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Abstract

The global food system is increasingly interconnected and under pressure to support

growing demand. At the same time, crop production is facing new and uncertain impacts

from climate change. To date, understanding how downstream supply chain actors, such

as commodity traders, are exposed to climate change risks has been difficult due to a lack

of high-resolution climate and trade data. However, the recent availability of supply chain

data linking subnational production to downstream actors, and gridded projections of

crop yield under climate change, allows us to assess individual commodity trader

exposure to long-term climate change risk. We apply such an analysis to soy production

in Brazil, the world’s largest soy exporter. Whilst uncertainty across crop models’ yield

projections means it remains difficult to accurately predict how production across the

region will be affected by climate change, we demonstrate that the risk exposure of

trading actors differs substantially due to the heterogeneity in their sourcing. Our study

offers a first attempt to analyze subnational climate risk to individual trading actors

operating across an entire production landscape, leading to more precise risk exposure

analysis. With sufficient subnational data, this method can be applied to any crop and

country combination, and in the context of wider food security issues, it will be pertinent

to apply these methods across other production systems and downstream actors in the

food system.
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1 Introduction

The global food system is increasingly interconnected and under pressure to support changing

demand and a growing world population. Almost a quarter of all food produced globally for

human consumption is traded internationally (D’Odorico et al. 2014), and it is predicted that

up to half of the world’s population will be dependent on ex situ land and water resources by

2050 (Fader et al. 2013). With the rising demand requiring an estimated 70% increase in global

food production by the middle of the century (Sentelhas et al. 2015), mitigating risks to crop

yields will be critical not only to producers and consumers in the region of production, but also

to a growing number of downstream actors and international consumers who rely on imported

crops.

Crop production is now facing new and uncertain impacts from climate change: increased

global mean temperatures, altered rainfall patterns, and more frequent extreme weather events

(IPCC 2014). These phenomena will affect crop yields (production per unit area), with specific

impacts varying geographically and by crop. Over the past 30 years, the literature on climate

risk to agriculture has transitioned from optimism to pessimism (Nelson et al. 2014b); whilst in

some cases crop yields are expected to increase under climate change (e.g. Northern Europe,

Wheeler and von Braun 2013; root crops, Ramirez-Villegas et al. 2013), generally a decrease

in global crop yields is predicted (Rosenzweig et al. 2014; Tai et al. 2014).

However, transnational climate risks, including those linked to trade, are rarely addressed in

national climate risk assessments (Challinor et al. 2017; Ciplet et al. 2018). In a recent

systematic review of national climate change risk assessments in Europe (EEA 2018), only

five countries out of 25 considered “cross-border” risks (e.g. climate-induced migration, water

flows, trade), although ten countries recognized that further research on these risks was

necessary. At the private sector level, major commodity traders have already recognized the

risks and opportunities raised by climate change (e.g. Cargill 2019a; Bunge 2019), but the

spatial scale of their analyses is unclear and studies of climate risk exposure across traders are

not available in the peer-reviewed literature. Both traders and countries relying on imports

could improve their risk assessments and responses with access to fine-scaled data that looks at

climate change impacts across their existing supply chains and production landscapes.

Translating production risks to downstream actors is complex and methodological advance-

ments for quantifying transnational climate change impacts have been scarce, but recent

progress has been made with the creation of the transnational climate impacts (TCI) index

(Benzie et al. 2016; Hedlund et al. 2018). The TCI index expands the concept of climate risk to

include variables such as trade openness, cereal import dependency, and embedded water risk.

The TCI index provides a more comprehensive global perspective of climate risk than

traditional climate vulnerability indicators, exposing hidden linkages of risk which can be

explored through transnational risk analysis.

Linking climate risk to downstream actors requires mechanisms to map the supply chains

between producing regions and consumption activities. There are different approaches to

tracking the flows of goods around the world, from simple material flow analysis (MFA)

through to complex life-cycle analysis (LCA), multiregional input-output (MRIO) models and

hybrid models linking MFA and MRIO approaches (Croft et al. 2018). The Trase initiative

(Trase 2019) provides an advanced material flow analysis which offers high-resolution

subnational links between points of production, traders, and destination countries.

These flows can be complemented by environmental extensions to link consumption-driven

production to associated environmental impacts. Likewise, projected impacts on production
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can be linked to downstream actors, highlighting their relative exposure to environmental risk.

To the best of our knowledge, trade information has not been linked to the subnational level in

the context of climate risk exposure to date. If climate change impacts vary at a subnational

scale, then downstream actors are likely to experience different levels of transnational risk

exposure even when sharing similar national-scale sourcing patterns.

In addition to subnational trade data, a detailed analysis of trade-linked climate risk also

relies on the availability of subnational datasets for climate change impacts on crop production.

Climate change risks to yield can be classified into two categories: acute risks to yield, which

occur as a result of the increasing frequency and magnitude of extreme weather events (Fischer

2009), and chronic risks to yield, which are the gradual changes in yield as a response to

changing mean climatic conditions (Challinor et al. 2014). It is reasonable to assume that both

acute and chronic risks could vary at a subnational level, particularly in larger and diverse

crop-producing countries. In this paper, we focus on chronic climate change risks to yield, for

which datasets are more robust (Thornton et al. 2014) and are available at a high resolution

appropriate for subnational analysis.

Chronic risks are important for commodity traders to consider when making long-term

investments in assets, such as transport infrastructure, grain silos and port terminals. Invest-

ment in assets is widespread among agri-commodity traders, and all four of the major “ABCD”

grain traders (ADM, Bunge, Cargill and Louis Dreyfus) own physical assets across a range of

commodities (Pirrong 2014). For example, the commodity trader Cargill invested more than

R$300 million in a grain export terminal in the Brazilian municipality of Santarém which is

still in use 15 years later, an investment described as representative of that happening in

locations where companies foresee competitive advantage in the long term (Cargill 2019b).

These decisions would be affected by chronic risk, and traders have an interest in considering

how suitability for crop production will change over the coming decades. In a competitive

environment, where yields are expected to decrease in some areas and increase in others

(Rosenzweig et al. 2014), traders with assets in future high-yielding areas will have a potential

advantage.

Crop models translate climate change projections to changes in crop growth and yield.

They play a central role in helping agro-industry, policymakers and plant scientists understand

the impacts of climate change (Fodor et al. 2017). Whilst several approaches to crop modelling

exist, process-based crop models are the most common choice for climate impact assessments

(Tao et al. 2009; White et al. 2011). Originally developed for field-level application, process-

based crop models use a combination of inputs such as weather and soil conditions, as well as

plant-specific characteristics, to calculate crop yield and other parameters. Several process-

based crop model outputs can be compared at once via the Inter-Sectoral Impact Model

Intercomparison Project (ISIMIP 2018; Rosenzweig et al. 2014; Warszawski et al. 2014),

which coordinates simulation rounds with consistent input data and climate change scenarios

across climate-impact modelling groups. By offering a consistent framework for the intercom-

parison of risk models, ISIMIP provides critical information for adaptive and transformational

decision-making across, and within, individual sectors (Rosenzweig et al. 2017).

In this paper, we advance estimates of actor-specific climate risk exposure by drawing on

the latest available datasets in climate, crop and trade modelling described above. We propose

a methodology that could detect differences in climate risk exposure between downstream

actors in production landscapes where climate change acts heterogeneously, and traders have

unique spatial sourcing profiles. Our methods can be applied to countries, crops and down-

stream supply chain actors for which similar data are available, but here we apply our

Climatic Change (2020) 162:175–192 177



methodology to a case study of commodity traders sourcing soy grown in Brazil, to highlight

an example of the differences in relative risk exposure associated with particular supply chains.

Brazil is the world’s largest soy exporter (Samora 2018), and existing estimates of the impact

of climate change on soy in the country suggest heterogeneous effects across its soy-producing

areas (Lobell et al. 2008; Osborne et al. 2013; Justino et al. 2013; Rosenzweig et al. 2014).

These attributes highlight the need for analysis of connectivity to trade at an appropriate

subnational scale, as commodity traders could experience different levels of risk exposure

based on the areas within the country from which they source soy. In the following section, we

outline the methodology and apply it to the case study of Brazilian soy.

2 Methods

2.1 Modelling overview

The methods include three modelling components: climate, biophysical and trade (Fig. 1).

First, current and future climate data are projected for a range of greenhouse gas concentration

scenarios using a global climate model. Second, these climate data are used as an input to crop

models to project crop yields under climate change scenarios. Finally, these crop yield

projections are linked to Trase supply chain data to quantify traders’ relative risk exposure

to climate change impacts on crop production within their supply chains. All spatial analyses

and maps were completed using ArcGIS v10.5.1 (ESRI 2017) and statistical analyses in R

3.4.3 (R Core Team 2017).

2.2 ISIMIP scenario options

Global gridded crop models (GGCMs) project crop yields at a high resolution over large areas.

They are process-based crop models which use a combination of inputs such as weather and

soil conditions, as well as plant-specific characteristics, to model crop parameters globally. For

the agriculture sector, ISIMIP provides crop yield projections at a 0.5° resolution under a range

of climate change scenarios.

The ISIMIP Fast Track round (2012–2013), the most recent simulation round which

includes agriculture as a climate-impact sector, provides data for fifteen crops and covers a

range of different scenarios (see Table 1). Outputs from a number of different GGCMs (each

Fig. 1 Impact modelling chain: models and outputs used to estimate trader climate risk exposure. Shaded grey
boxes represent the models used in our methodology, and shapes with no shading represent outputs at each stage.
Adapted from Nelson et al. (2014a)
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modelling between three and fifteen crops) are available for every year between 2004 and

2098 inclusive. To allow for comparison of projected yields across GGCMs, we selected a

consistent scenario and the years 2006–2016 and 2045–2055 for analysis of the mid-term

impacts of climate change relative to a baseline period (see Section 2.4). We chose scenarios

that replicate current crop management conditions in order to project the impacts of climate

change prior to adaptation.

2.3 GGCM yield projections

Whilst it was not within the scope of this paper to carry out a full GGCM intercomparison

exercise (see supplementary material, Section S1, for further discussion of GGCM comparison

and selection), we assessed each GGCM output for errors (e.g. missing gridcells, implausible

yields, abnormally large yield differences across adjacent gridcells) in order to make sure the

model was suitable for the crop and location of study. For each GGCM, we calculated mean

modelled yield across 2006–2016 and mapped the results over the area of study to 0.5° by 0.5°

gridcells (see Fig. S1, supplementary material). Models with insufficient coverage of the study

area were excluded at this step, and for responses to other errors, see Section 2.4.

2.4 Brazil soy yield projections

We apply methods 2.2–2.3 described above within the specific context of the case study of

Brazilian soy. Soy is modelled by seven different GGCMs in the ISIMIP Fast Track round

(detailed in Table S1, supplementary material). These include three site-based crop models

originally developed for field-scale applications (EPIC, GEPIC, pDSSAT), three agro-

ecosystem models derived from global ecosystem models (LPJ-GUESS, LPJmL,

PEGASUS) and one agro-ecological zone model (IMAGE). All seven GGCMs model actual

yield except IMAGE and LPJ-GUESS which model potential yield (Müller et al. 2017). For

the case study of Brazilian soy, we chose ISIMIP scenario variables to replicate current

common growing conditions (Table 1, Section 2.2).

We selected the years averaged around 2011 and 2050 to analyze the mid-century effects of

climate change. The year 2011 was chosen as the most recent year for which we could create a

10-year average with current production data at the time of data preparation. The year 2050

was chosen to enable comparison with other climate change studies which often include results

for 2050, and as an appropriate time-horizon for traders and policymakers.

The RCP4.5 pathway was chosen to represent moderate climate change which aligns with

current international policy targets. It describes a stabilization scenario without overshoot to a

total radiative forcing of 4.5 W/m2 after 2100 (IPCC 2017). Under RCP4.5, the global average

temperature in 2050 is expected to have increased by 1.0–1.6 °C above pre-industrial levels

Table 1 ISIMIP scenario options and chosen variables

ISIMIP scenario options Available variables Case study variable(s)

Years of analysis 2004–2098 2006–2016 and 2045–2055
Representative concentration pathway 2.6/4.5/6.0/8.5 4.5
Global climate model Five models available HadGEM2-ES
Irrigation Yes/no No
CO2 effects Yes/no Yes
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(Rogelj et al. 2012). Although the RCP4.5 pathway is optimistic on global greenhouse gas

mitigation, there is debate over whether it would satisfy the Paris Agreement, with some

stating that it is likely to exceed 2 °C by 2100 (Symon 2013) and others arguing that it will

almost certainly limit warming to below 2 °C (Salawitch et al. 2017).

We selected the Hadley Centre Global Environment Model version 2 (HadGEM2-ES) as it

is widely accepted and implemented in the climate modelling community and is simulated by

all seven GGCMs included in this analysis.

Within the GGCMs, the irrigation and CO2 effect options were chosen to reflect the current

production conditions of the case study crop and region. Model runs without irrigation were

chosen (Table 1), since irrigation for soy in Brazil covers only approximately 5% of the

cultivated area (Sentelhas et al. 2015). As a C3 crop, soy is particularly sensitive to CO2

(Slingo et al. 2005), and therefore, CO2 fertilization effects were included in the chosen model

outputs. We explore the uncertainties around CO2 fertilization effects for crops in Section 4.2.

We aggregated GGCM outputs to municipality level for integration with trade data and to

compare 2011 modelled yields to observed yields. Municipality outlines often cross multiple

raster grid squares (see Fig. S2, supplementary material, for municipality outlines), requiring a

process of weighting all yield projections intersecting a municipality. For each GGCM, a land

area–weighted mean of yields for each municipality was calculated as follows: mean yield data

for 2006–2016 and mean yield data for 2045–2055 were converted from raster data to polygon

shapefiles and intersected with municipality outlines. We then weighted each polygon’s yield

value by its area and calculated an area-weighted municipality-scale yield using all the

polygons within each municipality. We assumed that crop-planted area is distributed equally

throughout the municipality.

For municipalities where part of the area is covered by a gridcell with a null value, we

calculated municipality-level yield by excluding null value polygons from the total munici-

pality area. ISIMIP’s results for the EPIC model run produced an output with null values for

19.10% of the total area of Brazil, and EPIC was therefore excluded from further analysis. The

other six models also have some null values (mostly around the coastline), but they are

relatively small compared with EPIC, covering 0.01% (IMAGE), 0.05% (GEPIC), 0.05%

(LPJmL), 0.05% (pDSSAT), 0.45% (LPJ-GUESS) and 0.78% (PEGASUS) of Brazil. These

six models were retained in the analysis, and null values were excluded at the aggregation step.

In some GGCM simulations for the 2006–2016 mean yield, yields of zero were erroneously

modelled for municipalities with recorded crop harvests in 2006–2016. Erroneous yields of

zero for 2006–2016 were modelled by PEGASUS (for the municipalities of Tavares, in Rio

Grande do Sul, and Mostardas, in Rio Grande do Sul) and pDSSAT (Eldorado, in Mato

Grosso do Sul). This error can occur where the GGCM gridcells do not fully cover the

landmass of Brazil, and therefore leave a municipality blank. It can also occur where GGCM

simulation resolution obscures field-level differences in environmental conditions (e.g. average

conditions within a gridcell could be inhospitable to soy, but it may contain pockets where

production is possible). In the case of these municipalities, we assumed no change in yield, and

set projected 2045–2055 yield at the observed 2006–2016 mean yield.

2.5 Trader climate risk exposure

We define trader climate risk exposure as the product of projected yield changes and relative

trade volumes sourced from the given areas of supply.
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For the latter, we used subnational trade data available through the Trase platform (Trase

2019). Trase uses a combination of publically available data sources to capture detailed trade

flows from subnational production through to countries of import (Godar et al. 2015; Trase

2018). Individual supply chain actors are systematically linked to specific, subnational pro-

duction regions for high deforestation–risk commodities, covering all the exports for a given

commodity from a given country of production. Data is currently available at a subnational

level for select countries and commodities, with new countries and commodities being added

on a rolling basis.

Within the Trase datasets, some trade flows attributed to traders have an unknown municipality

of production. These flows cannot be linked to future climate change yield projections, and we

excluded them from the analysis. In the Trase data for our case study of Brazilian soy, 18% of total

soy exports from Brazil in 2016 are not linked to a municipality of production, and these flows

cannot be included in the analysis. For the top 10 exporters in 2016, which are presented in this

paper, the figure for Trase unknowns is slightly lower, at 14% of total soy mass exported. The

proportion of unknowns varies per crop and country context, but is expected to be reduced in future

releases with subsequent iterations of each model.

To analyze the projected impact of climate change on each trader’s current supply chain, we

first created boxplots for the projected proportional change to yield (the ratio of the mean

modelled yield for 2045–2055 to the mean modelled yield for 2006–2016, see Section 2.4) in

each trader’s source municipalities, repeated for each GGCM and trader combination. This

retains the range in projected yield change, so it is possible to see the variation in climate

change impacts projected for different municipalities in each trader’s supply chain.

Secondly, we multiplied Trase’s outputs for crop mass (raw crop equivalent) sourced by

each trader from each municipality by the projected proportional yield change for that

municipality. This resulted in an estimate for trader climate risk exposure. We repeated this

calculation for each GGCM and trader combination.

3 Results

3.1 Subnational climate change impacts on soy in Brazil

Figure 2 maps the modelled change in soy yield between 2006–2016 mean yield and 2045–

2055 mean yield per municipality for six GGCMs. Substantial variation between GGCM

projections is apparent. For some models, there is a decrease in yield over the majority of

Brazil (e.g. PEGASUS, GEPIC, IMAGE), whereas other models project an increase in yield

for most of the country (e.g. LPJmL, LPJ-GUESS, pDSSAT).

In addition to the national picture, there are also specific localized examples where some models

agree and others disagree. For example, the pDSSAT and PEGASUS maps show a zone of

decreasing yields in the southern state of Rio Grande do Sul, but this pattern is not visible in any

of the othermaps. It is important to note that everymodel projects both yield increases and decreases

within Brazil, so subnational variation is projected regardless of the GGCM chosen.

3.2 Subnational sourcing patterns of traders

Different soy traders operating in Brazil have different soy sourcing profiles (Fig. 3). For

example, in 2016, Coamo bought 95% of its Brazilian soy from Paraná, and Bianchini bought
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Fig. 2 Change in soy yield (tonnes per ha) per municipality between 2006–2016 mean yield and 2045–2055
mean yield, per GGCM. Plotted alongside state boundaries. Green gridcells indicate positive yield changes and
red indicate negative
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94% of its Brazilian soy from Rio Grande do Sul. Although there are some changes over time,

these spatial sourcing patterns are relatively consistent for the preceding 10 years (see Fig. S3).

Whilst many of the top 10 traders (ranked by tonnes of soy exported in 2016) buy from similar

combinations of producing states, distinctive patterns can be observed in their relative sourcing

from different regions—such as Amaggi, which sources a larger proportion from Mato Grosso

(75%) than the other top 10 traders, and Louis Dreyfus, which consistently bought a higher

proportion from Goiás than any of the other top 5 traders (28% in 2016, see Fig. S3 for 2006

and 2011).

3.3 Trader climate risk exposure

Figure 4 shows that each trader has a different risk exposure profile. Each boxplot represents a

different crop model and trader combination, with colours denoting crop model, and plots are

grouped by trader. Comparing bars of the same colour reveals the variation across traders for

each GGCM. For example, using the pDSSAT model, Bianchini has a greater negative

projected change in soy yield across municipalities in its supply chain than the other traders

(a median of − 10%, compared with medians of − 1 to + 4% for the other traders). Figures 2

and 3 indicate that this is likely to be due to its reliance on buying soy from Rio Grande do Sul

(Fig. 3) and the zone of yield decrease visible in that state on pDSSAT’s yield change map

(Fig. 2). The relevant data for trader risk exposure of Bianchini and Coamo are displayed

together in Fig. S4, in the supplementary material.

Comparing the bars within each panel reveals the difference in yield projections between

GGCMs for each trader (Fig. 4). As expected given the differences between the projected yield

change maps (Fig. 2), projections for each trader contrast widely using different GGCMs. In

Fig. 4, we see that this variation between different GGCMs is in many cases greater than the

Fig. 3 Proportion of soy sourced from each state per trader, and total soy production per state, for 2016. Top 10
traders in 2016, in order of tonnes of soy exported, largest to smallest (Bunge to Glencore). This figure includes
soy bought from known states but unknown municipalities (flows from unknown municipalities are not included
in Fig. 4)
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variation caused by trader sourcing patterns as bars of the same GGCM across different traders

often show more similar distributions than bars within a single trader’s panel.

Traders may not source an equal proportion of soy from every municipality in their supply

chain, and they will be more concerned about impacts in the municipalities which make up a

larger proportion of their supply. For an estimate of total climate risk exposure, it is necessary

to take the differences into account. When we multiply projected proportional yield change by

the volume of trade flows in each municipality to estimate total trader climate risk exposure,

we lose detail on the range in yield differences across municipalities, but gain information on

the relative volumes of trade flows. Figure 5 shows that total trader climate risk exposure

largely follows the medians displayed in Fig. 4. However, there are some differences, such as

Coamo which has only one positive proportional change projected out of six GGCMs in Fig. 5

but a more varied picture in Fig. 4, and Bianchini where the pDSSAT projection is much more

negative than the PEGASUS projection, despite very similar medians in Fig. 4 (see also

projections for Coamo and Bianchini, Fig. S4).

4 Discussion

Using a combination of climate, crop and trade models, we demonstrate that adopting a

subnational lens reveals differences in climate risk exposure between downstream actors, even

when they source the same commodity from the same country. In the case study of Brazilian

soy, we demonstrate that different subnational sourcing patterns lead to different levels of

relative risk exposure for traders. Where, to the best of our knowledge, previous studies on

transboundary climate risk have remained at the national level, our methodology offers an

insight into subnational variation, which could help inform risk assessments and appropriate

adaptation and planning decisions. In the following discussion, we address the results and

Fig. 4 Boxplots representing projected change in mean soy yield between 2006–2016 and 2045–2055 across
municipalities supplying traders, per GGCM, with Brazil national soy production for comparison. Numbers
below the panels represent the number of municipalities each trader sourced from in 2016 (and for Brazilian
production the number of producing municipalities). Whiskers extend to the most extreme data point which is no
more than 1.5 times the interquartile range, and some whiskers extend beyond the axis. Notches indicate the
confidence interval around medians. Traders ordered by tonnes of soy exported in 2016, largest to smallest.
Traders: Bunge (BUN), Cargill (CAR), Archer Daniels Midland (ADM), COFCO (COF), Louis Dreyfus (LDC),
Amaggi (AMA), Coamo (COA), Bianchini (BIA), Engelhart (ENG), Glencore (GLE). GGCMs: GEPIC (GE),
IMAGE (IM), LPJ-GUESS (LG), LPJmL (LM), pDSSAT (PD) and PEGASUS (PE)
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implications of the case study and reflect on working with GGCM data and avenues for future

research.

4.1 Subnational climate risk exposure for traders of Brazilian soy

Whilst this method could be applied to any crop-country combination where appropriate

GGCM and trade data are available, we apply it to the case study of commodity traders

sourcing soy from Brazil. The biggest Brazilian soy traders source from a wide range of areas

across Brazil, in proportions which approximately reflect the spatial patterns of production (see

the top 5 traders in Fig. 3, Section 3.2). However, smaller traders generally have more distinct

sourcing profiles (traders in 6th–10th place in Fig. 3, Section 3.2) and appear to consistently

source from specific areas within Brazil’s soy-producing regions (e.g. Amaggi, Coamo,

Bianchini, Fig. S3).

In a country of Brazil’s size, with distributed soy production, it is reasonable to assume that

different levels of risk are associated with different areas. Our results suggest that this is the

case: all GGCMs predict subnational variation in climate change impacts (Fig. 2, Section 3.1),

in line with previous studies (Lobell et al. 2008; Osborne et al. 2013; Justino et al. 2013).

Using our chosen parameters, each GGCM model projects both positive and negative yield

changes within Brazil, although in the case of LPJ-GUESS, only a few gridcells are projected

to experience yield losses. It is therefore plausible to suggest that, given the heterogeneous

nature of sourcing patterns, some traders will be at a greater risk from climate change than

others (see Fig. 4, Section 3.3).

In our case study, the most extreme levels of climate risk exposure (positive and negative)

are projected for Bianchini, a trader which sources from a spatially concentrated subset of

producing regions (see Fig. S3 and Fig. S6, supplementary material). Using the pDSSAT

model, Bianchini is exposed to a relatively high level of risk as a result of a concentration of its

Fig. 5 Total trader climate risk exposure between 2006–2016 and 2045–2055. Bars grouped by trader, colours
denote GGCM. Traders ordered by tonnes of soy exported in 2016, largest to smallest. Traders: Bunge (BUN),
Cargill (CAR), Archer Daniels Midland (ADM), COFCO (COF), Louis Dreyfus (LDC), Amaggi (AMA),
Coamo (COA), Bianchini (BIA), Engelhart (ENG), Glencore (GLE). GGCMs: GEPIC (GE), IMAGE (IM),
LPJ-GUESS (LG), LPJmL (LM), pDSSAT (PD) and PEGASUS (PE)
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source municipalities in Rio Grande do Sul (see Fig. 4, Section 3.3). However, a concentrated

sourcing pattern could also be an advantage if the area is projected to see relatively high yield

increases, as we can see for Bianchini under the LPJ-GUESS model (see Fig. 4, Section 3.3).

Across a varied climate risk landscape, larger traders are more likely to be “buffered” from

localized areas of extreme yields, due to distributed sourcing allowing for compensation of

potential yield changes elsewhere in their supply chain.

For traders and other decision-makers, it is important to highlight the inconsistencies

between crop models: the GGCMs included in this study do not reach consensus on future

yield projections. Each trader has both positive and negative projections of climate risk

exposure (Fig. 5, Section 3.3). GGCMs disagree both on the direction and on the magnitude

of potential yield change (IMAGE projects a maximum percentage change of 2%, whereas

LPJ-GUESS projects a range of 8–19%; see Fig. S5, supplementary material). Given the

disagreement between GGCMs, the results should be interpreted as a range of potential

scenarios rather than individual projections. The selection and use of GGCMs is discussed

further in Section 4.2.

Whilst results are uncertain and further analysis would be required to translate results into

real-world applications (see Section 4.3), these potential future scenarios could begin to aid

downstream actors in assessing risks in their current spatial sourcing patterns, and inform

decisions on future investments. Of the ten traders in this study, nine are linked to soy storage,

crushing and refining facilities within Brazil (see Fig. S6, supplementary material), indicating

that sourcing may be costly and difficult to shift and/or would require relatively long-term

planning decisions to ensure that new investments are placed effectively. Whilst some assets

may be located at ports, many assets are located close to the traders’ particular sourcing areas,

meaning that changes in productivity in regions of crop production are likely to have

implications for the optimal placing of these investments. For example, Coamo is the only

trader with five negative projections out of the six GGCM scenarios (all other traders have at

least three positive scenarios; see Fig. 5, Section 3.3). It also sources over 90% of its soy from

one state (Paraná; see Fig. 3) and owns over 100 soy storage, crushing and refining facilities in

Brazil, of which close to 90% are located in the same state: Paraná (see Fig. S6, supplementary

material). This spatial concentration of soy assets renders Coamo particularly exposed to the

climate change impacts on soy yields in Paraná. If climate risk exposure data were incorpo-

rated into future infrastructure investment decision-making, it could help guide investments

towards areas of Brazil where yields are expected to increase, although disagreements between

GGCMs would need to be further investigated before actions are taken.

Each trader’s risk exposure must be considered in the context of all traders; even a positive

effect of climate change on yields could lead to a comparative disadvantage if yields increase

to a greater magnitude in other areas of Brazil and other traders’ areas of operation.

This comparison would be further improved with data on climate risk to soy in other

countries (Ray et al. 2019); global soybean-planted area is expected to expand (e.g. in

Southern Africa; Gasparri et al. 2015) and climate change is predicted to increase

soybean yield in mid- and high-latitude regions by the end of this century

(Rosenzweig et al. 2014), and in Asia, central and eastern Europe and Canada by

2050 (Arnell et al. 2016). These areas could help meet increased demand for soybean,

but agricultural expansion in Brazil and other countries brings its own risks, including

the potential for deforestation, land ownership conflicts and loss of biodiversity. These

tensions between supply and demand will be important for soybean-importing coun-

tries to monitor over the coming decades.
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4.2 Use of GGCM projections

Crop model selection is an important step in the assessment of climate impacts (Ruane et al.

2014), and depending on the parameters and mechanisms used to calculate crop yield, results

differ between models. Several recent studies have carried out crop model intercomparisons,

finding large uncertainties and biases and a “wide gulf” between plant science and crop

models, in part due to the inevitable time lag required for the incorporation of new plant

science knowledge into crop models (Fodor et al. 2017, p. 10). One method to account for

model-related biases is to use crop model ensembles (e.g. Rosenzweig et al. 2014; Nelson et al.

2014a; Bassu et al. 2014), but a time lag remains for the incorporation of new plant science

knowledge.

For example, crop models rarely incorporate current knowledge of plant responses to high

atmospheric CO2 (Fodor et al. 2017), which plays an important role in the scenario outcomes

for climate change impacts on crops (Fischer 2009). There are concerns that its positive effect

has been exaggerated since it is difficult to reproduce in the field (Justino et al. 2013). Other

studies suggest that its effect on yields could be reduced over long time horizons due to

photosynthetic acclimation (Bunce 2000) or that exposure to high levels of CO2 could cause a

deterioration in the quality of the yield (Blanc and Reilly 2017). The complexity of plant

response to high CO2 remains unresolved and is a key factor of uncertainty for crop yield

simulations. In response to these and other uncertainties, some caution is necessary when using

and interpreting GGCM outputs.

Testing a GGCM’s ability to model future yields is complex and is an area worthy of

further attention. Since it is impossible to compare model outputs for future yields with

observations, one approach is to measure a GGCM’s ability to model current or historical

observed yields. A previous crop model intercomparison study compared historic crop yield

simulations to reference data for 1982–2005 and found that LPJmL had the highest correlation

(0.82) for soybean yields in Brazil with historical reference data (Müller et al. 2017). For the

GGCMs included in our study, we also carried out an exploratory comparison of modelled

yields to historic yields averaged around the base year for our study of 2011 (see Section S1

and Figs. S1 and S7, supplementary material). However, this approach is problematic since

observed data is affected by many factors that the GGCM yields do not model, such as specific

management systems, extreme weather events, socio-economic factors, and pests and diseases.

Therefore, big differences in yield values and distributions between modelled yields and

observed yields can be expected and do not necessarily point to issues within the models

per se. Furthermore, the ability to correctly model current yields does not guarantee an ability

to predict future yields, especially in the context of a changing climate.

Comparison with the outputs of other papers is an alternative approach to assessing the

suitability of GGCMs. For example, in a previous model-intercomparison study, LPJ-GUESS

predicted the highest percentage change in soy production globally (Rosenzweig et al. 2014),

which is consistent with the results of our case study (see Fig. S5, supplementary material).

The same paper showed that GEPIC predicted negative percentage changes in production by

2050, also consistent with our findings for the majority of traders (see Fig. S5, supplementary

material). These similarities suggest that different GGCMs are consistently optimistic or

pessimistic in their predictions of crop yields, strengthening the argument for using a combi-

nation of GGCMs to represent alternative scenarios.

In many cases, the current disagreement between GGCM scenarios would prevent stake-

holders from acting directly on the risk exposure results. Despite this disagreement for our case
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study of Brazilian soy, we include a range of subnational GGCM projections which highlight

that—whatever the model choice—a traders’ risk exposure is likely to differ based on their

location of operations and in comparison with other traders. This fact would not be evident

without models (crop yield projections and trade) applied at a subnational resolution, so whilst

results presented are likely more complex (given their differences and spatial heterogeneity),

they add significant value in comparison with perspectives that would be obtained via national-

scale analysis. Where yield projections calibrated for regional specificity exist for the chosen

resolution of subnational sourcing and trade, these could be used in the place of GGCMs.

However, GGCMs have the advantage of providing a globally consistent approach that can be

aggregated to match trade data resolution in any country and provide the required subnational

scale for differentiation of risk exposure between subnational supply chains. This will be

important for allowing intercountry comparison at subnational scales as suitable trade infor-

mation continues to emerge. As crop models continue to evolve and incorporate new plant

science, new yield projection data could be incorporated in our methodology to give stake-

holders greater confidence in preparing for future scenarios.

4.3 Future research

With the caveat of GGCM uncertainty, one of the applications for climate risk exposure data

could be anticipating and preparing for potential land use change. A shift in the areas of

suitability for soy production may cause a displacement of other crops or heighten agricultural

competition for protected land, as protected areas have historically been established in

locations that minimize conflict with agriculturally suitable lands (Venter et al. 2017). In

addition, unprotected land may also be threatened and there are particular fears for the Cerrado,

a global biodiversity hotspot adjacent to the Amazon with low legal protection and currently

88.4% of its remaining lands suitable for growing soy (Strassburg et al. 2017). By indicating

where future pressures might occur, these results can help inform discussions between

stakeholders, and to prepare responses to these risks. This is a key concern for consumer

countries and companies, particularly those with zero deforestation commitments (Pasiecznik

and Savenije 2017).

Alternatively, in areas of projected soy yield losses, soy producers in Brazil could respond

with a range of adaptation strategies, and this potential must be considered in order to not

overestimate expectations of yield losses under a future with climate change (Mendelsohn

et al. 1994). Depending on the driver of yield losses (e.g. water deficit or heat stress), strategies

could include planting improved soy varieties, shifting planting dates, changing the number of

fallow years, developments in soil management and increasing the use of irrigation (White

et al. 2011; Justino et al. 2013). Traders which identify particular risks to the producing

municipalities in their supply chains may choose to invest in targeted adaptation activities to

reduce their supply risks. Both adaptation activities and the expansion of crops into new areas

entail potential costs to traders, and future research could explore the estimation of such costs

and potential effects on soy prices.

Although we focus on the chronic and relatively direct risks from gradual changes in mean

climatic conditions, future work could incorporate the impacts of other variables likely to

affect yields at a subnational level. For example, climate change may affect the dynamics

between pests and diseases and plants, but currently there is no general consensus on how to

model these dynamics (Luck et al. 2011). Climate change could also alter weather variability

and extreme weather events, both of which could have significant impacts on crop yields (Ray
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et al. 2015; Lesk et al. 2016). However, existing data on extreme weather events is rare

because, by definition, they occur infrequently and therefore sample sizes can only be small

(Bailey et al. 2015).

By incorporating several GGCMs in this study, we explore GGCM-level uncertainty.

However, uncertainties in global climate models and climate change scenarios could also lead

to different yield projections (Osborne et al. 2013). Climate change is already moving faster

than is predicted in the RCP4.5 emissions scenario (Rogelj et al. 2012; Copernicus 2017),

meaning the estimates of climate change impacts presented here are likely to be conservative.

Future research could test different climate scenarios and use different global climate models to

estimate transnational climate risk.

Finally, although we have projected climate risks only up to 2050, the effects of climate

change will continue to evolve beyond the first half of the century and are expected to have a

worsening impact on agriculture thereafter (Fischer 2009). The impacts of climate change are

predicted to become more extreme by 2100, with a maximum change in production of ± 60%

(Rosenzweig et al. 2014). For long-term planning, decision-makers should therefore make use

of projections across several points in time.

5 Conclusions

This paper contributes to a growing body of work assessing transnational risks associated with

the impact of climate change on agriculture. Using a subnational resolution, the results

highlight that different traders could be exposed to different levels of risk, even if sourcing

the same commodity from the same country. Secondly, our results show that crop models can

produce very different results for future yields under the same climate change scenario,

illustrating the importance of considering a range of crop models. The considerable divergence

in model outputs makes the risk assessment more complex than if consistent outputs were

produced across models, and further work investigating these differences would help decision-

makers interpret and respond to their projected risk exposure.

The methodology used here can be implemented for any crop and country combination

depending on data availability, and in the context of wider food security issues, it will be

important to apply these methods to other producers and downstream actors in the food

system. Subnational trade datasets already link production to countries of first import and

are currently being developed in new country and commodity contexts, increasing the potential

for future analyses (Trase 2019). Although beyond the scope of the current paper, it may be

that for these different contexts GGCMs perform more consistently, leading to a clearer

estimate of risk exposure.

Studies of climate change impacts on crops at a subnational scale allow policymakers and

other stakeholders to be better prepared for climate change risks. Ultimately, crop production

and food security are a product of much more than “climatic determinism” (Brown and Funk

2008). Nevertheless, the pressures of climate change will play an important role in agricultural

change into the indefinite future. By advancing the tools available to measure transnational

climate risk, we contribute to the discussion of how, where and by whom climate risk may

ultimately be felt.
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