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We present the first measurement of the reaction γ p → a2(1320)0 p in the photon energy range 3.5–5.5 GeV

and four-momentum transfer squared 0.2 < −t < 2.0 GeV2. Data were collected with the CEBAF Large Ac-

ceptance Spectrometer detector at the Thomas Jefferson National Accelerator Facility. The a2 resonance was

detected by measuring the reaction γ p → π 0ηp and reconstructing the π 0η invariant mass. The most prominent

feature of the differential cross section is a dip at −t ≈ 0.55 GeV2. This can be described in the framework of

Regge phenomenology, where the exchange degeneracy hypothesis predicts a zero in the reaction amplitude for

this value of the four-momentum transfer.

DOI: 10.1103/PhysRevC.102.032201

It has been more than 40 yr since quantum chromody-

namics was postulated as the theory of strong interactions.

Although much progress has been made in understanding

the high-energy phenomena through this theory, perturbative

methods fail to describe the strong interaction at low energies.

A clear understanding of this regime is of key importance

since it corresponds to the dominant manifestation of the

strong force in nature in terms of hadrons that constitute the

bulk of the visible mass of the Universe.

Hadron spectroscopy is a valuable tool to investigate this

regime. The measurement of the meson spectrum, searching

for exotic states not compatible with the quark model, would

provide access to the gluonic degrees of freedom that con-

tribute to the quantum numbers of the hadrons. Investigating

the properties and interactions of gluons is critical since their

dynamics give rise to the strong interaction that binds the

hadrons. In this context, the photoproduction of a π0η pair

on the proton (γ p → π0ηp) is one of the most promising

reaction channels since any P-wave resonance would be un-

ambiguously interpreted as an exotic non-qq state. So far,

only a few results have been reported for this reaction. At

low energies, in the fully nonperturbative regime, high-quality

cross-section data have been collected by the GRAAL [1],

Crystal Ball, TAPS, A2 [2,3], and CB-ELSA [4,5] Collabo-

rations. In the multi-GeV photon-beam energy range, optimal

for meson spectroscopy, instead, no data have been published

so far.

In this energy regime, the a2(1320) meson is expected to

make the dominant contribution to the π0 η invariant-mass

spectrum [6]. It can be, thus, taken as the reference state for a

partial-wave analysis of this channel, for example, allowing

for the interpretation of the variations of the P − D phase

difference as a signature for the existence of exotic resonances

[7,8]. Photoproduction of the charged a2 resonance has been
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measured at the Stanford Linear Accelerator Center [9–11].

However, to the best of our knowledge, the neutral a2 channel

has never been studied in photoproduction.

In this Rapid Communication, we report the first measure-

ment of the neutral a2(1320) meson photoproduction on the

proton for photon-beam energies between 3.5 and 5.5 GeV,

and four-momentum transferred squared (−t) in the range

of 0.2–2.0 GeV2. The differential cross-section dσ/dt was

obtained by measuring the cross-section d2σ/dt dM for the

exclusive production of a π0η pair on the proton, where M is

the two-meson invariant mass and extracting the contribution

of the a2 resonance in each kinematic bin. The measurement

was performed with the CEBAF Large Acceptance Spec-

trometer (CLAS) in Hall B at the Jefferson Laboratory in a

dedicated high-energy high-statistics run g12.

The experiment used a bremsstrahlung photon beam pro-

duced by the interaction of the primary E0 = 5.72-GeV

electron beam with a converter of 10−4 radiation lengths. A

magnetic spectrometer (photon tagger) with energy resolu-

tion 0.1%E0 was used to tag photons in the energy range

of 0.2E0–0.95E0 [12,13]. The target was a 40-cm-long cell

filled with LH2. During the run, the high-intensity photon flux

≈4 × 107 γ /s was measured by sampling the “out-of-time”

electron hits in the photon tagger [14].

Outgoing particles were measured with the CLAS detector

[15]. This was a large-acceptance spectrometer, based on a

toroidal magnet made of six superconducting coils arranged

symmetrically around the beamline [16]. The momentum of a

charged particle was determined from the radius of curvature

of its trajectory in the magnetic field as measured by a mul-

tiwire drift-chamber system [17]. A set of plastic scintillator

counters time of flight, installed behind the drift chambers,

provided the time of flight of each particle [18]. Particle iden-

tification was performed through the β vs p technique. The

energies and angles of the photons were measured with a lead

and scintillator electromagnetic calorimeter, covering polar

angles in the range 8◦-45◦, with energy resolution σE/E ≈
10%/

√
E ( GeV), and angular resolution σθ ≈ 10 mrad [19].

The incoming photon was identified based on a ±1.0-ns co-

incidence between the vertex times obtained from the photon

tagger and from the CLAS detector. The latter was determined

by measuring the time of the outgoing charged particles with

an array of plastic scintillator counters surrounding the target

[20]. Due to the large photon flux, a fraction fmulti-γ = 12.5%

of events with more than one tagged photon within the coinci-

dence window was observed. To avoid any bias in the analysis,

these events were discarded. This effect was accounted for in

the cross-section normalization by scaling the measured event

yield by 1/(1 − fmulti-γ ). The systematic uncertainty of this

correction, evaluated from the run-by-run variation of fmulti-γ

is ≈0.7%.

The trigger condition required one charged particle and two

photons in the CLAS detector. The corresponding efficiency

was evaluated from minimum bias runs and found to be on

average εtrg = 80%. A trigger efficiency map was derived and

used to correct the cross-section normalization for the residual

efficiency dependence on the charged particle impact point on

the detector.

This analysis focuses on the γ p → π0ηp reaction with all

three final-state hadrons measured. Although the CLAS was

optimized for charged multiparticle final states, this reaction

could be measured thanks to the high statistics and the spe-

cific setup of the g12 run with the target moved upstream

to maximize the detector acceptance. Events were selected

requiring detection of both the proton and the four photons

from the π0 and η decays. The standard g12 procedures, in-

cluding momentum corrections and fiducial cuts, were applied

[21]. A 4C kinematic fit (energy and momentum conservation

imposed) was used to select events belonging to the exclusive

γ p → 4γ p reaction by introducing a cut on the correspond-

ing confidence level (CL) [22,23]. To optimize this cut, the

difference between the missing mass on the proton squared

and the four photon invariant mass squared—here denoted as

K—was considered. From energy and momentum conserva-

tion, it follows that signal events (γ p → 4γ p) are distributed

around K = 0 with a Gaussian distribution, whereas back-

ground events (γ p → 4γ pX ) manifest as a tail in the K > 0

region. Therefore, the following figure of merit (FOM) was

defined

FOM =
ns√

ns + nb

, (1)

where ns/2 (ns/2 + nb) was the number of events with K <

0 (K > 0). The optimal CL cut was determined by maximiz-

ing the FOM and found to be 1.86%.

The following procedure was then adopted to isolate the

γ p → π0ηp reaction. First, the photons were ordered event

by event by naming γ1 and γ2 those with the smallest opening

angle. This algorithm exploits the fact that due to the lower

π0 mass, the two photons from its decay are expected to

have, on average, a smaller opening angle than those from

η decay. The corresponding efficiency, estimated from Monte

Carlo simulations, is approximately 82% [24]. The correlation

between the invariant masses of the two photon pairs Mγ1γ2

vs Mγ3γ4
is shown in Fig. 1. Signal events were identified

as those corresponding to the bottom-right cluster centered

at Mγ1γ2
= Mπ0 , Mγ3γ4

= Mη. A small fraction of events,

corresponding to ≈4% of the main signal yield, appeared

in the opposite combination and was not considered in the

following.

After ordering the photons, the Mγ3γ4
distribution showed a

clear peak corresponding to η with some residual background

events underneath. To reject these and extract the signal yield,

the sPlot method was used [25]. This considers that events in

the data sample originate from different independent sources

and are characterized by a set of kinematic variables that

can be split into two components. The method allows to

reconstruct for each event source the distributions of con-

trol variables from the knowledge of the probability density

function (PDF) associated with independent discriminating

variables. In this analysis, the invariant mass Mγ3γ4
was used

discriminating variable, whereas M and Mγ1γ2
were used as

control variables. Two event sources were assumed: A signal

source corresponding to the η meson decay, modeled with

a Gaussian PDF with exponential tails, and a background

source parametrized with a polynomial PDF. To avoid any
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FIG. 1. Correlation between the invariant mass of the two photon

pairs for exclusive γ p → 4γ p events. In each event, γ1 and γ2 are

the photons with the smallest opening angle. The bottom-right cluster

contains signal events from the γ p → π 0ηp reaction.

correlation between variables that was induced by the kine-

matic fit, resulting in a possible bias, events were first divided

into independent M bins, and the sPlot analysis was applied

independently in each of them. To assess the quality of the

result, the Mγ1γ2
distribution for the signal source was investi-

gated, finding that no residual background was present below

the π0 peak.

The CLAS acceptance and efficiency were evaluated by

means of Monte Carlo simulations, based on a GEANT code

that included knowledge of the full detector geometry and a

realistic response to traversing particles. Since the extracted

differential cross section is integrated over some of the in-

dependent kinematic variables, such as the π0 angles in the

Gottfried-Jackson frame (	GJ), the model used to generate

Monte Carlo events had to be as close as possible to the

real physical one. To this end, γ p → π0ηp events were first

generated according to a bremsstrahlung photon-beam energy

spectrum with a phase-space distribution and reconstructed

TABLE I. Summary of the systematic effects associated with

the γ p → pπ 0η differential cross-section measurement. The effects

marked as variable have a different contribution for each Ebeam, t ,

and M kinematic bin. The typical values are reported.

Systematic uncertainty source Magnitude

Target properties 0.5%

Photon flux 5.7%

Beam photon selection 0.9%

Trigger efficiency 2.8%

η → γ γ branching fraction 0.5%

Kinematic fit Variable, ≈3%

sPlot Variable, ≈4%

Acceptance correction Variable, ≈5%

through the same procedure used for real data. The result was

used to compute the acceptance-corrected event distribution

from which a new Monte Carlo sample was generated. The

procedure was iterated until a good agreement between data

and Monte Carlo was found for −t and for 	GJ in each Ebeam

bin. In particular, the good matching between data and Monte

Carlo for 	GJ ensures that interference effects between differ-

ent amplitudes contributing to the π0η final state is properly

considered when computing the detector acceptance. Finally,

to account for the effect of the analysis procedures in the

cross-section normalization, the same methods were applied

to Monte Carlo events.

The differential cross-section d2σ/dt dM is shown in

Fig. 2 as a function of M for three photon-beam energy

bins (rows) and five four-momentum transfer bins (columns).

The error bars report the statistical uncertainty only. Table I

summarizes the systematic uncertainties. The first four con-

tributions are connected, respectively, to the uncertainty in

the LH2 target properties (density and length), the absolute

photon flux normalization, the trigger system efficiency, and

the η → γ γ branching fraction. The systematic uncertainties

associated with the kinematic fit and the sPlot procedure have

been evaluated by considering, in each bin, the relative varia-

tion of the cross section for different choices of the CL cut and

of the degree of the background polynomial PDF. Finally, the

systematic uncertainty on the CLAS acceptance was evaluated

by varying the distribution used to generate the Monte Carlo

events: A phase-space distribution was used, leading to a con-

servative estimate of this uncertainty contribution. The total

systematic uncertainty was obtained by adding in quadrature

all individual terms.

The differential cross-section d2σ/dt dM shows two dis-

tinctive structures corresponding to the a0(980) and a2(1320)

resonances. In particular, the a2 meson is clearly visible as a

peak over a smooth background with the latter decreasing at

higher beam energies. The exclusive a2(1320) photoproduc-

tion cross-section dσ/dt has been extracted in the two largest

photon-beam energy bins by modeling d2σ/dt dM in the M

range of 1.1–1.55 GeV as the incoherent sum of a resonance

term and a smooth background, including contributions from

both nonresonant π0η photoproduction and from the residual

high-mass tail of the a0(980) state. The resonance term was

written as the product of a (Ebeam,−t )-dependent production

coefficient and a Breit-Wigner function that describes the a2

line shape [26]. The background term was parametrized as

a decreasing exponential function. The cross-section model

was convoluted with the experimental M resolution, evalu-

ated from Monte Carlo simulations. This ranged from a few

MeV at high M values up to ≈20 MeV at M ≈ 0.8 GeV.

A simultaneous χ2 fit to all d2σ/dt dM data points was

then performed with a total of 28 free parameters (nine a2

production coefficients, nine background polynomial terms,

nine background exponential slopes, and the a2 mass). In the

Breit-Wigner formula, the a2 mass Ma2
was left to vary as a

free parameter whereas the width Ŵa2
was fixed to the nominal

PDG value of (113.4 ± 1.3) MeV—the effect of this choice

was studied and included in the systematic uncertainty. The

χ2/NDF value was 64.3/53 = 1.21, and the obtained Ma2

value was (1308 ± 2) MeV, in very good agreement with the
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FIG. 2. Differential cross section for the reaction γ p → π0ηp. Each histogram reports the reaction differential cross-section d2σ/dt dM

as a function of the π 0 η invariant mass for the specific Ebeam and −t bin reported in the same panel. The bottom gray-filled area in each

panel shows the systematic uncertainty. The red curve is the result from the best fit performed with the model described in the text. The green

and blue areas correspond, respectively, to the contribution of the a2 resonance and of the background, here, reported as the ±1σ systematic

uncertainty bands around the central value. These have been scaled vertically by a factor of ×2 for better readability.

nominal PDG value of (1312.2 ± 2.8) MeV. The fit result

is reported for each kinematic bin in Fig. 2 as a red curve,

whereas the green (blue) areas shows the a2 (background)

contribution only, reported as the ±1σ systematic uncertainty

band around the central value.

The differential cross section for the reaction γ p →
a2(1320)0 p was finally obtained by integrating the resonance

term in each kinematic bin, accounting for the a2 → π0η

branching fraction (14.5 ± 1.2)% [26]. The results are shown

in Fig. 3 where the black (red) points refer to the photon

energy range of 3.5–4.5 GeV (4.5–5.5 GeV). For each data

point, the vertical bar shows the statistical uncertainty, eval-

uated from the covariance matrix of the χ2 fit. The colored

bands at the bottom show the systematic uncertainty, ob-

tained summing quadratically the systematic uncertainty for

d2σ/dt dM and that associated with the fit procedure. This

was evaluated by repeating the fit with different choices of

the fit range and of the a2 width, that was varied within ±2σ

around the nominal value. Mmin (Mmax) was varied in the

interval of 1.0–1.1 GeV (1.55–1.7 GeV). The nominal range

reported previously corresponds to the fit with the smallest

χ2/NDF value. The argument of the exponential function was

also replaced by polynomials of various orders. The system-

atic uncertainty was calculated, in each bin, as the rms of the

cross-section values obtained from the different fits.

The most intriguing feature of the γ p → a2(1320)p cross

section is the presence of a dip at −tdip ≈ 0.55 GeV2, ob-

served simultaneously at both beam energies. The hypothesis

that this observed was just the effect of a statistical fluctu-

ation was excluded at 99% CL as follows. We made a null

hypothesis for dσ/dt , assuming a monotone shape: We tested

both a linear and an exponential behavior. In particular, for this

−t and Ebeam range within the precision dictated by the large

statistical errors, the latter functional form should generally

provide a sufficient description of dσ
dt

in the absence of a dip.

We generated N = 105 toy Monte Carlo datasets, resampling

each measured dσ/dt point yi ± σi from a Gaussian distri-

bution with μ = yi and σ = σi. Conservatively, we adopted,

for σi, the quadratic sum of the statistical and systematic

uncertainties, excluding the contributions that are independent

from the kinematic bin. For each toy dataset and each beam

energy, we performed a fit with the hypothesized functional

form, excluding the point in the dip, extrapolating from it the

expected cross-section value at −tdip. The bin width was taken
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FIG. 3. Differential cross-section dσ/dt for the reaction

γ p → a2(1320)p for Ebeam = 3.5–4.5 GeV (black) and Ebeam =
4.5–5.5 GeV (red). The vertical error bars show the statistical uncer-

tainty, whereas horizontal error bars correspond to the −t bins width.

The bottom bands show the systematic uncertainty. The continuous

lines are predictions from the JPAC model [27], computed for a

beam energy of 4 GeV (black) and 5 GeV (red), respectively. The

blue dashed line is the prediction from the model by Xie et al. [28]

for beam energy 3.4 GeV. For better readability, this was scaled

vertically by a factor of ×0.5.

into account by computing the latter as the average cross-

section value inside the −tdip bin. Finally, from the fraction

of toy datasets in which both extrapolated values were lower

than the toy dataset values at −tdip, we computed the null

hypothesis p value.

The origin of the dip and its specific location can be

explained in the context of Regge theory [29]. In Fig. 3,

we show the results of a model based on a Regge-theory

production amplitude parametrization developed by the JPAC

Collaboration [27], computed for the two beam energies 4

GeV (black) and 5 GeV (red). The amplitude includes the

leading vector trajectories only, which have the ρ and ω

quantum numbers. Regge-resonance duality implies that the

parameters of Regge amplitudes corresponding to these vector

exchanges are closely related to the ones involving the tensor

a2 and f2 mesons (exchange degeneracy hypothesis [29,30]).

Since no scalar mesons lie on the a2 trajectory, the residue of

the tensor exchange has to vanish when the Regge trajectory

α(t ) is equal to zero to remove the scalar pole. Vector ex-

changes, which share the residues with the tensors, will, thus,

also vanish at α(t ) = 0, that is, at −t = m2
ρ,ω ≈ 0.55 GeV2,

leading to an exact zero in the cross section. However, sub-

leading Regge poles or cut contributions can turn the zero of

the amplitude into the dip observed in data and improve the

description at higher −t . The results presented, here, are a

pure prediction for dσ/dt since the model parameters were

tuned on different datasets: The qualitative agreement be-

tween data and model, in particular, concerning the position of

the dip, demonstrates the effectiveness of a reaction amplitude

parametrization based on Regge phenomenology. The use of

the present data to fine-tune the model parameters is beyond

the scope of this work and will be the subject of a different

publication [27]. Finally, we observe that our new data will

help in understanding the nature of the a2(1320) resonance.

Although many authors describe it as a qq state [31], others

propose a different description. For example, Xie et al. [28]

recently developed a model where a2 is a molecular state

dynamically generated from the ρ − ω and ρ − φ interactions

in the S wave with spin 2. This model predicts a smooth dσ/dt

shape without any dip. Our data rule out this hypothesis.

To summarize, we have measured, for the first time, the

reaction γ p → π0ηp in the photon-beam energy range of 3.5–

5.5 GeV, and for four-momentum transferred squared values

between 0.2 and 2.0 GeV2, extracting the cross section for the

exclusive a2(1320) photoproduction on the proton. The cross

section shows a pronounced dip at −t ≈ 0.55 GeV2, which

can be explained in the framework of Regge theory. Since

the a2(1320)0 is the most prominent structure present in the

π0η invariant mass, detailed knowledge of its production cross

section is valuable for any assessment of a possible exotic

resonance contribution. This measurement will, thus, help

high statistics photoproduction experiments, e.g., the CLAS12

[32], GLUEX [33], and BGOOD [34], to better understand the

π0η mass spectrum and to properly describe the production

of the dominant a2 resonance using it as a benchmark in the

search for exotic states.
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