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Abstract 

 Background: The PedsQL™ 4.0 Short Form 15 Generic Core Scales  (hereafter the PedsQL) 

and the Child Health Utility 9 Dimension (CHU9D) are two generic instruments designed to 

measure health-related quality of life in children and adolescents in the general population 

and paediatric patient groups living with specific health conditions. Al though the PedsQL is 

widely used among paediatric patient populations, presently it is not possible to directly use 

the scores from the instrument to calculate quality adjusted life years (QALYs) for 

application in economic evaluation because it produces summary scores which are not 

preference-based.  

Objective: This paper examines different econometric mapping techniques for estimating 

CHU9D utility scores from the PedsQL for the purpose of calculating QALYs for cost-utility 

analysis. 

Methods: The PedsQL and the CHU9D were completed by a community sample of 755 

Australian adolescents aged 15-17 years. Seven regression models were estimated: ordinary 

least squares estimator, generalised linear model, robust MM-estimator, multivariate factorial 

polynomial estimator, beta-binomial estimator, finite mixture model and multinomial logistic 

model. The mean absolute error (MAE) and the mean squared error (MSE) were used to 

assess predictive ability of the models.  

Results: The MM-estimator with stepwise-selected PedsQL dimension scores as explanatory 

variables had the best predictive accuracy using MAE and the equivalent beta-binomial 

model had the best predictive accuracy using MSE.  

Conclusions:  Our mapping algorithm facilitates the estimation of health state utilities for use 

within economic evaluations where only PedsQL data is available and is suitable for use in 
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community based adolescents aged 15-17 years. Applicability of the algorithm in younger 

populations should be assessed in further research.  

Key points for decision makers 

 The PedsQL is a validated, well known and widely used measure of health-related quality of

life among children and adolescents.

 Currently, the PedsQL is not suitable for measuring and valuing health-related quality of life

in children and adolescents for the purposes of directly calculating quality adjusted life years

for application in economic evaluation.

 This study generated mapping algorithms for transforming PedsQL scores to CHU9D utility

scores
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1 Introduction 

Health-related quality of life (HRQoL) has increasingly become a key outcome measure in 

clinical trials, public health  and health services research aimed at evaluating the effectiveness 

and efficacy of interventions in children and adolescents [1]. HRQoL is a multidimensional 

construct that measures an individual’s subjective assessment of their physical health and 

psychosocial functioning [1, 2]. HRQoL measures are classified into non-preference-based 

and preference-based measures. Non-preference-based measures are widely used in paediatric 

populations and are premised on simple summary scoring of individual items or dimensions  

to generate HRQoL scores[1]. However, preference-based measures (whereby the individual 

items or dimensions are weighted according to their relative importance in determining 

overall HRQoL) are required for economic evaluation. Valuation methods such as the 

standard gamble (SG), time trade-off (TTO) or the rating scale (visual analogue scale) 

techniques have typically been employed in general population samples to generate the health 

state utilities (or weights) for preference-based measures on a cardinal scale which is 

anchored at 0.0 (representing being death) and 1.0 (representing full health) [3].  

 

Preference-based measures can be applied to a broad set of conditions and population groups, 

and can be used to calculate QALYs within cost utility analysis (CUA) [3]. Many decision- 

making bodies recommend the use of the QALY as a standard measure of benefit in 

economic evaluation of new health care technologies and pharmaceuticals [4, 5].  

 

One of the most predominant non-preference-based HRQoL measures frequently employed 

in paediatric health research and evaluations, is the Pediatric Quality of Life InventoryTM 

Version 4.0 Generic Core Scales (PedsQLTM) [6]. The PedsQLTM uses a simple summative 

scoring system to generate dimension and total scores. [6]. Currently, the PedsQLTM is not 
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preference-based and therefore cannot be directly or readily used in CUA. Directly collecting 

preference-based data using a purposefully designed measure remains the optimal way of 

collecting such data for purposes of conducting a CUA [1]. However, in the absence of such 

data and provided there is a certain degree of overlap in their construction and conceptual 

development, it is possible to derive a mapping algorithm to predict health state utilities from 

the PedsQLTM by observing its statistical relationship with a generic preference-based 

measure. This technique is referred to as ‘mapping’ or ‘cross walking’ [1]. A recent review of 

mapping models reports that mapping is a valid method of predicting health state utility 

values for the purposes of conducting an economic evaluation when no preference-based 

measure is used [7]. To date few mapping studies have been conducted exclusively within 

child and adolescent populations [8-11]. Of these, two studies have generated mapping 

algorithms for transforming PedsQL scores onto multi-attributable instruments [10, 11]. 

Payakachat and colleagues derived Health Utilities Index Mark 3 scores from the 23-item 

PedsQL using proxy-reports for a sample of 4-17 year old children with autism [11]. On the 

other hand, Khan and colleagues generated health utilities from the 23-item PedsQLTM 

questionnaire responses onto the youth version of the EuroQoL 5 dimensions (EQ-5D-Y) for 

a sample of 11-15 year old children based on the tariff set derived from the general 

population of UK adults (York A1)[10].  

 

This paper reports the results of a regression-based exercise that maps response items from 

the Short Form 15 item (SF-15) version of the PedsQLTM or PedsQL for brevity [6, 12], to 

the CHU9D [13-15]. The 15 items within the PedsQL detailed in section 2.2 are a sub-set of 

the 23 items in the PedsQLTM. This empirical examination focuses on data from a 

community-based cross-sectional sample of Australian adolescents. To our knowledge, this is 

the first study internationally to estimate a mapping algorithm between these two measures 
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and the first to apply the newly updated CHU9D Australian adolescent specific scoring 

algorithm [16]. 

2 Methods 

2.1 Study Design 

The study used data obtained from a web-based, randomly selected representative sample of 

Australian adolescents aged 15-17 years. Following participant and parent dyad consent, 

adolescents completed a 3-section questionnaire. The first section comprised the CHU9D, the 

second section contained the PedsQL and the final section included a questions on socio-

demographic and general health characteristics including age, gender, socioeconomic status 

as measured by the Family Affluence Scale (FAS) (a four item measure of family wealth) 

[17], self-reported general health and the presence or absence of long term disability, illness 

or medical condition/s. Ethical approval for this study was obtained from the Social and 

Behavioural Research Ethics Committee, Flinders University (project number 5508).  

2.2 Outcome Measures 

The source instrument for mapping was the PedsQL and the target instrument was the 

CHU9D. The CHU9D is a relatively new generic preference-based measure of HRQoL 

originally developed for application with children aged 7-11 years [13, 14, 18]. A programme 

of recent research has also demonstrated its practicality and validity in adolescents aged 11 - 

17 years [19, 20]. The CHU9D consists of nine dimensions (worry, sadness, pain, tiredness, 

annoyance, school, sleep, daily routine and activities), each with five impairment levels 

ranging from 1 (no problems) to 5 (severe problems) that assesses the child/adolescent’s 

assessment of their own HRQoL “today”. In this study, responses to the CHU9D were scored 

using an Australian adolescent population-specific scoring algorithm which was generated 

using profile case best-worst scaling methods [16]. The Australian scoring algorithm was 
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generated on  a utility scale and ranges from -0.1059 for the ‘pits’ (most severe) health state 

to 1.0 for the best state  

 

The PedsQL is a generic non-preference-based, four-dimension instrument designed to 

measure HRQoL in healthy children, as well as in those with different health conditions [12]. 

It has four dimensions (consisting of 15 items altogether) which measure the following: 

physical functioning (5 items), emotional functioning (4 items), social functioning (3 items), 

and school functioning (3 items). The PedsQL has a child self-report for ages 5-7 years 

(young child), 8-12 years (child) and 13-18 years (adolescent), as well as a parent proxy-

report for ages 2-4 years (toddler), 5-7 years (young child), 8-12 years (child) and 13-18years 

(adolescent). For the purposes of this study, the adolescent self-report version of the 

instrument was utilised. Respondents rate their answers on a 5-point likert scale with one of 

the following preferences: 0 “never a problem”, 1 “almost never a problem”, 2 “sometimes a 

problem”, 3 “often a problem”, 4 “almost always a problem”. Items are then reverse-scored 

and linearly transformed into a total score ranging from 0 to 100 (where 0=100, 1=75, 2=50, 

3=25, 4=0). Higher total scores represent better HRQoL [6, 12]. The mean total score is a 

summation of all the items over the number of items answered.  

 

2.3 Statistical Analysis 

Participant characteristics were summarized as means (± standard deviations (SD)) for 

continuous variables and frequency (%) for categorical variables. We tested for normality of 

variables using the Shapiro-Wilks test. The correlation between the CHU9D and the PedsQL 

was estimated using a scatterplot and Spearman correlation coefficients. 
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This study was conducted in accordance with the newly developed ‘Mapping onto 

Preference-based measures reporting Standards’ (MAPS) checklist [21]. To develop the 

optimal mapping algorithm of CHU9D utility scores from the PedsQL, a direct mapping 

technique was firstly used which included regressing the PedsQL total, dimension and item 

scores directly onto the CHU9D utilities. An indirect mapping approach was further 

considered, in which the response levels of each of the CHU9D dimensions were predicted. 

To improve predictive performance, socio-demographic characteristics, specifically age and 

gender were also included [7]. Three regression model specifications were estimated, 

henceforth simply referred to as “models”. The models were depicted algebraically as: 

݊݁݉݅ܦ̴ܦͻܷܪܥȀ ܦͻܷܪܥ   ൌ ߙ  ൅ ଵߚ כ ܮܳݏ݀݁ܲ ൅ ଶߚ  כ ଶܮܳݏ݀݁ܲ ൅ ߜଵ כ ݁݃ܣ ൅ ଶߜ  כ    ݎ݁݀݊݁ܩ

(Model 1) 

݊݁݉݅ܦ̴ܦͻܷܪܥȀ ܦͻܷܪܥ  ൌ ߙ  ൅ σ ௜ߛ כ ଵ௜௞௜ୀଵݓݏ̴݊݁݉݅ܦ̴ܮܳݏ݀݁ܲ ൅  σ ଵ௜ଶ௞௜ୀଵݓݏ̴݊݁݉݅ܦ̴ܮܳݏ݀݁ܲ ൅ߜଵ כ ݁݃ܣ ൅ ଶߜ כ  (Model 2)  ݎ݁݀݊݁ܩ

݊݁݉݅ܦ̴ܦͻܷܪܥȀ ܦͻܷܪܥ  ൌ ൅  ߙ   σ ௝ߛ כ ଵ௝௠௝ୀଵݓݏ̴݉݁ݐܫ̴ܮܳݏ݀݁ܲ ൅  σ ଵ௝ଶ௠௝ୀଵݓݏ̴݉݁ݐܫ̴ܮܳݏ݀݁ܲ ൅ߜଵ כ ݁݃ܣ ൅ ଶߜ כ  (Model 3)  ݎ݁݀݊݁ܩ

 

where CHU9D is the CHU9D utility score, CHU9D_Dimen is one of the 9 CHU9D 

dimensions listed in section 2.2., PedsQL is the PedsQL score, PedsQL_Dimen_sw is the 

PedsQL dimension scores, PedsQL_Item_sw is the PedsQL items, i is number of PedsQL 

dimensions selected based upon statistical significance using stepwise regression methodsi<= 

4and j is number of PedsQL items selected using stepwise regression techniques j<=15. 

Despite its limitations, stepwise regression is still widely used within regression literature 
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reported in high impact journals [22-26]. The significance level of statistical inference is 5% 

in this study. 

 

Age and gender were omitted as they were statistically insignificant. In Model (1) the 

dependent variable was predicted from the PedsQL raw total scores and squared terms. To 

estimate the non-linear relationship between the PedsQL and CHU9D PedsQL squared terms 

were added as explanatory continuous variables. In Model (2), dimension scores and their 

squared terms were modelled as the only independent continuous variables. Similarly, Model 

(3), contained the item scores and their squared terms entered as continuous variables. 

Forward selection stepwise regression modelling was used to determine which of the 15 

items and 4 dimensions were to be included in the final predictive models. Item responses 

and dimension scores that were not statistically significant (p-value >0.05) in the stepwise 

regression models were not included in the final models. All analyses were conducted in Stata 

version 14.1 [27]. 

 

A number of regression models have been used in direct and indirect (response) mapping 

exercises and were therefore considered for the work undertaken in this paper [28, 29]. For 

direct mapping, candidate models included: ordinary least squares (OLS), Tobit, censored 

least absolute deviations (CLAD), generalised linear modelling (GLM), robust MM-estimator 

(MM), fractional logistic regression (FLOGIT), two-part (TP) models, beta-binomial (BB) 

estimator, multivariable fractional polynomials (MFP), finite mixture models (FMM) and 

generalized additive (GA) models. For the response mapping, possibilities were multinomial 

logistic, ordinal logistic regression and generalised ordered probit models [30]. Theoretically, 

some models are seen to be better suited to deal with problems associated with utility scores 

such as skewness (e.g. GLM, BB, MFP), heteroscedasticity (e.g. CLAD, GLM, MM), ceiling 



 

 

10 

 

effects (e.g. CLAD, BB, Tobit, TP) and the potential presence of outliers (e.g. MM). Despite 

some models having theoretical advantages over others, the performance of these models in 

the literature has been mixed [29]. Compared to the CLAD, for instance, the OLS performed 

better in some instances [31] but worse in others [32]. As it was not possible to compare all 

models identified in the literature in our study, a decision was made to use a wide spectrum of 

models that account for the theoretical considerations associated with the distribution of the 

CHU9D and outlined against each model below. In total, seven statistical methods were 

adopted in this study (the first six employed direct mapping while the seventh used 

indirect/response mapping).  

 Ordinary least squares (OLS) [33] is the most widely used mapping model reported in 

literature [33]. Although theoretically it does not perform well in the presence of 

heteroscedasticity and non-normality of residuals, in practice it has been found to 

have good performance in the mapping literature [34].  

 Generalised linear modelling (GLM) [35], was included in the study as it allows for 

skewed distributions of the dependent variable such as is the case in this study (see 

Kernel density plots Figure 1). Modified Parks tests suggested by Manning were used 

to guide the choice of the GLM distribution and link [27]. 

 The Robust MM-estimator (MM) [34] is designed to deal with some limitations of 

traditional regression methods including heteroscedasticity and the presence of 

outliers [34]. It was firstly introduced into the mapping literature by Chen and 

colleagues for both adolescents and adult sample and found to have good performance 

[34, 8].  

 Multivariable fractional polynomials (MFP) [36] are useful for modelling non-linear 

relationship between the independent and dependent variables while preserving the 

continuous nature of the covariates [36]. At each step of the algorithm, MFP 
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constructs a fractional polynomial transformation for each continuous covariate while 

fixing the current functional forms of the other covariates. We used the GLM method 

to fit a MFP model [36].  

 The Beta-binomial (BB) estimator [37, 38] is robust to skewness and can estimate 

both unimodal and bimodal utilities. It is in the class of Beta regressions shown to be 

superior to alternative regression strategies such as the OLS [39]. The BB estimator 

has a potential limitation: it restricts utilities to a 0 to 1 range [24, 25]. However, only 

one observation in our dataset had a CHU9D score of  -0.046 which was subsequently 

set equal to 0 as has been done in previous mapping studies [40]. 

 

 Finite mixture models (FMM) combine two or more probability density functions 

making them capable of approximating any arbitrary distribution [41, 42]. Because of 

its flexibility, the FMM is able to handle complex and multimodal distributions that 

often characterise health-related quality of life data such as the EQ-5D [43]. As a 

visual inspection of the distribution of the CHU9D did not clearly reveal how many 

components the CHU9D had, models with up to six components were estimated and, 

following guidance in the literature [44], the model with the smallest Akaike's or 

Schwarz's Bayesian information criteria (AIC or BIC) was chosen as the final one. 

 Multinomial logistic regression (MLOGIT) was used for the response mapping onto 

CHU9D dimensions [45]. In this model, the probability of obtaining a particular level 

on each CHU9D dimension was estimated and then converted into utilities using the 

‘expected value approach’ [46]. An advantage of the indirect response mapping is that 

it allows for health state descriptions to be determined after which the appropriate 

country- or population-specific CHU9D tariff can be applied [29].     

  



 

 

12 

 

2.4 Assessing Model Performance  

The goodness-of-fit of the estimated models was assessed using a number of metrics as was 

appropriate: linktest (OLS, GLM, MFP); Hausman's specification test (OLS, GLM, 

MLOGIT); coefficient of determination - R2 (OLS, MM, BB) and, lastly, AIC and BIC 

(GLM, MFP, MLOGIT, BB). The predictive ability of the models was mainly assessed using 

two measures of predictive accuracy, the mean absolute error (MAE) and the mean squared 

error (MSE). Four additional criteria, estimated using the validation sample were used to 

further assess the predictive ability of the models. These criteria were: (a) exactness of the 

predicted mean, (b) the range (the difference between the upper and lower limits) of 

predictions, (c) the proportion of predicted utilities deviating from observed values by 

absolute error <0.03 and <0.05 and, (d) the intraclass correlation coefficients [47] depicting 

the level of absolute agreement between predicted and observed CHU9D scores. The MAE 

was calculated as the mean of the absolute values of the difference between the predicted and 

actual observed CHU9D values. The MSE was computed as the mean squared differences 

between the actual and predicted CHU9D utilities. A lower MAE or MSE for a predictive 

model indicates higher accuracy in predictions and therefore a better performing model. 

 

More weight was put on the MAE because the MSE is more sensitive to potential outliers 

compared to the MAE[48]. Further, it has been suggested that the MSE has low reliability 

and may therefore produce different results depending on different fractions of data [49], as 

was the case in this study where a number of different samples of data were used for the 

estimation and validation exercises. 

 

As an external validation dataset is currently not available, predictive model performance was 

assessed using in-sample datasets which were generated using two methods. In validation 
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method 1 (the k-fold method), the original sample was randomly divided into five equal-sized 

subgroups using random number generation algorithms. In each iteration, four of the groups 

(80% of the dataset) were combined and then allocated to the “estimation sample” while the 

remaining group (20% of the dataset) was used as the “validation sample”. This process was 

repeated five times, so as to make certain that each of the five subgroups was used in the 

estimation and validation iterations. Thereafter, the validation results were pooled together 

and model performance based on the pooled estimated goodness of fit statistics (MSE and 

MAE) was assessed. This validation technique is also referred to as cross validation [50, 51]. 

Validation method 2 involved generating three random samples from the original data sample 

with sample sizes of n=100 (Sample 1), n=300 (Sample 2) and n=500 (sample 3). Predictive 

models estimated using the entire dataset were validated on each of these three samples. The 

models that performed the best in both validation techniques were chosen as optimal. 

 

3 Results 

3.1 Study Sample Characteristics 

A total of 755 adolescents completed both the CHU9D and the PedsQL. Table 1 presents the 

descriptive characteristics of respondents. The mean (± SD) of the CHU9D utility and 

PedsQL total scores were 0.724 (± 0.218) and 72.861 (± 16.562), respectively. Fifty three 

percent of respondents were female; 59% were from families with high socioeconomic status; 

94% reported themselves as having excellent, very good or good health; and 10% reported 

having had a long term disability, illness or medical condition. 

 

Figure 1 shows the Kernel density plot of the CHU9D utilities and the PedsQL total scores. 

Both the CHU9D utility scores and PedsQL total scores appeared non-normally distributed 

(negatively skewed). Further investigation using the Shapiro Wilks test of normality led to 
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the formal rejection of the null hypothesis that the CHU9D and the PedsQL were normally 

distributed. Figure 2 presents a scatterplot depicting the linear relationship between the 

CHU9D utility and the PedsQL total scores. A positive association was observed from the 

scatterplot and this result was corroborated by a moderately strong statistically significant 

correlation (Spearman’s correlation Coefficient (r) = 0.632; p<.0001). At the dimension level 

(results available from authors upon request), the correlation between the CHU9D utility 

score and the PedsQL dimensions listed in parentheses ranged from r = 0.432, (social 

functioning) to r = 0.592, (emotional functioning). The correlation between the CHU9D 

utility score and the physical and school functioning dimensions were r = 0.463 and r = 

0.532, respectively. All correlations were statistically significant (p-value <0.05). These 

results are in alignment with a qualitative exercise conducted as a separate exercise that 

provided an empirical assessment of the conceptual overlap between dimensions of the 

CHU9D and those of the PedsQL (Supplementary Material Table 1).  Following discussion 

amongst authors of the present study and a review of the literature, correlations between 

particular dimensions of the two instruments were hypothesised and thereafter estimated. The 

resultant correlation analysis suggested moderate to strong association between the two 

instruments as each of the PedsQL dimensions (with the exception of ‘social functioning’ 

dimension) could be matched conceptually to at least two CHU9D dimensions. These 

hypotheses were confirmed by the results, to be presented in a separate paper, of a 

quantitative analysis undertaken by the authors of the current study on the same sample 

assessing convergence between the dimensions of the two instruments (results available from 

the authors upon request).   

 

3.2 Prediction of CHU9D utility scores  
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Seven statistical methods and three model specifications were assessed separately using the 

estimation and validation samples based on validation methods I (k-fold) and II  (three 

random samples). Table 2 presents the results summarising the key goodness-of-fit statistics 

for different model and method combinations based on the full estimation sample. All 

estimators tended to overestimate the lower limit of the utility score with the exception of the 

MM-1 lower limit = -0.210 and MM-2 = -0.136 which under predicted the observed 

minimum score. The closest estimate to the observed value was the OLS estimate (model 2) 

with lower limit = 0.017. On the upper boundary, the least absolute difference was shown for 

GLM-3 and MFP-3 (0.972 vs 1 for the predicted and observed CHU9D values). In terms of 

the MAE and MSE, the MM-estimate (model 3) had the lowest MAE (0.1251) and model (2) 

had the second lowest MAE (0.1261).  With reference to the MSE, we observed some mixed 

results. The OLS-3 estimator had the lowest MSE (0.0256) and the second lowest MSE was 

GLM-2, MFP-2 and BB-3 with a score of (0.0259). Based on the results in Table 2 we 

conclude that the mapping algorithm using the MM-estimator models 2 and 3 are the two best 

models using the MAE criterion. 

 

3.3 Validation 

The primary models obtained using the estimation samples were validated on random 

samples using validation methods I (k-fold) and II  (three random samples). Table 3 shows the 

validation analysis results based on both validation methods. In terms of accurately predicting 

the mean CHU9D utility score, the MM and OLS estimators were able to accurately predict 

the mean CHU9D utility score in most instances. None of the models were able to predict 

negative utility scores. All models were assessed for goodness of fit using the MAE and MSE 

and a consistent pattern was seen from this assessment. In particular, dimension level models 

(model 2) invariably performed better in both the MAE and MSE than item level or total 
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score models. The MAE ranged from 0.1169 (MM-2 in validation method II) to 0.1348 (MM-

1 in validation II) while the MSE ranged from 0.0212 (BB-2 in validation II) to 0.0293 (OLS-

1 and BB-1 in validation II). The results in Table 3 indicate that, when all regression models 

were categorised based on the MAE, the study key selection criteria, the MM model (2) 

exhibited the best predictive ability while the BB model (2) was best on the MSE.  

 

3.4 Best performing models 

The best performing models were selected on the basis of their performance in all four 

validation samples with more weight put on the MAE following guidance in the literature 

[48, 49]. For model specification 1, the MM performed best on the MAE the most times (in 

the pooled sample of validation I and random sample I of validation II) and was also best on 

the MSE in random sample 1 of validation II. For model specification 2, the MM again 

performed best the most times when assessed against the MAE (in the pooled sample of 

validation I and random samples 1 and 3 of validation II). In terms of model specification 3, 

the BB performed best the most times when gauged against the MAE (random samples 1 and 

3 of validation II). The BB also performed was best on the MSE in all random samples of 

validation II. On the basis on these results, the MM (1), MM (2) and BB (3) were picked as 

the best performing models and their detailed performance statistics are presented in Table 4. 

Figure 3 shows that the residuals for these models were similar.  

 

When the three best performing models were compared in terms of the MAE, MM (2) had on 

average the lowest predictive error followed by BB (3). A similar pattern was seen for the 

MSE. There was mixed performance by these models in terms of the comparison between 

predicted and observed utilities with all models under predicted the mean CHU9D utilities in 
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some validation samples and over predicting in others. However, predicted utilities from MM 

(2) had the highest agreement (ICC) to the observed utilities followed by MM (1). Table 4 

also shows that MM (2) had the highest proportion of predicted utilities deviating from 

observed values by <0.03 (21%) followed by MM (1) (18%). The distribution of the MAE 

and MSE for all three models across the range of observed CHU9D utility scores was also 

examined (Table 5). A similar pattern was seen for all three models with the biggest errors 

generated for the 0-0.2 and 0.2-0.4 ranges and the lowest errors associated with the 0.6-0.8 

range. In general, predictive performance for all models was better at higher CHU9D ranges. 

On the basis of these results, we propose using MM model with dimension scores as 

explanatory variables (MM 2) to predict CHU9D utility scores from the PedsQL. 

 

3.5 Mapping equations 

The regression model coefficients for predicting the CHU9D utility scores using MM (1) and 

BB (3) are presented together with those for best model (MM 2) in Table 5. Age and gender 

were consistently insignificant when included in all the models and therefore were not 

included in the final models. In MM (1), both the PedsQL total score and its squared term 

were robustly significant (p<0.05) suggesting the existence of a non-linear relationship 

between the CHU9D and PedsQL. A nonlinear relationship was again seen in MM (2) and 

BB (3) where the squared term of the emotional functioning dimension in the former and the 

squared term of the ‘it is hard for me to walk for more than one block’ item in the physical 

functioning dimension of the latter were statistically significant. All the coefficients for the 

statistically significant PedsQL dimensions and items were positive meaning less functional 

impairment is associated with a higher quality of life. Potential multicollinearity was assessed 

using the variance inflation factor (VIF). None of the selected PedsQL dimensions and items 
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had a VIF>10 and were therefore not omitted from the final regression models. Based on 

findings in section 3.4, optimal equation (for MM 2) would be expressed as follows: 

ൌ݁ݎ݋ܿݏ ݕݐ݈݅݅ݐݑ ܦͻܷܪܥ  െͲǤͳ͵ͷͷͳ͸ ൅  ͲǤʹ͸Ͷ͸Ͷͺ כ ൅ ݃݊݅݊݋݅ݐܿ݊ݑܨ ݈ܽܿ݅ݏݕ݄ܲ ܮܳݏ݀݁ܲ  ͳǤͳͻ͸͸͹ͺכ ൅ ݃݊݅݊݋݅ݐܿ݊ݑܨ ݈ܽ݊݋݅ݐ݋݉ܧ ܮܳݏ݀݁ܲ  ͲǤʹͲ͵ͶͲͷ  ܲ݁݀݃݊݅݊݋݅ݐܿ݊ݑܨ ݈݋݋݄ܿܵ ܮܳݏ െ ͲǤͷ͹ʹ͸ͳʹ כ   ݁ݎܽݑݍܵ ݃݊݅݊݋݅ݐܿ݊ݑܨ ݈ܽ݊݋݅ݐ݋݉ܧ ܮܳݏ݀݁ܲ
The variance-covariance matrix for this model (MM 2) is reported in the supplementary 

appendix.  

 

 

 

4 Discussion  

Accurate measurement and valuation of HRQoL within paediatric and adolescent populations 

is an important component of economic evaluations of health care interventions targeted for 

children. The PedsQL and the CHU9D have both been demonstrated as practical and valid 

instruments for the measurement of HRQoL in children and adolescents. However and in 

contrast with the CHU9D, the PedsQL is not currently preference-based. This study has 

developed a mapping algorithm that can reasonably predict CHU9D utility scores from the 

PedsQL for the purpose of conducting cost utility analysis when health state utility data is not 

collected. In accordance with guidelines for mapping studies [52], a series of statistical 

methods were considered for this exercise including: OLS, GLM, MM, MFP, BB, FMM, and 

MLOGIT. The MM model with PedsQL dimension scores (model 2) was found to be the best 

in terms of predictive accuracy as assessed by MAE, the range, and proportions of the 

predicted mean CHU9D utilities deviating from the observed values by <0.03 and <0.05. 

These mapping algorithms are not intended to be a substitute for validated utility based 
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measures but rather as an alternative technique that can be employed when preference-based 

measures are not available or cannot be used.   

 

Previous studies have shown conceptual overlap between the target and initial instruments to 

be an important determinant of successful mapping analysis [7, 53, 29]. In our study, both 

instruments measure similar constructs and as such have conceptual overlap between each 

other. This commonality was corroborated by the moderate to strong correlation (r = 0.632) 

observed between the CHU9D utility and the PedsQL total score. As anticipated, three of the 

four PedsQL dimensions, including physical (r = 0.463), emotional (r = 0.592) and school (r 

= 0.532) functioning that are covered in the CHU9D dimensions had moderate correlation 

with the CHU9D. In contrast social functioning which is not covered in the CHU9D 

dimension had the smallest but significant correlation (r = 0.432) with the CHU9D. These 

results are in agreement with those obtained from a qualitative assessment of the conceptual 

overlap between the two instruments where dimensions of the PedsQL were pitted against 

comparable CHU9D dimensions based on discussions between authors of this paper 

(Supplementary Material Table 1).  

 

In this dataset, the MM performed better than other models considered in terms of predictive 

accuracy, producing a wider range of predicted CHU9D utility scores. The values of the 

MAE and MSE statistics obtained for the MM models (0.1169 to 0.1348 and 0.0213 to 

0.0311, respectively) were all on the lower end of the range reported in the literature for 

mapping studies [7]. As no comparable mapping studies between the PedsQL and the 

CHU9D have been previously reported, it was not possible to compare our findings with 

previous mapping algorithms. The heterogeneous performance of the MM across the range of 

observed CHU9D utility scores has been shown elsewhere [10, 54, 55]. As our sample had a 
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lower proportion of respondents with low CHU9D utility scores (i.e. only 71 participants or 

9% of the sample had scores ≤ 0.4), we recommend replicating this analysis on a sample with 

a bigger representation of individuals with lower quality of life.  

 

This study has some limitations. Firstly, no external sample dataset is currently available and 

therefore in-sample validation of mapping algorithms, effectively used in several previous 

mapping studies [29, 56-58] was utilised in this study. Secondly, our mapping study sample 

was comprised largely of healthy adolescents with a mean CHU9D score of 0.72. Therefore, 

it is possible that the models assessed in this study will be more applicable to adolescent 

populations with similar socio-demographic characteristics and HRQoL statuses as the study 

population. Further research should be conducted to assess the performance of the mapping 

algorithm developed here in adolescents living in the community with health conditions and 

in adolescent patient populations. Thirdly, our data were obtained through a web based 

survey. The advantages of a web based mode of administration for a survey of this nature 

include its increasing familiarity, particularly for young people and its ability to engage large 

numbers of community based adolescents who would otherwise be more difficult to reach. 

Potential disadvantages include concerns about data quality and that participants may not 

provide accurate information. However, appropriate data checks were applied, to effectively 

deal with this limitation, including the wording of the questions, the order in which the 

questions are asked, question type and design. Fourthly, it was not possible to obtain detailed 

data from the online panel company that conducted the survey on the sampling frame from 

which our study sample was drawn or on the specific sampling procedures applied. However, 

our study sample was broadly representative of a similar cohort of 15-17 adolescents from the 

Australian general population in terms of gender split (53% female in our study versus 49% 

in the general population [59]) and responses to the general health question (92% of 
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adolescents aged 15 to 17 years in the current survey reported themselves to be in 

“excellent,” “very good,” or “good,” health as opposed to 93% of adolescents aged 15-24 

years in the general population who participated in the National Health Survey [60]). 

Similarly, our sample was of similar self-reported disability status (10% of our study 

participants had a long term disability, illness or medical condition compared to 7% of 15-24 

years olds in the general population [60]. Finally it is important to note that the mapping 

algorithms have been developed on the basis of a sample of 15-17 year olds and therefore 

may not be applicable in samples of younger children. However, age was found to be 

insignificant in deriving mapping algorithms on adolescents sample in this study and 

elsewhere [8, 10]. Applying the reported mapping algorithm on a younger adolescent sample 

should be used with caution.  

 

 

5 Conclusion  

To our knowledge this is the first empirical study internationally that has derived CHU9D 

utility scores from SF-15 item version of the PedsQLTM. Our results show that it is possible to 

predict CHU9D utility scores from the PedsQL SF-15 with best results obtained when MM 

model (2) (with dimension scores as explanatory variables) is used. This mapping algorithm 

maybe usefully applied for the prediction of CHU9D utilities from the PedsQL thereby 

facilitating the calculation of QALYs for assessing the relative cost-effectiveness of new 

health care technologies and pharmaceuticals targeted at young people. Future research 

should replicate this analysis on samples aged below 15 years to test the robustness of these 

algorithms on younger populations in which the PedsQL can be applied. Development of 

preference weights for the family of PedsQL instruments is another alternative that would 

enable its future use in economic evaluation. 
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Table 1 Participant characteristics (n = 755) 

Characteristic  

CHU9D utility score   

  Mean (SD) 0.724 (0.218) 

  Median, (IQR) 0.769 (0.587 – 0.888) 

PedsQL score   

  Mean (SD) 72.861 (16.562) 

  Median, (IQR) 75.00 (63.333 - 85.000) 

Age (year)  

  Mean (SD) 15.8 (0.8) 

  Median (IQR) 16.0 (15.0-16.0) 

Age band N (%)  

  15 299 (39.6) 

  16 286 (37.9) 

  17 170 (22.5) 

Gender 
 

  Males 358 (47.4) 

  Females 397 (52.6) 

Family Affluence Scale, N (%) 
 

  High (scores 6-9) 447 (59.2) 

  Medium (scores 4-5) 267 (35.4) 

  Low (scores 0-3) 41 (5.4) 

Self –reported health, N (%) 
 

  Excellent 236 (31.3) 

  Very good 339 (44.9) 

  Good 138 (18.3) 

  Fair 36 (4.8) 

  Poor 6 (0.8) 

Long term disability, illness or medical condition, N (%) 
 

  Yes 76 (10.1) 

  No 679 (89.9) 
CHU9D Child Health Utility 9D; PedsQL Pediatric Quality of Life Inventory; SD Standard Deviation; 

IQR Inter Quartile Range. 
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Table 2 Goodness of fit results from full estimation sample (n =755) 

Model specification Mean (SD) Min Max MAE MSE 
 

Abs diff. 
< 0.03 (%) 

 
Abs diff. 

< 0.05 (%) 

      
  

Observed 0.724 (0.218) -0.046 1.000 - -   

Model (1) 
     

  

  OLS 0.724 (0.142) 0.101 0.956 0.1302 0.0272 15 26 

  GLM 0.724 (0.142) 0.190 0.953 0.1302 0.0272 15 25 

  MM 0.730 (0.162) -0.210 0.954 0.1296 0.0281 14 26 

  MFP 0.724 (0.142) 0.190 0.953 0.1302 0.0272 15 25 

  BB 0.728 (0.146) 0.097 0.912 0.1301 0.0273 13 24 

  FMM 0.730 (0.127) 0.228 0.947 0.1317 0.0275 14 25 

  MLOGIT 0.726 (0.141) 0.164 0.928 0.1303 0.0272 15 24 

Model (2) 
     

  

  OLS 0.724 (0.146) 0.017 0.953 0.1271 0.0260 15 26 

  GLM 0.724 (0.148) 0.182 0.955 0.1270 0.0259 14 26 

  MM 0.733 (0.160) -0.136 0.957 0.1261 0.0264 16 26 

  MFP 0.724 (0.148) 0.182 0.955 0.1270 0.0259 14 26 

  BB 0.728 (0.148) 0.110 0.924 0.1268 0.0260 14 24 

  FMM 0.730 (0.130) 0.151 0.947 0.1289 0.0263 15 24 

  MLOGIT 0.726 (0.146) 0.119 0.924 0.1269 0.0258 14 24 

Model (3) 
     

  

  OLS 0.724 (0.148) 0.113 0.952 0.1262 0.0256 14 26 

  GLM 0.725 (0.153) 0.244 0.972 0.1272 0.0261 17 26 

  MM 0.734 (0.161) 0.025 0.954 0.1251 0.0263 17 29 

  MFP 0.725 (0.153) 0.244 0.972 0.1272 0.0261 17 26 

  BB 0.728 (0.150) 0.136 0.920 0.1263 0.0259 15 24 

  FMM 0.729 (0.130) 0.227 0.929 0.1289 0.0263 13 24 

  MLOGIT 0.726 (0.146) 0.710 0.909 0.1271 0.0260 15 23 

Dependent variable: CHU9D utility score. Best results in each model are in bold type. 
 
Independent variable(s): Model (1) PedsQL Total score and squared terms; Model (2) PedsQL 
Dimension Scores and squared terms; (3) PedsQL items scores and squared terms. 
 
CHU9D Child Health Utility 9D; BB beta-binomial; FMM Finite Mixture Models; GLM generalised 
linear model; MAE mean absolute error; MFP multivariate factorial polynomials; MM Robust MM-
estimator; MSE mean squared error; MLOGIT Multinomial logistic regression; Min Minimum; Max 
Maximum; PedsQL Pediatric Quality of Life Inventory; SD standard deviation; Abs diff. < 0.03 (0.05) 
% proportion of predicted utilities whose absolute values deviate from the mean of the observed 
utility values by less than 0.03 (0.05).
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Table 3 Goodness-of-fit results from validation analyses 
Validation Method 1 (k-fold) Validation Method 2 (Three random samples) 

Pooled sample (n=755) Random sample 1 (N = 100) Random sample 2 (N = 300)  Random sample 3 (N = 500) 

 Mean  

utility 

MSE MAE Abs 

diff. 

<0.03 

Abs 

diff. 

<0.05 

 Mean  

utility 

MSE 

 

MAE 

 

Abs 

diff. 

<0.03 

Abs 

diff. 

<0.05 

 Mean 

 utility 

MSE MAE 

 

<0.03 <0.05  Mean  

utility 

MSE MAE Abs 

diff. 

<0.03 

Abs 

diff. 

<0.05 

Observed  0.724 - -    0.734 - -    0.720 - -    0.734  - -   

Model 1                        

OLS 0.724 0.0274 0.1305 15 26  0.726 0.0233 0.1228 18 27  0.715 0.0293 0.1345 13 26  0.727 0.0256 0.1250 15 27 

GLM 0.724 0.0274 0.1305 16 25  0.726 0.0232 0.1225 20 26  0.715 0.0292 0.1346 13 25  0.727 0.0255 0.1250 16 27 

MM 0.730 0.0283 0.1303 14 25  0.734 0.0224 0.1185 18 32  0.720 0.0311 0.1348 15 25  0.733 0.0268 0.1253 14 27 

MFP 0.725 0.0279 0.1318 17 25  0.726 0.0232 0.1225 20 26  0.715 0.0292 0.1346 13 25  0.727 0.0255 0.1250 16 27 

BB 0.728 0.0275 0.1304 14 23  0.730 0.0228 0.1213 16 25  0.719 0.0293 0.1336 13 24  0.731 0.0258 0.1257 14 24 

FMM 0.729 0.0276 0.1319 14 25  0.732 0.0243 0.1255 20 27  0.722 0.0290 0.1347 13 25  0.732 0.0257 0.1262 14 25 

MLOGIT 0.720 0.0292 0.1366 14 23  0.728 0.0232 0.1223 19 27  0.717 0.0291 0.1342 13 24  0.729 0.0255 0.1252 16 24 

Model 2 

   

 
 

 

   

   

   

   

   

  

OLS 0.724 0.0263 0.1277 15 25  0.724 0.0220 0.1205 18 29  0.715 0.0276 0.1303 13 26  0.727 0.0246 0.1226 14 27 

GLM 0.724 0.0262 0.1275 16 24  0.726 0.0221 0.1204 17 26  0.715 0.0276 0.1304 13 25  0.727 0.0246 0.1225 15 27 

MM 0.732 0.0266 0.1270 15 25  0.734 0.0213 0.1169 21 30  0.723 0.0285 0.1297 15 26  0.735 0.0252 0.1220 15 27 

MFP 0.724 0.0262 0.1275 16 24  0.726 0.0221 0.1204 17 26  0.715 0.0276 0.1304 13 25  0.727 0.0246 0.1225 15 27 

BB 0.728 0.0262 0.1271 15 24  0.728 0.0212 0.1181 17 28  0.720 0.0274 0.1293 13 23  0.732 0.0245 0.1225 14 24 

FMM 0.729 0.0265 0.1291 14 25  0.729 0.0230 0.1237 19 27  0.723 0.0276 0.1317 14 25  0.733 0.0247 0.1237 14 25 

MLOGIT 0.717 0.0274 0.1327 13 22  0.724 0.0215 0.1196 15 27  0.718 0.0272 0.1295 14 24  0.729 0.0243 0.1228 15 24 

Model 3 

   

 
 

 

   

   

   

   

   

  

OLS 0.724 0.0262 0.1278 14 24  0.719 0.0224 0.1235 17 26  0.717 0.0273 0.1294 15 25  0.729 0.0245 0.1227 13 27 

GLM 0.724 0.0268 0.1291 14 25  0.718 0.0234 0.1252 18 27  0.718 0.0284 0.1317 17 24  0.730 0.0253 0.1241 16 31 

MM 0.733 0.0270 0.1271 16 28  0.728 0.0225 0.1214 18 30  0.727 0.0285 0.1290 18 29  0.739 0.0249 0.1209 16 31 

MFP 0.724 0.0268 0.1291 14 25  0.718 0.0234 0.1252 18 27  0.718 0.0284 0.1317 17 24  0.730 0.0253 0.1241 19 26 

BB 0.728 0.0264 0.1274 15 24  0.724 0.0219 0.1205 16 26  0.721 0.0270 0.1276 16 25  0.733 0.0242 0.1217 14 24 

FMM 0.728 0.0267 0.1296 13 23  0.722 0.0241 0.1291 13 24  0.723 0.0275 0.1314 14 24  0.733 0.0250 0.1249 14 24 

MLOGIT 0.721 0.0274 0.1310 14 22  0.721 0.0226 0.1242 15 21  0.719 0.0273 0.1292 16 24  0.729 0.0250 0.1241 15 23 
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Dependent variable: CHU9D utility score. Best results in each model are in bold type. 
 
Independent variable (s): Model (1) PedsQL Total score and PedsQL Total score squared terms; Model (2) PedsQL Dimension Scores and PedsQL Dimension Scores squared 
terms; (3) PedsQL items scores and PedsQL items scores squared terms. 
 
CHU9D Child Health Utility 9D; BB beta-binomial; FMM Finite Mixture Models; GLM generalised linear model; MAE mean absolute error; MFP multivariate factorial 
polynomials; MM Robust MM-estimator; MSE mean squared error; MLOGIT Multinomial logistic regression; Min Minimum; Max Maximum; PedsQL Pediatric Quality of 
Life Inventory; Abs diff. < 0.03 (0.05) % proportion of predicted utilities whose absolute values deviate from the mean of the observed utility values by less than 0.03 (0.05). 
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Table 4 Model performance for best fitting models 
Estimation method Observed CHU9D 

Mean (SD) 
Mean (SD) Min P.25 Median P.75 Max MAE MSE Abs diff. 

< 0.03 (%) 
Abs diff 
< 0.05 (%) 

ICC 

Model 1 (MM-estimator)                        

  Validation I (pooled sample) 0.724 (0.218) 0.730 (0.162) 0.060 0.643 0.758 0.853 0.954 0.1303 0.0283 14 25 0.765 

Validation II (random samples)             

    Random Sample 1 0.734 (0.224) 0.734 (0.156) 0.134 0.636 0.765 0.855 0.954 0.1185 0.0224 18 32 0.822 

    Random Sample 2 0.720 (0.214) 0.720 (0.171) -0.210 0.636 0.750 0.848 0.954 0.1348 0.0311 15 25 0.737 

    Random Sample 3 0.734 (0.212) 0.733 (0.165) -0.210 0.653 0.765 0.848 0.954 0.1253 0.0268 14 27 0.772 

Model 2 (MM-estimator)             

Validation I (pooled sample) 0.724 (0.218) 0.732 (0.160) 0.093 0.647 0.749 0.848 0.956 0.1270 0.0266 15 25 0.779 

Validation II (random samples)             

    Random Sample 1 0.734 (0.224) 0.734 (0.153) 0.175 0.627 0.741 0.854 0.957 0.1169 0.0213 21 30 0.830 

    Random Sample 2 0.720 (0.214) 0.723 (0.168) -0.136 0.635 0.741 0.840 0.957 0.1297 0.0285 15 26 0.759 

    Random Sample 3 0.734 (0.212) 0.735 (0.162) -0.136 0.651 0.754 0.852 0.957 0.1220 0.0252 15 27 0.785 

Model 3 (BB-estimator)             

Validation I (pooled sample) 0.724 (0.218) 0.728 (0.151) 0.231 0.643 0.756 0.842 0.920 0.1274 0.0264 15 24 0.772 

Validation II (random samples)             

    Random Sample 1 0.734 (0.224) 0.724 (0.147) 0.273 0.616 0.751 0.845 0.920 0.1205 0.0219 16 26 0.819 

    Random Sample 2 0.720 (0.214) 0.721 (0.155) 0.136 0.635 0.747 0.842 0.920 0.1276 0.0270 16 25 0.758 

    Random Sample 3 0.734 (0.212) 0.732 (0.150) 0.136 0.652 0.760 0.847 0.920 0.1217 0.0242 14 24 0.782 

Dependent variable = CHU9D utility score. Best results are in bold type. 
 
Independent variable (s): Model (1) PedsQL Total score and PedsQL Total score squared terms; Model (2) PedsQL Dimension Scores and PedsQL Dimension Scores squared 
terms; (3) PedsQL items scores and PedsQL items scores squared terms. 

BB beta-binomial; MM robust MM-estimator; MAE mean absolute error; MSE mean squared error; Min Minimum; Max Maximum; PedsQL Pediatric Quality of Life 
Inventory; SD Standard deviation; Min minimum; P.25 25th percentile; P.75 75th percentile; Max maximum; MSE mean squared error; MAE mean absolute error; Abs diff. <  
0.03 (0.05) % proportion of predicted utilities whose absolute values deviate from the mean of the observed utility values by less than 0.03 (0.05). 
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Table 5 Mapping equations from PedsQL to Child Health Utility 9D utility scoresa 
MM Model 1 MM Model 2 BB Model 3 

Independent variables 
[MM (1)] [MM (1)] [BB (3)] 

PedsQL Total 1.707043*** 
(0.405060) 

PedsQL Total Square -0.543056**
(0.265408)

PedsQL Dimen PF 0.264648*** 
(0.055167) 

PedsQL Dimen EF 1.196678*** 
(0.183097) 

PedsQL Dimen SF 0.203405*** 
(0.036426) 

PedsQL Dimen EF Square -0.572612***
(0.124107)

PedsQL item EF2 1.053955*** 
(0.222367) 

PedsQL item EF4 0.991873*** 
(0.173220) 

PedsQL item SchF2 0.590129*** 
(0.195802) 

PedsQL item SchF3 0.772430*** 
(0.175686) 

PedsQL item PF3 0.455649*** 
(0.155322) 

PedsQL item PF1 Square 0.436041** 
(0.174260) 

Constant -0.210178 -0.135516** -1.852265***
(0.150083) (0.060300) (0.173271)

Standard errors in parentheses. *** p<0.01, p<**0.05 

BB beta-binomial; MM robust MM-estimator 

PedsQL Pediatric Quality of Life Inventory; PedsQL Total, PedsQL total score; PedsQL Total 

Square, PedsQL total score squared; PF Physical functioning; EF Emotional functioning; SF 

Social functioning; EF2 “Sad or blue”, EF4 “Worry about what will happen to me”; SchF2 

“Forget things”; SchF3 “Have trouble keeping up with my schoolwork”; PF1 “it is hard for 

me to walk for more than one block”; PF3 “hard for me to do sports activity or exercise”; 

item, PedsQl item scores; Dimen PedsQL dimension scores. 

a All PedsQL scores included in the regression were rescaled onto the 0-1 scale by dividing 

raw scores by 100. 
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Table 6 Distribution of errors according to selected ranges in the CHU9D utility score 
   MM Model 1  MM Model 2  BB Model 3 

   [MM (1)]  [MM (1)]  [BB (3)] 

           
   MSE MAE  MSE MAE  MSE MAE 
CHU9D utility score 

range 
n 

         

           
0 < CHU9D ≤ 0.2 16  0.0839 0.2532  0.0862 0.2534  0.0901 0.2708 

           
0.2 < CHU9D ≤ 0.4 55  0.0615 0.2228  0.0647 0.2278  0.0648 0.2230 

           
0.4 < CHU9D ≤ 0.6 123  0.0451 0.1820  0.0407 0.1731  0.0395 0.1689 

           
0.6 < CHU9D ≤ 0.8 232  0.0134 0.0927  0.0135 0.0927  0.0129 0.0923 

           
0.8 < CHU9D ≤ 1.0 329  0.0237 0.1144  0.0209 0.1090  0.0204 0.1111 
           

MAE mean absolute error; MSE mean squared error  
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Fig 1: Distribution of CHU9D utility scores and PedsQL total score 

Figure 1 presents Kernel density plots of the Pediatric Quality of Life Inventory 

(PedsQL) total scores and the Child Health Utility 9 Dimension (CHU9D) utilities 

 

Note: For comparability between the two instruments the PedsQL total scores were 

rescaled onto the 0-1 scale by dividing raw scores by 100 
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Fig 2: Scatter plots between Instruments 

Figure 2 presents scatter plots between the Pediatric Quality of Life Inventory 

(PedsQL) total scores and the Child Health Utility 9 Dimension (CHU9D) 

utilities. 
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Fig 3: Plot of residuals (actual minus predicted) for the three best fitting modelsFigure 3 presents plots of residuals for the 

three best fitting models (robust MM estimator-[model 1], robust MM estimator [model 2] and Beta-binomial [model 3] 
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SUPPLEMENTARY DOCUMENTS 

Supplementary Table 1: Comparability of PedsQL and CHU9D dimensionsa 

PedsQL 

Dimensions 

Comparable CHU9D dimensions 

Physical Health Tired, Daily routine, Activities 

Psychosocial Health 
Worried, Sad, Annoyed, Activities, Daily 

routine 

  Emotional function Worried, Sad, Annoyed 

  Social function - 

  School function School work/homework, Daily routine 

a This qualitative assessment is based on discussions within the team 



 

 

41 

 

Mapping Algorithm for mapping CHU9D utility scores from the PedsQLTM 4.0 
SF-15 

************************************************************************************************ 

** This program generates CHU9D utility scores from PedsQLTM 4.0 SF-15 scores 
based on the Robust MM-estimator (i.e. MM Model 2 [MM2] in Table 5) through 
Stata Software 

** Note: ‘PedsQL_Dimen_PF_raw’ is the raw score of ‘PedsQL Physical 
Functioning’, ‘PedsQL_Dimen_EF_raw’ is the raw score of ‘PedsQL Emotional 
Functioning’, ‘PedsQL_Dimen_SF_raw’ is the raw score of ‘PedsQL School 
Functioning’; all raw scores had a range of 0-100. 

************************************************************************************************ 

gen PedsQL_Dimen_PF = PedsQL_Dimen_PF_raw/100 

gen PedsQL_Dimen_EF = PedsQL_Dimen_EF_raw/100 

gen PedsQL_Dimen_SF = PedsQL_Dimen_SF_raw/100 

gen PedsQL_Dimen_EF2 = PedsQL_Dimen_EF^2 

 

gen CHU9D_MM2 = -0.135516 + 0.264648*PedsQL_Dimen_PF + 
1.196678*PedsQL_Dimen_EF + 0.203405*PedsQL_Dimen_SF - 
0.572612*PedsQL_Dimen_EF2 

 

label var CHU9D_MM2 "CHU9D utility, predicted from PedsQL 4.0 SF-15 
dimensions (robust MM-estimator Model 2)" 

 

sum CHU9D_MM2 

 

drop PedsQL_Dimen_PF- PedsQL_Dimen_EF2 

*******************************************The End*******************************************
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Variance Covariance Matrix from Mapping Algorithm 

PedsQL_Dimen_PF PedsQL_Dimen_EF PedsQL_Dimen_SF PedsQL_Dimen_EF2 constant 

PedsQL_Dimen_PF 0.003043 

PedsQL_Dimen_EF -0.003696 0.033524 

PedsQL_Dimen_SF -0.000222 -0.000769 0.001327 

PedsQL_Dimen_EF2 0.002070 -0.022034 -0.000212 0.015403 

constant -0.001037 -0.007931 -0.000035 0.005452 0.003636 


