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Abstract

Background: Fractures as a result of osteoporosis and low bone mass are common and give rise to significant clinical, personz
and economic burden. Even after a fracture occurs, high fracture risk remains widely underdiagnosed and undertreated. Comn
fracture risk assessment tools utilize a subset of clinical risk factors for prediction, and often require manual data entry. Furthermo
these tools predict risk over the long term and do not explicitly provide short-term risk estimates necessary to identify patient
likely to experience a fracture in the next 1-2 years.

Objective: The goal of this study was to develop and evaluate an algorithm for the identification of patients at risk of fracture
in a subsequent 1- to 2-year period. In order to address the aforementioned limitations of current prediction tools, this approa
focused on a short-term timeframe, automated data entry, and the use of longitudinal data to inform the predictions.

Methods: Using retrospective electronic health record data from over 1,000,000 patients, we developed Crystal Bone, al
algorithm that applies machine learning techniques from natural language processing to the temporal nature of patient histori
to generate short-term fracture risk predictions. Similar to how language models predict the next word in a given sentence or t
topic of a document, Crystal Bone predicts whether a patient’s future trajectory might contain a fracture event, or whether th
signature of the patient’s journey is similar to that of a typical future fracture patient. A holdout set with 192,590 patients wa:s
used to validate accuracy. Experimental baseline models and human-level performance were used for comparison.

Results: The model accurately predicted 1- to 2-year fracture risk for patients aged over 50 years (area under the receive
operating characteristics curve [AUROC] 0.81). These algorithms outperformed the experimental baselines (AUROC 0.67) an
showed meaningful improvements when compared to retrospective approximation of human-level performance by correctl
identifying 9649 of 13,765 (70%) at-risk patients who did not receive any preventative bone-health-related medical intervention
from their physicians.

Conclusions: These findings indicate that it is possible to use a patient’s unique medical history as it changes over time tc
predict the risk of short-term fracture. Validating and applying such a tool within the health care system could enable automate
and widespread prediction of this risk and may help with identification of patients at very high risk of fracture.
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: To address these unmet needs, we develQpgdal Bone, a
Introduction machine learning approach that leverages techniques typically

Fractures due to osteoporosis and low bone mass are associeled in natural language processing. However, rather than
with a significant personal, clinical, and economic burden. Theé3Plying these methods to text-based data, we applied them to
fractures are common; the risk of sustaining such a fractifB9itudinal data contained in electronic health records.
increases with age, and their incidence is expected to increzRgcifically, we focused on diagnosis codes (International
worldwide as the population ages11]. In the United States, Classification of Diseases; ICD),_treatlng each code_z as a word
an estimated 1 in 2 women and 1 in 4 men over 50 years of 3 Sequences of codes as stories. The goal of this study was
will experience such a fracturZ14]. However, there remains {0 €valuate the —ability of these natural language
a significant diagnosis and treatment gap for Osteoporogggcessmg—based m(_)dels to learn patterns associated with
[1,2,4,12]. When these fractures occur, they often result inincreased short-term (ie, 2-year) fracture _rlsk. The result_s of_our
loss of independence for patients and can lead to functioR3flySes suggest that not only does this unique longitudinal
disability, lower quality of life, and increased mortalit;f”emOd produce accurate short-term fracture risk predictions,
[5,15-38]. Given this substantial burden and unmet need fByt @lso that the approach can help fulfill the unmet need that
interventions, it is critical to identify patients at risk of fractur&XiSts in fracture-risk identification.

as effective management of risk can prevent these deleteripus
outcomes. R}fethods

Several fracture risk prediction tools have been developed Bata Background

clinical use. The most commonly used tools are the Universif, ,seq subsets of the Optum deidentified electronic health
of Sheffield Fracture Risk Assessment Tool, known as FRAX.,q data set, which contains comprehensive longitudinal
[39, and the Garvan Institute of Health Bone Fracture Righocironic health record data for 91 million patients from over

Calculator (GIH-BFRC) 40]. Both tools use a set of4144 g0 providers (as of March 2018) from the United States.
cross-sectional clinical risk factors to evaluate fracturlehe subsets, which contain bone health and pan-therapeutic
likelihood, and typically require manual data entry to perfoerpuIations respectively, cover the time from January 1, 2007,

the predictions. The performance of both methods varies gre?ﬁ%ugh December 31, 2018 (Optum, email communication
in real-world analyses; this variance is partially explained by,q st 2019). ’ ’ '

study population and design and predicted fracture outcome

(hip vs other osteoporotic fractures). In a revidd},[12 studies The bone health subset was obtained by filtering for patients
of FRAX showed an average area under the receiver operaMii§y osteoporosis, fractures, or bone-related medications
characteristics curve (AUROC) of 0.65 (SD 0.038) whei=6,329,986). In the period covered by the data set, the fracture
predicting major osteoporotic fractures without including borigcidence rate (ie, the proportion of fractures among all events
mineral density in the model, and similar results were sho@ftected, which may include multiple fractures per person) was
for GIH-BFRC R1]. These commonly used risk assessmef@% in the population over 50 years of age. The bone health
tools estimate 5- and 10-year fracture risk but do not provideta set was primarily used for training the model.

estimates of 1- to 2-year riskZ-45]. The pan-therapeutic data set represented a random sample of

Increased risk of fracture in the next 1-2 years is not routin&%o of the overall Optum electronic health record data set and
assessed in clinical practice, despite the existence of rapid-act@igtained patient data (n=3,476,219) with no filtering for any
preventative therapeutics3,46,47]. Although methods for Specific comorbidities or treatments; this dataset had a fracture
predicting short-term risk have been explo#&i$0], they have incidence rate of 8.5% in the population over 50 years of age.
not yet been widely clinically accepted. Furthermore, theBgcause the sample was drawn from such a large population,
models are limited to a specific set of cross-sectiofie pan-therapeutic data set was assumed to be broadly
information, some of which may not readily be available. Thugpresentative of the US population. As such, we performed all
there remains a need to further develop a fracture risk predictid@del evaluations on a testing sample from this data set (a
tool that predicts on a short-term time frame in order to facilitdi@ldout data set), to better understand the generalizability of
identification of patients at high risk. While there are publishéde model in a real-world setting.

examples?g_1-5_3] applying artificial intelligenc_e to frac_ture ‘?mdcl.:rthical Approval

osteoporosis risk, these approaches focus either on imaging data ] ) . . »

[51] or on cross-sectional data for long-term predictiaas)]. Sm_ce this was a retro_spectlve s_tudy usm_g_ deld(_antmed data,
To our knowledge, there is no existing method that applies d@gﬁents were not required to actively participate in the study.

learning to sequential patient data for predicting fracture risk herefore, neither informed consent of patients nor institutional
review board approval was required.
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Data Engineering and Cohort Selection We applied sliding windows to the datadure J, where each

The cohort consisted of patients who were at least 50 year§nt could have up to 5 windows, and each window was a
age at the time of their event; this criterion was chosen to red{J{§icrical sequence defined as the list of chronologically ordered
the data to a population that is more susceptible to fractufg codes inthe 2 years leading up to an event. These historical
associated with osteoporosis and low bone mass. For fracfiff@Uences were then used to predict risk of fracture within a
patients, an event is the date of occurrence of any qualifyf€a’ Nhorizon (a 1l-year horizon was also explored, see
fracture. Qualifying fractures are defined by a set of rules badétimedia Appendix ). As shown irFigure 1 some windows

on those used by Wright et &4 for identifying novel and were dropped from the analysis due to incomplete or potentially

relevant fracture events in claims data. For nonfracture patieQi€riapping coverage. Additionally, windows that occur more
an event is the date of the last recorded diagnosis of any 2 years before a fracture event were labeled as nonfracture

in the data set. We describe further details of the fract)¥f1dows. The motivation for this approach was to provide the
identification process iMultimedia Appendix 1 algorithm with multiple unique code sequences leading up to
the same event that may reflect changes in risk at various times

We further filtered our cohorts for patients with at least 2 yeagghin the given time horizon. Furthermore, the fixed window

of medical history leading up to their respective eventsize provided a consistent timeframe for prediction as opposed

Applying these parameters limited the bone health cohorti¢ovarying lengths of time for each patient, which would have

3,408,494 patients and the pan-therapeutic cohort to 700,3&Burred if patients’ complete code histories were used. Further

patients. details regarding the motivation and methodology of this
approach are iMultimedia Appendix 1

Figure 1. Sliding window algorithm schematic. This schematic depicts the sliding window algorithm for a multifracture and nonfracture patient.
Dx:diagnosis; ICD: International Classification of Diseases.

Sample Fracture Patient Windows:

First Dx 1% Fracture 2" Fracture
(2007) (2012) (2016) 2018

Sample Non-Fracture Patient Windows:

First Dx Last Dx
(2007) (2017) 2018
Last Window
(N=5)
. = fracture window = non-fracture window = window is excluded

| I = 2 years of patient history (sequence of ICD codes)

There was no additional filtering based on specific diagnogg9:50) training set for modeling. This oversampling training
or comorbidities. For each qualifying patient, the algorithnparadigm was replicated for all models. The holdout set
utilized all available ICD codes in the historical sequencesmained untouched, with the original distribution of fractures.
described above. Only the codes that occurred fewer thaf%s deling A h
times in the full cohort were excluded, as these codes were gueing Approaches
rare to be included in the diagnosis code vocabulary. Overview

Data Sampling Crystal Bone was inspired by techniques that are typically

Before model training, we generated a 70:30 random spIitach”e.d in natural Ianguage processing. However, in;tead of
the pan-therapeutic data, representing training and hoIdGIC,]Ply'ng these t]frlcgglquzs to I:ext-based dqat?’ we arf)il)(lljjd thgm
subsets. Since the pan-therapeutic data set is highly imbalan a,equelnces 0 C% es.d orrcre]spon Ingly, ??éD q code
with a fracture event incidence of only 6.5% after applying s analogous to a word, and each sequence o codes was

sliding window algorithm, we oversampled additional fractur%n"’Ilogous to a document. To this end, we implemented 2 distinct

windows from the bone health data set to achieve a balanggaﬁeworks: (1) ICD code vectorization and long short-term
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memory networks, and (2) patient-level vectorization arappear in similar contexts, and as a result have similar vector
extreme gradient boosting decision trees. Both approaches utilg@esentations. These embeddings reduced the dimensionality
sequences of ICD codes as inputs. The ICD code vectorizatmia sparsity of the feature space, and helped the neural network
and long short-term memory framework undertakes this taglcognize related ICD coddsigure 2illustrates the encoded

by first learning semantic definitions for the codes, themctors projected onto a 2D space using uniform manifold
evaluating the sequence of definitions through a deep learnépgroximation and projection (UMAP) for dimension reduction
network.. The patient-level vectorization and extreme gradight]. The collocation of related diagnosis codes in this
boosting modeling framework employs a similar approactpordinate space provided qualitative evidence that the ICD
however, rather than embedding individual ICD codes, it embedgle vectorization had encoded meaningful latent information.

the entire ICD code sequence for each patient, thereby Ieamm% long short-term memory component consisted of a neural
“summaries” of patient sequences. This framework produces

prediction by feeding these summaries through a decision trr]eez%w.Ork with long short-term memory layers, a deep learning

o . __architecture that enables the evaluation of recurrent data, such
classifier. The model parameters were tuned to 0pt|m|ég sequences of embedded ICD codes. We trained this network
AUROC,; details of this process are providedMnltimedia 9 )

with the complete training set (including oversampling from

Appendix 1 the bone health data set). The long short-term memory network
Framework 1: | CD Code Vectorization + Long predicted the likelihood of a fracture event within 2 years as a
Short-Term Memory classification problem. Long short-term memory networks are

The first framework consisted of 2 primary components. TReCOMMON approach for solving such problefns. [

ICD code vectorization component was responsible for learnifgditionally, given the ubiquitous use of nonsequential features
a “definition” for each ICD code based on skip-gram architectusach as age and sex for predicting fracture risk, we supplied age
word embedding (word2vecp$l, an unsupervised learningand sex to the neural network as static features through
approach that mapped each code in the vocabulary teoacatenation of long short-term memory and dense layers.
100-dimensional vector. To generate these embeddings, Fuethermore, because the long short-term memory framework
utilized sequences from the pan-therapeutic training set aleeguired all input sequences to have uniform length, we also
(without oversampling), to avoid bias toward bone-health relatiedluded total diagnosis count as a static feature to account for
codes. In our implementation, the vocabulary consisted of thié effects of truncating or padding the sequences. The
diagnosis codes that occurred at least 5 times in this data seiematic inFigure 3 provides an overview of the model
amounting to more than 40,000 unique codes. The methwdhitecture and inputs to the algorithm, namely age, sex,
generated a vector for each code based on the context in whialgnosis count, and the patient’s unique sequence of ICD codes.
it appeared; in electronic health records, similar ICD codes
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Figure 2. 2D projection of ICD-10 code embeddings from the ICD code vectorization model: (a) All ICD-10 codes by the first letter (high-level
category) of the code, (b) a cluster of codes related to alcohol near coordinates (2.3, 3) by code subgroups, (c) a cluster of codes related to kidney func
near coordinates (3.75, 0.025) by code subgroups, and all ICD-10 fracture codes in region C (d) by region of the body, and (e) by frequency of occurren

ICD: International Classification of Diseases; UMAP: uniform manifold approximation and projection.
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Figure 3. High-level architecture of the long short-term memory neural network including the dimensionality of the inputs, as well as the number of
nodes in each layer. Dx: diagnosis; Icd2vec: ICD code vectorization; LSTM: long short-term memory.

Sequential input ___ Er'ﬁgg{‘j’gi‘r’l g LSTM __LSTM __ISTM __ LSTM
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Dense Dense
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Static Input
(age, sex, dx count) —
[1x3]

Framework 2: Patient-Level Vectorization and Extreme Baseline Models
We compared these modeling frameworks to 2 baseline models.

Gradient Boosting X . - .
Simi he ICD cod i ation + | h The first baseline model utilized the age and sex of each patient
imilar to the code vectorization + ong short-term memoLy ., -, window. These were 2 of the only features shared by

modeling framework, the patient-level vectorization and extre FRAX tool and the GIH-BERC models. The other shared
gradient boost_lng deuspn trees frameyvor_k consists Offe?ature is prior fracture; however, because neither the FRAX
components. First, the patient-level vectorization embeds enfll nor GIH-BERC's method of measuring this value was
IED dc_odfat)seqéjﬁncesfto a 528f-dlmens&nallwserplantwhsplag:g LE&%ible for our data set without censoring, we did not include
the distri ut_e 0ag of words framewo I'. ue as the it in the model. The second baseline incorporated age, sex, and
code vectorization learned definitions of individual ICD code&)t I diagnosis count (number of ICD codes) in each sample;
the_ patient-level ve_lc_::]orlzaurc]) n dlfnstzaq Iearrjedh summa.mesIH se represent all of the static features used by both modelling
pgtlenFs_equences. .emet odtordoing so 'S.t € Same, pat'ﬁgmeworks, enabling evaluation of the relative benefit of
with similar sequential contexts will have similar summariywIuding sequential ICD code data. Both baseline models
vectors. We trained the patient-level vectorlzanon. ,W_'th ﬂlﬁilized extreme gradient boosting decision tree algorithms, the

pan-therapeutic data to avoid bias toward the bone healt
therapeutic area. This created embeddings that represehtedinan-Level Performance Approximation

2-year episodes of patient histories; a detailed exploration@faddition to these baselines, we approximated human-level
these embeddings is Multimedia Appendix 1 performance by isolating a set of retrospective

The extreme gradient boosting decision trees component utiliPySician-prescribed interventions that were identifiable in the
the embeddings from the patient-level vectorization, as wellggctronic health record data set. These interventions consisted
the static features of age, sex, and total diagnosis count fH&tiagnostic tests as well as pharmacologic treatments. The list
were incorporated in Framework 1, to predict fracture risk. THi§interventions was based on treatment guidelines provided by
type of algorithm, also referred to as XGBoost, is a scalalfi¢ National Osteoporosis Foundati@d][and the Journal of
tree-based modeling approach that improves the generalizabffjical Endocrinology and Metabolisn6]] and was further
speed, and efficacy of predictidsg]. We trained this algorithm Validated by the physician coauthors of this manuscript, who
with the full training set (including bone health data s&Pnfirmed thatthe interventions aligned with their understanding
oversampling) to learn a classification model that predicted e 0Steoporosis treatment guidelinégalgle J. If a patient
likelihood of fracture within 2 years. received one of these interventions in a 2-year historical
window, that window was flagged as “physician-identified risk,
Ensemble Model worthy of intervention.” A full description of the limitations of
An ensemble model was also evaluated. This algorittihis approach is describedMultimedia Appendix 1
combined the outputs of both the aforementioned frameworks
with a logistic regression metaclassifier.
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Table 1. List of physician interventions for human-level performance analysis.

Type and name Pharmacologic
Procedure
Dual-energy x-ray absorptiometry No
Vertebral fracture assessment No
Quantitative computed tomography No

Other bone density measurements (single energy x-ray absorptiometry, radiographic absorptiometry, ultrasouniosingle-
photon absorptiometry)

Bone turnover markers No
Administration of any medications referenced below Yes
Treatment
Bisphosphonates (alendronate, alendronate-cholecalciferol, ibandronate, risedronate, zoledronic acid) Yes
Abaloparatide Yes
Denosumab Yes
Raloxifene Yes
Bazedoxifene Yes
Romosozumab Yes
Teriparatide Yes
Calcitonin Yes
Diagnosis
Osteoporosis (M80, M81, 733.0) No

We defined the cohort of patients who did not receive any fothe full list of interventions, while the overlap analysis utilized

of intervention (diagnoses, tests, or treatments) nas the pharmacological subset of the list of interventions.

intervention and assessed how well the algorithm was able ¢t

correctly identify which patients had a fracture within 2 yea 'odel Performance

as well as how frequently the algorithm mistakenly flaggadfe report model performance on a set of 5 primary metrics:

patients with no imminent fracture. We also evaluated tR&JROC, recall (sensitivity), specificity, precision, and area

patients who received interventions (imeervention cohort) under the precision-recall curve (AUPRC).

with this method, referred to as tbehort analysis. However,

since an intervention can directly modulate fracture risk, i@€SUlts

performed a separate analysis in order to mitigate some of the

uncertainty due to the effects of interventions. For this analyd0odel Performance

we identified each patient’s first pharmacologic interventiofhe overall performance of the algorithms is shown through

and used the diagnosis history leading up to this date as inpamparison of the 2 frameworks with the 2 baseline models to

This analysis allowed us to gauge the extent to which tlemonstrate the quality of each algorithm's predictidable

algorithm flags agreed with human-level performancshows a summary of key model performance metrics on the

interventions (without needing to adjust for their effects). .eame holdout data set. The Crystal Bone models, including the

termed this the@verlap analysis. The cohort analysis utilized ensemble model that combined the 2 approaches, outperformed
the baseline models for nearly all performance metrics.
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Table 2. Comparison of model performance metrics.

Model AUROC? Recall Specificity Precision AUPRC
ICD code vectorization + LSTR 0.812 0.646 0.812 0.192 0.462
Patient level vectorization + XGBo8st 0.790 0.670 0.758 0.161 0.358
Ensemble 0.818 0.693 0.777 0.177 0.463
Baseline (age, sex) 0.667 0.787 0.416 0.0855 0.119
Baseline (age, sex, diagnosis count) 0.668 0.547 0.707 0.114 0.130

8AUROC: area under the receiver operating characteristics curve.
BAUPRC: area under the precision-recall curve.

YLSTM: long short-term memory.

dXGBoost: extreme gradient boosting.

o (56.3%); this corresponds to 9649 out of 13,765 (70.1%) of the
ICD Code Vectorization + L ong Short-Term Memory unigue fracture events. Crystal Bone Framework 1 incorrectly
M odel flagged 91,717 of the 532,621 windows with no fractures as
To further characterize this performance, we evaluated the 1@Bxisk (17.2%); however, 1053 of the windows in this cohort
code vectorization and long short-term memory model @8%) sustained a fracture in >2 years.

primary and subsequent fracture events. While the mo}el . _ .
. of windows with interventions, only 11,833 of 69,198 (17.1%)
f f h : X .
performs best on subsequent fractures, both primary g%dthe detected interventions included treatments; thus, the

subsequent fracture analyses (AUROC 0.742 and 0.9 - i . . .
respectively) show a marked improvement against corresponcfﬁ aining 5.7'365 (82.9%) |r_1tervent|(_)ns were either diagnoses
iagnostic tests. In the intervention cohort, Crystal Bone

baseline models (AUROC 0.591 and 0.747, respectively). \We X
report detailed results of this experiment and addition\él);lamewOrk 1 correctly captured 10,277 out of 12,244 windows

. -~ 0
evaluations of sensitivity and robustness of this model i which f_rac'Fure occgrred within 2 years (83.9%). For the
Multimedia Appendix 1 windows with interventions and no fracture event, 19,235 out

of 56,954 (33.8%) are incorrectly flagged by our algorithm as
Human-L evel Performance Comparison atrisk. These results suggest Crystal Bone’s ability to recognize
Table 3contains the results of the cohort analysis. For windoferventions through their associated ICD codes and adjust the

with no interventions, Crystal Bone Framework 1 correctfédicted fracture risk accordingly. However, a deeper
flagged 16,127 of the 28,626 windows that resulted in fractpeploration of specific interventions is required to verify this.

Table 3. Human-level performance results.

Cohort Windows, n (%) Flag, n (%) No flag, n (%)
Total 630,445 (100) _a —
No intervention 561,247 (89.0) — —
Fracture 28,626 (5.1) 16,127 (56.3) 12,449 (43.7)
Nonfracture 532,621 (94.9) 91,717 (17.2) 440,904 (82.8)
I ntervention 69,198 (11.0) — —
Fracture 12,244 (17.7) 10,277 (83.9) 1967 (16.1)
Nonfracture 56,954 (82.3) 19,235 (33.8) 37,719 (66.2)

@\ot reported.

The overlap analysis enabled us to better understand how watl of 3017 (22.7%) experienced a fracture within 2 years of
Crystal Bone Framework 1 correlated with observed physicide first intervention date. This precision is a slight improvement
interventions through exploration of the first pharmacologicaVver that of the algorithm on the overall holdout set, at 19.2%.
treatment in the holdout set. Of the 7127 patients who receivedthermore, of all 570 patients in this pharmacological
treatment, 6071 had enough medical history leading up to tintervention cohort who ultimately suffered from a fracture

treatment for Crystal Bone Framework 1. When evaluating thegi¢hin 2 years, Crystal Bone Framework 1 correctly flagged
patients, 3017 out of those 6071 (49.7%) were consideredl@® (82.3%).

risk of fracture in 2 years.

We evaluated the incidence of fracture within 2 years for this
subgroup. Of the cohort deemed at risk by the algorithm, 684
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: : This suggests a meaningful alignment with both physician
Discussion evaluation and actual observed fracture risk. Ultimately, these
General human-level performance comparisons, coupled with

performance against baseline models and alternative risk

In this study, we evaluated the performance of 2 natufabgiction methods, suggest that Crystal Bone can fulfill a
language processing-inspired fracture prediction models: (L} \nmet need through identification of patients at high
ICD code vectorization and long short-term memory (AUROG«k of fracture.

0.812) and (2) patient-level vectorization and extreme gradient

boosting (AUROC 0.790). The performance of these modélémitations of the Current Approach

reflected a substantial improvement over 2 baseline models:\(dious limitations exist for the approaches described,
with age and sex (AUROC 0.670) and (2) with age, seX, togrticularly from the inherent complications of using real-world
diagnosis count (AUROC 0.670). Furthermore, these short-teflgta. The techniques described rely upon ICD codes recorded
prediction metrics were an improvement over cross-sectiofilelectronic health record systems, which will impact the
tools for long-term time frames, such as FRAX and GIH-BFRgerformance and validity of the models if diagnoses are not
which have been widely clinically acceptetil] Although detected, incorrectly recorded, or missed due to patient dropout.
fundamental differences in study design make it impossiblejfleed, most vertebral fragility fractures are clinically silent
compare these metrics directly, sensitivity analyses of Crysgall hence not captured in electronic health rec@@s\hile

Bone across fracture types, prediction time frames, and fractgife approach utilizing only ICD codes is potentially more
definitions suggest robust predictive performance ag@mprehensive and = straightforward for  real-world
generalizability. To our knowledge, this is the first study thghplementation due to the quality of coverage and descriptive
has experimented with separate models for primary afgkure of diagnosis codes, we may miss salient clinical features
subsequent fracture types; further discussion of this analygigptured elsewhere in the electronic health record. For example,
as well as the additional sensitivity analyses, Wliritimedia  there exist ICD codes associated with obesity, osteopenia, and
Appendix 1 osteoporosis, which represent measurements of BMI and bone

The human-level performance comparison provides deeHEPeral density on a categorical level. However, these do not
insight to the benefits of Crystal Bone. The retrospecti\r/%ﬂeCt exact clinical measurements; the exclusion of these
labeling utilized in both the cohort and overlap analyses enabfistantitative measurements may limit the performance and
a scalable, data-driven comparison of physician action dfgical impact of the algorithm. Nevertheless, it may be
Crystal Bone and avoided bias that may occur throuaqvantageous to utilize these ICD codes rather than the
alternative methods of human-level performance evaluatigpantitative measures, as such measures in an electronic health
[62]. To our knowledge, this is the first fracture risk predictioffcord frequently contain human error and may not always be

study which includes such a human-level performanf@2dily available.

comparison in the analysis. In addition to data set challenges, there exist limitations inherent
Through the cohort analysis we learned that only a smiQiasSumptions of the modeling approach. The suppositions of
proportion of patients received preventative interventiorfOnstant time between diagnosis codes and uniform sequence
including basic diagnostic tests, showcasing the extent of untf@@th may affect performance. Exploration of more advanced
need in the health care systeh®[4,17]. In the subset of patiemmethods that d.o not require such assumptions could improve
windows with no interventions, Crystal Bone was able to fldge medel and is an area of future work.

70.1% of the unique fracture events. Given the existencep@frhaps the greatest limitation of the described approaches is
rapid-acting preventative therapeutiésif,47], as well as the that they are generally considered black box approaches and
demonstrated efficacy of bone-forming agents in reduction|ggk significant interpretability. Developing methods for
1- to 2-year fracture risl6p-69], these results suggest that, haghproved interpretation of deep learning models is an active
appropriate preventative measures been taken, the risk of thggg of research. We have performed an initial exploration of
fractures may have been reduced, thus mitigating a significgii for the ICD code vectorization and long short-term memory
burden to both the patient and the health care system. model inFigure 4 which compares various characteristics of

The findings of the overlap analysis further support the merif four prediction cohorts of the confusion matrix for the test
of Crystal Bone, through demonstration of alignment wiffft (true positive [TP], false positive [FP], true negative [TN],
observable interventions made by physicians. Because itaS€ negative [FN]). Within each of these groups, we performed
impossible to confirm whether these treatment interventiofPloratory analysis on the associated samples for each of the
were taken in response to a perceived short-term risk of fractifgUt features in the model: age, sex, total diagnosis count, and
we cannot expect 100% overlap between Crystal Bone and tHgQ\.code.s. Results of this analysis are described in detail in
observed interventions. We saw that Crystal Bone was aligndgltimedia Appendix 1 While this serves as an initial
with these physician interventions 49.7% of the time. Whif¥@luation of model interpretability, a deeper exploration of
this overlap is not complete, it captured 82.3% of the patiemgerpretablhty techniques is an area for future work in these
who ultimately experienced a fracture, reflecting the algorithnfdgorithms.

increased sensitivity for the cohort deemed at-risk by physicians.
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Figure 4. Exploration of model interpretability by comparison of various characteristics of the input data for the 4 prediction cohorts of the confusion
matrix. FN: false negative; FP: false positive; ICD: International Classification of Diseases;TN: true negative; TP: true positive; UMAP: uniform
manifold approximation and projection.
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Another limitation of this study is the inability to perform direcshort-term fracture risk. It is the first such approach that takes
comparisons with established risk calculators such as FRA»hgitudinal patient trajectories into account, rather than
Additionally, this approach has yet to be validated with exterrfatusing primarily on cross-sectional information, enabling a
data, which is the subject of future work. more personalized assessment of fracture risk. Furthermore,
P ial Applicati with automated aggregation of patient histories in an electronic
otentl pplications health record system, the prediction of fracture risk could be
We foresee numerous applications of this work in the headhtirely hands-off, without requiring a doctor or patient to
care system, with benefits for patients, providers, and paygfgnually enter any information into the software. This unique
alike. For payers, Crystal Bone provides a unique opportunifyproach may facilitate broader adoption of the algorithm. Still,

to explore population health, enabling insurers to identify afigk lack of clinical guidelines for 1- and 2-year risk may limit
address patients in need of evaluation or intervention, abption in the near future.

preventing the large expenses associated with fracture events. L , . i

For providers, direct electronic health record integration wouR¥/Cl @ tool, if widely applied, could facilitate early patient
facilitate patient care, and help identify at-risk patients who 4figntification, and help reduce the morbidity and mortality
not currently identified as such. That being said, effecti@¥Sociated with fractures. The retrospective human-level
implementation requires additional understanding on the impBEfformance comparison suggests that Crystal Bone would

of interventions on short-term fracture risk: while there [§€Ntify patients who are currently missed in the health care

evidence to suggest that rapid acting treatments Sygtem, potentially minimizin_g the burden on patients a_n(_j the
bone-forming agents can significantly decrease fracture risk/§ifth care system overall. Given the prevalence and anticipated

a shortened time frame86,47,6369), a more detailed increase of fractures due to osteoporosis and low bone mass as

exploration of the optimal care pathways for various Crysth€ Population ages, as well as the enormous personal, clinical,
Bone risk scores would likely be required to facilitate real-worft'd €conomic costs associated with such fractures, Crystal Bone
use of the algorithm. could provide a meaningful positive impact through reduced

burden and improved outcomes.
Crystal Bone addresses the need for an automated and largely

physician-independent tool that is effective at predicting
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