previous fidelity plots discussed, and so if
performing this practically one could take into account the known homodyne detector resolution bandwidth,
and select the value of α which is likely to achieve the highest fidelity result.

Finally, we note that we do not show results for averaged unequal losses as these scale similarly to merely
increasing the level of equal loss.

4.3 Homodyne Measurement Success Probability

Another important quantity to consider, in evaluating the performance of a protocol, is the success proba-
bility of the measurement schemes. As previously discussed, evaluating the homodyne detection resolution
bandwidth ∆x allows us to investigate the success probability of this measurement; increasing ∆x means
allowing for more outcome results of this measurement, and so we expect to see the success probability
increase as ∆x becomes larger.

Contrastingly, allowing for higher values of ∆x impacts the resultant fidelity of the output state of the
protocol, as discussed in Subsec. 4.2 - therefore we expect to witness a trade-off between the success of the
protocol and the quality (fidelity) of the outcome. This is useful to understand, because in some cases the
customer might wish to suffer a lower success rate to obtain high fidelity pairs.

To calculate the homodyne success probability we determine the modulus square of the normalised prob-
ability amplitudes (given by using the projector of Eq. 31 onto the coherent states present in mode D) to give
us the probability distribution we integrate over, as:

∣

∣

D 〈xπ
4
|Ψ〉AεBCDεD

∣

∣

2
, (19)

which then gives the success probability as:

PHom.(%)(Υ) =

∫ ∞

0

f(υ,Υ)Nυ

(

∫ T +

2
α+∆x

2

T +

2
α−∆x

2

∣

∣

D 〈xπ
4
|Ψ〉AεBCDεD

∣

∣

2
dxπ

4
+

∫ −T +

2
α+∆x

2

−T +

2
α−∆x

2

∣

∣

D 〈xπ
4
|Ψ〉AεBCDεD

∣

∣

2
dxπ

4

)

dυ × 100,

(20)

where, T + =
√
T +

√
T + υ and,

Nυ = 1/
(

4 + 8e−
|T +α|2

4 + 24e−
|T +α|2

2 + 8e−
|T +α|2

4/3 + 4e−|T +α|2 + 8e−(2+i)|T +α|2 + 8e−(2−i)|T +α|2
)

1
2

, (21)

is the normalisation. Although we show the full expression above for clarity, we do not present the results for
equal and averaged unequal losses for homodyne success probability, as these scale as expected - incremental
increases in the level of loss (be that equal or unequal) slightly lowers the success probability.

Fig. 8 shows the plot of the homodyne success probability PHom.(%) as a function of α, for increasing
∆x. Here we can see that for ∆x = 5.0 the success probability is 100% for all α - this is because the resolution
bandwidth at such a high value covers the entire spectrum of the cat state probability distribution. To further
understand the plot of Fig. 8 it is useful to look at the probability distribution of the cat state equation (Eq.
19) for varying α, as per Fig. 9.

In Fig. 9, α = 0 gives the vacuum state probability distribution, as expected. Contrastingly, if we look to
higher values of α, then we see that for α = 2.0 the two peaks of the probability distribution are almost en-
tirely separated; this is the ideal scenario for successful homodyne detection, in which we have two outcome
peaks to be measured (i.e. xπ

4
= ±α - see Fig. 11).

Moreover, when considering α = 1.0 in Fig. 9, we can see that the width of this peak is broader than that of
α = 0. This is as a result of the vacuum states present in modeD, which are not ideal states for the homodyne
measurement to project to, as measurement of these will not give an entangled output. These vacuum states
are exponentially dampened as a function of α, and so it is not until α > 2.0 when the contribution by the
vacuum is reduced to a negligible amount.

Finally, we highlight that we indeed witness a trade-off between homodyne success probability and the
output state fidelity. The success probability is optimum for very large ∆x, however the output fidelity
of the protocol would be very low in this scenario. Ideally, we would opt to use α values in the range of
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1.0 ≤ α ≤ 2.0 and a measurement bandwidth of ∆x ≤ 0.25, which gives a success probability of around
10− 15% in the no loss regime.

Figure 6: Fidelity against the |Φ+(α)〉 (Eq. 16) Bell state (solid lines in plot) and the orthogonal |Φ−(α)〉 (Eq. 17) Bell state (dotted
lines in plot) as a function of α for the final state generated via our entanglement swapping protocol (Eq. 35), for T = 1 and varying
homodyne measurement bandwidth ∆x.

Figure 7: Fidelity against the |Φ+(α)〉 (Eq. 16) Bell state as a function of α for the final state generated via our cat state entanglement
swapping protocol (Eq. 35), for T = 0.95 and varying homodyne measurement bandwidth ∆x.

Figure 8: Success probability (PHom.(%)) of the homodyne measurement (Eq. 20), as a function of α, for varying homodyne measure-
ment bandwidth ∆x and T = 1.

10



Figure 9: Probability distribution f(xπ
4
) of the cat state equation (given by Eq. 19), as a function of xπ

4
, for α = 0, α = 1.0 and α = 2.0

(for no loss).

Figure 10: Success probability (P0(%)) of the vacuum measurement, as a function of the coherent state amplitude α, for varying levels
of equal losses between modes B and D. Note that we truncate the y-axis of the plot so that the range is from 20% → 100%.

4.4 Vacuum Measurement Success Probability

We now discuss the success probability associated with the vacuum state measurement. Fig. 10 shows a plot
of the vacuum measurement success probability (P0) as a function of the coherent state amplitude α. We only
plot up to α = 2.5, as this is the region we are primarily concerned with in our protocol, due to the fact that
this is where our fidelity values peak as a function of α. Noticeably, we can see in Fig. 10 that for α = 0,
P0 = 100%. Naturally, this is entirely expected, because at this value of α = 0 all of these coherent states
are in fact vacuum states, and so intrinsically any vacuum measurement here will always be performed with
100% success probability. More interestingly, we see that, for all values of loss covered in Fig. 10, all plots
plateau at P0 = 25%.

We also point out that although we have only considered equal losses between modes B and D in Fig. 10,
the results are effectively identical when considering the same levels of unequal losses between these modes
(as we noticed in the fidelity plots previously discussed).

Given the fidelity results presented in Figs. 3, 4 and 5, we can conclusively state that, for the levels of
equal and unequal losses evaluated, we would desire coherent state amplitudes of 1.0 ≤ α ≤ 2.0, so as to
achieve the peak fidelity results. In this region, however, the success probability begins to drop, and in fact
at the higher end of this limit (α ≈ 2.0), we can see in Fig. 10 that the success probability is around P0 = 25%.

This trade-off between fidelity and success probability is a common occurrence in quantum communi-
cation schemes, and is something we must accept. Although success probability is undoubtedly significant
when considering the practical implementation of our proposed ES protocol, we argue that high fidelity is far
more important to aim for as opposed to better success probabilities; producing fewer pairs of higher fidelity
quantum states is more useful for further quantum communication purposes, as opposed to producing a
greater number of lower fidelity states.
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Finally, it is worth addressing the point that even current state of the art single photon detectors (SPDs)
operate far from perfectly. There are various imperfections associated with SPDs, such as; photon number
resolution, dead-time and recovery time, detector jitter, dark-counts, after-pulses, and the detector efficiency
itself [68]. Although all of these SPD imperfections are relevant to our set-up, as we utilise single photon
detection to measure the presence of a vacuum state, the most important of these for our protocol that we
should consider are detector efficiency and dark-counts. One such example of an off-the-shelf state of the art
SPD is the ID Quantique ID281 SPD, which is based on superconducting nanowires [69], and is specified to
achieve detector efficiencies of ≥ 85% with dark count rates as low as 1− 100 Hz. Moreover, such a detector
is able to operate through optical fibres (as opposed to free-space), and also work over telecom wavelengths,
which typically exhibit the lowest losses for propagating photons in optical fibre.

SPD imperfections, such as detector efficiency and dark-count rate, will clearly have a negative effect on
the success probability of our protocol, and will therefore lower the vacuum measurement success probability
further from the analysis already performed in this section. However the overall output fidelity should not
be impacted by these detector imperfections, and so to mitigate the impact we merely need to perform the
protocol more times to achieve a successful outcome, thus lowering the protocol bit rate. We do note that
whilst a lowering of the bit rate is not ideal, it is not too damaging for the overall usefulness of this protocol for
its intended purpose; such an ES protocol as presented in this work is likely to be used to produce relatively
low numbers of highly entangled pairs of photons for use in bespoke quantum networks, for example in
disaggregated quantum computing networks, which will be discussed in the following section.

5 Application in a Quantum Network

Thus far, we have shown that one could theoretically produce a highly entangled Bell state of fidelity F ≥
0.80, when allowing for photonic transmissions of T = 0.95 in the propagating modes (corresponding to
losses of 5% ≡ 0.22 dB). Currently, the highest-performing low-loss fibre available exhibits losses of 0.149
dB/km [70], and so 5% loss in our protocol corresponds to maximum distances between Alice and Bob of
3.0 km (assuming the measurement apparatus to detect modes B and D is located precisely in the middle of
Alice and Bob), whilst still being able to share an entangled Bell state of fidelity F ≥ 0.80.

Of course, this limits our protocol to being used in short-distance entanglement distribution networks.
Nevertheless, this scheme could be highly suitable for sharing entanglement between adjacent quantum
computers within a future quantum network, possibly in a local area network (LAN), such as a university
campus or research centre.

However, if we allow for higher levels of loss, and therefore lower resultant fidelity, we can intrinsically
distribute entanglement to two parties further distanced apart. If we set our fidelity acceptance threshold to
F ≥ 0.70, then the losses we can tolerate in modesB andD are T = 0.88 (equivalent to 0.56 dB/km), allowing
Alice and Bob to be located around 7.5 km apart if using ultra low-loss fibre of 0.149 dB/km. Moreover, if
we allow our fidelity acceptance window to drop even further to F ≥ 0.60, then we can allow for losses
of T = 0.84, which corresponds to 0.76 dB, thus allowing Alice and Bob to share an entangled state whilst
separated by an overall distance of 10.5 km.

Again, this still makes our proposed entanglement swapping protocol suitably only for relatively short
LAN-type distances, however this comes at the advantage of being able to distribute highly entangled Bell
states.

A Bell state of fidelity F ≤ 0.95 is impractical for further uses with quantum computing, communications
or information processing, and so allowing for further losses within our protocol means that a subsequent
entanglement purification scheme would be required. Nevertheless, this is a common requirement for en-
tanglement swapping protocols, and proposed quantum repeater networks use entanglement purification
nodes as a fundamental part of the protocol.

Research into increasing the level of entanglement shared between two distant parties has been carried
out extensively, and there exist a multitude of potential protocols which can increase Bell state fidelity from
F = 0.60 to F ≥ 0.95 [62–66]. Of course, in this circumstance this then requires one to use a higher number of
lower fidelity pairs to produce one very high fidelity pair, although we argue that for the intended purpose
of this protocol it is logical to sacrifice high bit rates to ensure that the entangled pairs delivered are of the
best quality.

6 Conclusions

Following our proposed ES protocol, we can produce a phase-rotated Bell state |Φ+(α)〉 between two distant
nodes, with fidelity of F ≥ 0.80 for equal losses between modes B and D of T ≥ 0.95 with an averaged loss
mismatch value of Υ ≥ 0.05. We find that introduction of averaged unequal losses between the propagating
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modes does not significantly impact the protocol results, and in fact has no more of an effect than merely
increasing the levels of equal losses between these channels.

We witness a double peak in all fidelity plots, as a function of the coherent state amplitude α, and so we
have a broader range of acceptable α values than in our previously proposed (coherent state superposition)
protocol of [59], in which we witness only a single sharp peak. The protocol investigated in this work is also
slightly more tolerant to induced losses than the work of [59].

For the range of αwhich delivers a fidelity of F ≥ 0.80, in the higher loss limits of (T = 0.95 and Υ = 0.05)
the success probability of the vacuum measurement is P0 ≈ 40%. We can allow for a fairly broad homodyne
measurement bandwidth of ∆x ≤ 0.50, whilst still giving an entangled output state of respectable fidelity
against the ideal case.

We reiterate that the phase present in the Bell state produced through our protocol, |Φ+(α)〉, is not of
detriment to the usefulness of this protocol in distributing entanglement to two parties; however in a practical
implementation, this would require the customer to be informed of the exact phase present each time. As
this phase is fixed by the value of α chosen, all post-entangled pairs received by the two parties will have the
same phase.

Moreover, we conclude that this protocol is tolerant only to low levels of photonic losses, and so is more
suitable for distributing entangled quantum states over a local area network between parties located 5-10
km apart, when followed by a suitable entanglement purification scheme. These entangled pairs of pho-
tons could then be used for further quantum communication purposes, or by adjacent quantum computing
processors, which may require entanglement for communications or information processing [15].
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A Vacuum State Detection

By “vacuum state measurement” we mean that to reveal the absence of a photon (therefore indicating a
vacuum state) one could use a perfect photodetector, and upon not hearing the characteristic click of the
detector, indicating the presence of one or more photons, it can be assumed that there is not a photon present
[71].

To measure the presence of a vacuum, or lack thereof, we apply a positive-operator valued measure
(POVM) described by the operator [72]:

P̂ 0
i = |0〉i 〈0| , (22)

where |0〉i represents a vacuum state in mode i. This POVM measurement can be calculated by application

of this vacuum projector P̂ 0
i onto a coherent state (as is required in our proposed ES protocol). For example,

consider an arbitrary coherent state of complex amplitude γ in mode i as follows:

|0〉i 〈0|γ〉i = |0〉i e−
|γ|2

2

∞
∑

n=0

γn√
n!

i 〈0|n〉i

= |0〉i e−
|γ|2

2

∞
∑

n=0

γn√
n!

δn,0 = |0〉i e−
|γ|2

2 , (23)

in which we have applied the Fock basis representation of the coherent state (|γ〉i = e−
|γ|2

2

∑∞
n=0

γn

√
n!

|n〉i),
and we have made use of the Kronecker delta function, in which δn,0 = 0 for n 6= 0 and δn,0 = 1 for
n = 0. We also highlight here that the application of this projective vacuum state measurement introduces an

exponential dampening term of e−
|γ|2

2 , which is intrinsically important to the resultant performance of our
proposed ES protocol, as will be discussed later.

After performing this projective vacuum measurement, our total quantum state is:

P̂ 0
B |Ψ〉ABEBCDED

=
√

P0 |Ψ〉AEBCDED
, (24)

in which P0 is the success probability of the vacuum measurement (this will be discussed further in Subsec.
4.4). For clarity, we omit the state |0〉B on the right-hand side of Eq. 24 (and in further expressions), as this is
the remaining state from the vacuum measurement operator (Eq. 22) after projecting mode B, and this will
be used to project the complex conjugate of mode B when used to form the final density matrix.
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B Homodyne Measurement

Following the vacuum measurement of mode B, we proceed to measure mode D via balanced homodyne
detection. To perform balanced homodyne detection, the probe mode (mode B1) is mixed at a 50:50 BS with
a strong coherent field

∣

∣βeiθ
〉

, in which β is real, in modeB2 (also referred to commonly as the local oscillator)
of equal frequency, and photodetection is used to measure the outputs of both modes B1 and B2 [73–75].

The intensity difference between the two photodetectors (DB1
and DB2

) is then calculated using the two

mode operator ÎB̂1−B̂2
as:

ÎB̂1−B̂2
= b̂†1b̂2 + b̂†2b̂1. (25)

Setting the local oscillator mode to b̂2 = βeiθ then yields the expectation value as:

〈

b̂†1b̂2 + b̂†2b̂1
〉

= 2β 〈x̂θ〉 , (26)

for x̂θ = 1
2

(

b̂1e
−iθ + b̂†1e

iθ
)

[76], in which the phase of the quadrature to be measured is given by the phase

θ of the local oscillator [77]. We adjust the phase angle such that x̂θ→0 = x̂ and x̂θ→π/2 = p̂, thus giving the
position and momentum operators, respectively, as:

x̂ =
1

2
(â+ â†) and p̂ =

i

2
(â† − â), (27)

in which the coherent state expectation values are:

〈x̂〉 = 1

2
(α+ α∗) and 〈p̂〉 = 1

2i
(α∗ − α), (28)

for α = αx + iαy and α∗ = αx − iαy .
Finally, the probability amplitude of a projective homodyne measurement on an arbitrary coherent state

∣

∣αeiφ
〉

is determined by projecting with an x̂θ eigenstate, in which x̂θ |xθ〉 = xθ |xθ〉 [78]:

〈

xθ
∣

∣αeiϕ
〉

=
1

2−
1
4π

1
4

exp

[

− (xθ)
2 + 2ei(ϕ−θ)αxθ −

1

2
e2i(ϕ−θ)α2 − 1

2
α2

]

, (29)

where the subscript on xθ is indicative of the angle in which the homodyne measurement is performed,
and this angle can be accurately chosen through the phase of the local oscillator. We recognise here that
homodyne detection is a routine and very accurate measurement technique used widely in optics as a means
of measuring phase-dependent quantum phenomena [79–82].

The outcome of a homodyne measurement is a value xθ of the continuous quadrature variable x̂θ, and the
resultant homodyne measurement value is given by a probability distribution that comes from the modulus
squared of the wave-function (as given in Eq. 29). For this work, we therefore define an ideal homodyne
measurement as the case when the resultant homodyne measurement value is at the maximum of the prob-
ability distribution, as indicated by the position and momentum phase space diagram of Fig. 11 (note that
the states in this diagram have amplitudes of

√
2 α, which is a result of the 50:50 BS operation prior to this

measurement).
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Figure 11: The position and momentum phase space occupied by two cat states Nα( |
√
2 α〉+ |−

√
2 α〉) and Nα( |

√
2 iα〉+ |−

√
2 iα〉),

in which an x̂π
4

homodyne measurement yields a probability distribution exhibiting two peaks, centred at xπ
4
= ±α.

Therefore, upon performing the homodyne measurement we have the total quantum state of:

Π̂HD |Ψ〉AEBCDED
= |Ψ〉AEBCED

, (30)

in which Π̂HD = |xπ
4
〉D 〈xπ

4
| is the homodyne measurement projector, of measurement angle π

4 . Again, as
with the measurement of mode B (Eq. 24), we omit mode D on the right-hand side of this expression, as this
is removed when forming the final state density matrix.

We select the angle of measurement θ = π
4 such that we quantum erase information between certain peaks

in the probability amplitude. To clarify, the purpose of the homodyne measurement in this scenario is to indis-
tinguishably detect the coherent states, thus causing the output state to exhibit entanglement; the homodyne
measurement outcome heralds the entangled state that is produced.

Considering the position and momentum of the cat states in Fig. 11, were we to measure along the x̂π
2

axis, for example, then we would only erase information between the two states along the momentum axis
( |
√
2 iα〉 and |−

√
2 iα〉). This means that the output probability distribution would have three peaks, thus

causing the remaining quantum state to be less entangled than for the circumstance in which we quantum
erase information between the states by an x̂π

4
measurement, as shown in Fig. 11. Of course, ideally one

would perform this measurement with an angle such that there is only a single peak in the resultant proba-
bility distribution, however this is impossible for the case at hand.

A homodyne measurement along the x̂π
4

axis, as shown in Fig. 11 has two peaks centred at xπ
4
= ±α,

and so we use this result as our homodyne measurement outcome in establishing the final quantum state in
this ES protocol. We emphasise that a homodyne measurement is a continuous quadrature measurement,
and so realistically there is a range of outcome values in which xθ may take (hence, as per Fig. 11, xπ

4
= ±α

are the average perfect outcomes). Therefore, to investigate imperfect homodyne detection we need to allow
for a resolution bandwidth about the expected measurement outcome value. The mathematical method for
this was derived in [67], and we use this in determining the acceptance value of how large the resolution
bandwidth can be, whilst still producing entangled qubits of reasonable fidelity.

Following the derivation detailed in [67], the imperfect homodyne measurement operator becomes:

Π̂HD(x0,∆x) =

∫ x0+
∆x
2

x0−∆x
2

|xθ〉 〈xθ|dxθ, (31)

in which x0 is the expected measured value and ∆x is the resolution bandwidth around this measured value.
Intuitively, in the limit of ∆x → 0 we should approach the perfect homodyne measurement scenario as
before. This, in fact, is how we determine success probability for the homodyne measurement, however this
will be discussed in detail in Subsec. 4.3.

For successful ES, as per this protocol, it is essential that one performs a vacuum state measurement
on one propagating mode, and a homodyne measurement on the other - it was found that if two homodyne
measurements, or two vacuum measurements, are performed on modesB andD then the resultant quantum
state is a linear combination of all possible two qubit states, which is a product state and therefore exhibits
no entanglement, and as such is of little use for further quantum communication/computation purposes.
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We also note that we post-select the state prior to this measurement, conditional on the required vacuum
projection outcome on mode B. That is to say, if we hear the photon detector click then we do not perform
homodyne detection on mode D, but instead restart the entanglement swapping protocol again.

C The Final State of the ES Protocol

The final state (prior to tracing out the lossy modes EB and ED) shared between Alice and Bob, for the
scenario of equal losses between modes B and D, is:

|Ψ〉AEBCED
=

N
[

|00〉AC

(

exp
[

(1− i)Tα2
]

|γα〉EB
|γα〉ED

+ exp
[

− (3− 3i)Tα2
]

|−γα〉EB
|−γα〉ED

+e−Tα2
(

|γα〉EB
|−γα〉ED

+ |−γα〉EB
|γα〉ED

))

+e
−Tα2

2 |01〉AC

(

exp
[

Tα2
]

|γα〉EB
|γiα〉ED

+ exp
[

− 2T iα2
]

|γα〉EB
|−γiα〉ED

+exp
[

2T iα2
]

|−γα〉EB
|γiα〉ED

)

+ exp
[

− 3Tα2
]

|−γα〉EB
|−γiα〉ED

+e
−Tα2

2 |10〉AC

(

exp
[

Tα2
]

|γiα〉EB
|γα〉ED

+ exp
[

2T iα2
]

|γiα〉EB
|−γα〉ED

+exp
[

− 2T iα2
]

|−γiα〉EB
|γα〉ED

)

+ exp
[

− 3Tα2
]

|−γiα〉EB
|−γα〉ED

+ |11〉AC

(

exp
[

(i + 1)Tα2
]

|γiα〉EB
|γiα〉ED

+ exp
[

− (3 + 3i)Tα2
]

|−γiα〉EB
|−γiα〉ED

+e−Tα2
(

|γiα〉EB
|−γiα〉ED

+ |−γiα〉EB
|γiα〉ED

))]

, (32)

in which N is the normalisation coefficient, γ =
√
1− T , and α is real. In the limit of large α (i.e. α > 2.5),

and no loss (T = 1), Eq. 32 reduces to the ideal Bell state outcome of |Φ+(α)〉 = 1√
2

(

e−iα2 |00〉+ e+iα2 |11〉
)

.

We note here that we do not explicitly include the equivalent final quantum state which includes averaged
unequal losses between modesB andD, and also do not include the density matrix in which the lossy modes
EB and ED are traced out, due to the length of these expressions. We point the reader to the work of [60] for
the mathematical detail.

C.1 Final State with Imperfect Homodyne Measurements

To derive the density matrix containing the homodyne bandwidth variable ∆x, we begin with the equal loss
state, immediately after the vacuum measurement and before the homodyne measurement, given by Eq. 24.
We then apply the imperfect homodyne operator as per Eq. 31, for measurement angle θ = π

4 , such that:

|Ψ〉AεBCDεD
=N ×

[

|00〉AC

[

|
√
2T α〉D |γα〉εB |γα〉εD + |−

√
2T α〉D |−γα〉εB |−γα〉εD

+e−Tα2 |0〉D
(

|γα〉εB |−γα〉εD + |−γα〉εB |γα〉εD
)]

+e
−Tα2

2 |01〉AC

[

|
√
T αe

iπ
4 〉D |γα〉εB |γiα〉εD + |

√
T αe

−iπ
4 〉D |γα〉εB |−γiα〉εD

+ |−
√
T αe

−iπ
4 〉D |−γα〉εB |γiα〉εD + |−

√
T αe

iπ
4 〉D |−γα〉εB |−γiα〉εD

]

+e
−Tα2

2 |10〉AC

[

|
√
T αe

iπ
4 〉D |γiα〉εB |γα〉εD + |−

√
T αe

−iπ
4 〉D |γiα〉εB |−γα〉εD

+ |
√
T αe

−iπ
4 〉D |−γiα〉εB |γα〉εD + |−

√
T αe

iπ
4 〉D |−γiα〉εB |−γα〉εD

]

+ |11〉AC

[

|
√
2T iα〉D |γiα〉εB |γiα〉εD + |−

√
2T iα〉D |−γiα〉εB |−γiα〉εD

+e−Tα2 |0〉D
(

|γiα〉εB |−γiα〉εD + |−γiα〉εB |γiα〉εD
)]]

, (33)
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∫ x0+
∆x
2

x0−∆x
2

|xπ
4
〉D
〈

xπ
4

∣

∣Ψ
〉

AεBCDεD
dxπ

4
=

∫ ±
√
T α+∆x

2

±
√
T α−∆x

2

|Ψ〉AεBCεD
dxπ

4
= |Ψ(∆x)〉AεBCεD

=

∫ ±
√
T α+∆x

2

±
√
T α−∆x

2

N
exp

[

−(xπ
4
)2
]

2−
1
4π

1
4

×
[

|00〉AC

(

exp
[

(1− i)2
√
T αxπ

4
+ (i − 1)Tα2

]

|γα〉εB |γα〉εD
+exp

[

− (1− i)2
√
T αxπ

4
+ (i − 1)Tα2

]

|−γα〉εB |−γα〉εD
+e−Tα2

(

|γα〉εB |−γα〉εD + |−γα〉εB |γα〉εD
))

+e
−Tα2

2 |01〉AC

(

exp
[

2
√
T αxπ

4
− Tα2

]

|γα〉εB |γiα〉εD + exp
[

− 2
√
T iαxπ

4

]

|γα〉εB |−γiα〉εD
+exp

[

2
√
T iαxπ

4

]

|−γα〉εB |γiα〉εD + exp
[

− 2
√
T αxπ

4
− Tα2

]

|−γα〉εB |−γiα〉εD
)

+e
−Tα2

2 |10〉AC

(

exp
[

2
√
T αxπ

4
− Tα2

]

|γiα〉εB |γα〉εD + exp
[

2
√
T iαxπ

4

]

|γiα〉εB |−γα〉εD
+exp

[

− 2
√
T iαxπ

4

]

|−γiα〉εB |γα〉εD + exp
[

− 2
√
T αxπ

4
− Tα2

]

|−γiα〉εB |−γα〉εD
)

+ |11〉AC

(

exp
[

(i + 1)2
√
T αxπ

4
− (i + 1)Tα2

]

|γiα〉εB |γiα〉εD
+exp

[

− (1 + i)2
√
T αxπ

4
− (i + 1)Tα2

]

|−γiα〉εB |−γiα〉εD
+e−Tα2

(

|γiα〉εB |−γiα〉εD + |−γiα〉εB |γiα〉εD
))]

dxπ
4
,

(34)

in which we have set x0 = ±
√
T α in Eq. 34, as these are the ideal homodyne outcomes. Finally, to construct

the final density matrix we merely trace out the lossy modes as before, giving the final state as:

ρAC(∆x) = TrεB ,εD

[

∫ ±
√
T α+∆x

2

±
√
T α−∆x

2

|Ψ(∆x)〉AεBCεD
〈Ψ(∆x)|dxπ

4

]

. (35)

Note that we do not include the equivalent expressions for unequal losses and homodyne imperfections, due
to the length of the derivation - however we again point the reader to [60] for the detail.
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