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Abstract  

Objectives: Partitioned Survival Models (PSM) are routinely used to inform reimbursement 

decisions for oncology drugs. We discuss the appropriateness of this method compared to the 

most commonly used alternative, state transition models (STMs). 

Methods: In 2017, we published a NICE Technical Support Document (TSD 19) describing 

and critically reviewing PSM. In this article we summarise key findings from TSD 19, review 

new evidence comparing PSM and STM, and review recent NICE appraisals to understand 

current practice. 

Results: PSM evaluates state membership differently from STM and does not include a 

structural link between intermediate clinical endpoints (e.g. disease progression) and survival. 

PSM directly considers clinical trial endpoints and can be developed without access to 

individual patient data, but limits the scope for sensitivity analyses to explore clinical 

uncertainties in the extrapolation period. STMs facilitate these sensitivity analyses but require 

development of robust survival models for individual health state transitions. Recent work has 

shown PSM and STM can produce substantively different survival extrapolations and that 

extrapolations from STMs are heavily influenced by the specification of the underlying 

survival models. Recent NICE appraisals have not generally included both model types, 

reviewed individual clinical event data, or scrutinised life year predictions for individual health 

states. 

Conclusions:  The credibility of survival predictions from PSMs and STMs including life 

years accrued in individual health states, should be assessed using trial data on individual 

clinical events, external data and expert opinion. STMs should be used alongside PSMs to 

support assessment of clinical uncertainties in the extrapolation period such as uncertainty in 

post-progression survival. 
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Highlights  

i. Partitioned Survival Models (PSM) are routinely used to inform reimbursement 

decisions for oncology drugs. 

ii. PSM differs from state transition models as it does not include a structural link 

between intermediate clinical endpoints (e.g. disease progression) and survival. 

Survival extrapolations have been shown to differ markedly between the two 

modelling approaches. Although PSMs have some practical advantages, their 

structure limits the extent to which sensitivity analyses can be used to explore 

clinical uncertainties in the extrapolation period.   

iii. Decision makers should more carefully scrutinise survival predictions from PSMs 

and other modelling approaches to assess whether model predictions are credible. 

This should include an assessment of life years accrued in individual health states, 

and should take account of trial data on individual clinical events, external data 

and expert opinion. Due to the challenges in robustly estimating transition 

probabilities, for the time being we recommend STMs are used alongside PSMs to 

support the assessment of clinical uncertainties in the extrapolation period, for 

example by allowing exploration of different survival outcomes following disease 

progression. 
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Introduction  

Decision modelling has an established role in informing clinical decision making and policy 

decisions relating to cost-effectiveness. When using decision models to estimate the costs and 

health effects of interventions, a range of alternative approaches can be used, such as decision 

trees, Markov models and individual sampling models. Most of these have been subject to 

detailed discussion within the economic evaluation literature.1-4 This has not been the case for 

one approach, the partitioned survival model (PSM), which has been used extensively in the 

National Institute for Health and Care Excellence (NICE) Technology Appraisal (TA) 

Programme and is now the most commonly used approach for NICE appraisals of interventions 

for advanced or metastatic cancers.5 

In 2017 we published a NICE Technical Support Document (TSD) describing and critically 

reviewing PSM as a decision modelling approach to inform policy decisions relating to cost-

effectiveness.5 This work highlighted that PSM uses an approach to predicting the distribution 

of individuals across health states (state membership) that is distinct from other commonly 

used methods such as state transition models (STMs) and the implications of this for: the data 

required to develop models, model-generated extrapolations, and the degree to which analysts 

and decision makers can use models to explore uncertainties in the extrapolation period. A set 

of recommendations was proposed to aid those developing and reviewing decision models and 

making decisions based on their outputs. In this article we summarise the key findings from 

NICE TSD 19. We then examine new evidence relating to the appropriateness of PSM and 

alternative approaches, and review recent NICE appraisals to understand current practice in the 

use of modelling approaches in oncology. 

This work was developed with a focus on the NICE TA programme in the UK, but is relevant 

for any context where PSM is used to inform assessments of cost-effectiveness. This includes 



4 

 

the broader NICE programme (for example work done to inform NICE Clinical Guidelines has 

used the approach) and work done by or for reimbursement agencies internationally which has 

also used PSMs.6  

In this article we begin by summarising TSD 19. This part of the paper includes a description 

and critique of PSM, a discussion of the feasibility of alternative methods focusing on the most 

widely used alternative - STM, and a summary of the TSD recommendations.  We then review 

the current state of play focusing on empirical studies that have compared PSM and STM and 

then reviewing recent NICE appraisals to assess current practice. We summarise these findings 

before returning within the discussion to assess the implications of the original work and 

updated findings for the future of oncology modelling.  

 

Summary of Technical Support Document 19  

The Partitioned Survival Modelling method  

Decision models aim to describe key biological or clinical processes, and the way in which 

interventions affect these processes.7 Many conditions can be described in terms of a series of 

distinct clinical states that individuals experience and move between. STMs are often therefore 

used to model this process. In STMs, movements between health states are referred to as 

transitions, and the speed at which these transitions occur as transition probabilities or rates. 

State values are used to reflect the costs and health-related quality of life (HRQoL) implications 

of residing in, or transiting between, each health state.4  

PSMs are also characterised by a series of health states with associated state values. However, 

PSMs do not use transitions between states to determine the proportion of patients in each 

health state at each time point (state membership) and instead use a different approach and set 

of information.  
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The way in which state membership is determined in PSM can be illustrated using a model 

structure commonly applied in economic evaluations of treatments for advanced or metastatic 

cancer. This model includes three states: progression-free, progressed and dead where 

progression implies a worsening or spreading of the cancer. The PSM derives state membership 

for this model using two survival curves. The Overall Survival (OS) curve describes time from 

model entry to death and is used to directly determine the proportion of patients alive (and 

dead) over time. OS is therefore determined independently of other clinical endpoints and 

independently of whether individuals reside in the progression-free or progressed health states. 

This assumption of independence and its credibility is rarely discussed, despite being the 

central assumption PSM. The Progression-Free Survival curve (PFS) describes time from 

model entry to exiting the progression-free state via progression or death and provides the state 

membership for the progression-free state over time. For the progressed health state, state 

membership is derived as the difference between the OS and the PFS curve at each time point 

as this represents the proportion of patients who are alive but not progression free. This process 

is shown in Figure 1. PSMs therefore directly uses standard survival analysis of clinical time-

to-event endpoints to derive state membership. The approach can be applied to models with 

any number of health states as long as patients only move progressively through health states 

(i.e. no “backwards” transitions such as from progressed to progression-free are allowed).  

 

Figure 1 

 

In a PSM the survival curves that inform the estimates of state membership (e.g. PFS and OS) 

are modelled completely independently. This is the fundamental difference from STMs where 

clinical events are explicitly related. Figure 2 shows the STM that corresponds to the PSM for 
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advanced cancer described above. Estimation of state membership in this STM requires three 

transition probabilities: the probability of disease progression observed prior to death in a 

model cycle (ppf.p), the probability of death from the progression-free state (ppf.d) and the 

probability of death from the progressed state (pp.d). Patients start the model in the progression-

free state. State membership at the end of each model cycle is estimated by applying the 

transition probabilities to the state membership at the end of the previous cycle. OS is therefore 

determined by all three transition probabilities and reflects the evolving proportion of patients 

in the progressed state and the differences in mortality between progression-free and 

progressed patients. This is typically referred to as cohort simulation. The structural link 

between OS predictions and intermediate endpoints such as progression is the fundamental 

difference from PSM which considers OS to be independent of other clinical events. STMs 

may use constant transition probabilities (Markov models), time-dependent transition 

probabilities (semi-Markov models) and may be implemented using the cohort simulation 

approach described above or patient level simulation approaches described elsewhere.8  

 

Figure 2 

 

In the context of a within-trial analysis or a case in which data have been fully observed, PSM 

and STM approaches are expected to produce similar results if modelling and statistical 

analyses of survival data have been done appropriately, as relationships between endpoints are 

reflected within the data. However, when data are incomplete and parameters derived from the 

observed data are used for extrapolation, as is commonly the case, the approaches are expected 

to differ. In PSM, OS extrapolation reflects only the OS evidence and not PFS, whereas in a 



7 

 

STM, OS extrapolation is influenced by the model structure and each transition probability 

estimate.  

The way in which the impact of different interventions is modelled also differs. In PSM 

differences between interventions are modelled independently for each survival endpoint. In 

STMs treatment effects on individual transition probabilities combine to produce treatment 

effects on OS.  

A review of NICE oncology appraisals conducted to inform TSD 19 found that applications of 

the PSM share a number of commonalities. For comparators included within the 

manufacturers’ pivotal trial, the Kaplan Meier estimator or a parametric model is typically used 

to model the survival curves for the within-trial period. A parametric model is typically used 

to extrapolate within-trial time trends in the rate of events over the remainder of the model 

time-horizon. External evidence can also quantitatively inform the survival extrapolations.9 A 

separate TSD10,11 provides guidance on selection between alternative parametric model 

specifications emphasising that this should be based on statistical fit to observed data 

supplemented with external empirical evidence and expert judgement to assess the plausibility 

of extrapolations.12  Information on other endpoints, such as the evolving proportion of patients 

who have progressed, is not explicitly reflected in the extrapolation.13 For additional 

comparators not considered within the pivotal trial, survival curves are often generated by 

applying the relevant hazard ratio from a single trial or (network) meta-analysis to the modelled 

pivotal trial data. Our review found there was very limited discussion of PSM in terms of its 

assumptions or justification for the selection of the PSM approach.5  

 

Critique of PSM as an aid to decision making  
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PSM directly uses survival analysis of time-to-event endpoints to derive state membership 

estimates. This makes the models easy to construct and communicate. The direct use of PFS 

and OS survival analyses also means that the approach typically validates well against these 

endpoints for the within-trial period. Perhaps most importantly, PSM can be implemented using 

published analysis of the PFS and OS endpoints which are frequently reported in clinical 

studies. For example, pseudo individual patient data (IPD) for the PFS and OS endpoints can 

be generated from published graphs.14,15 PSM can also incorporate treatment effect estimates 

for PFS and OS endpoints such as hazard ratios from individual trials, meta-analyses or 

network meta-analyses. This often provides a way to model the PFS and OS for comparators 

not included within the pivotal trial. Long-term estimates of mortality rates from historical 

clinical trials and observational studies have also been incorporated within the approach. That 

PSM can incorporate commonly reported clinical endpoint data without access to IPD is an 

important advantage of the approach.  

The limitations of the PSM arise when there is uncertainty around long-term OS extrapolations 

and this leads to uncertainty around cost-effectiveness. Uncertainty around OS extrapolations 

is pervasive in technology appraisals which typically rely on immature trial data, and limited 

external data which may not directly relate to the patient group of interest and is typically only 

available for older comparator treatments. The limitations of PSM for extrapolating OS in these 

contexts stem from its structural assumption that OS is estimated and extrapolated 

independently of intermediate endpoints.  

The NICE methods guidance recommends that the “clinical and biological plausibility” of 

extrapolations should be assessed and alternative scenarios routinely considered for the 

extrapolation period.16 When decision models are underpinned by a structure reflecting 

biological and clinical processes, it is possible to explicitly consider the mechanisms 

underpinning extrapolations and to subject these to scrutiny and sensitivity analyses. The 
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structural independence of the endpoints in a PSM makes this difficult. Rates of individual 

transitions, or treatment effects on individual transitions can’t be varied within a PSM. 

Conducting these sensitivity analyses would often be insightful, particularly where there is 

uncertainty about outcomes post-progression and whether these differ across comparators.  

For example, an important driver of cost-effectiveness in the majority of cost-effectiveness 

models of oncology products is the long-term treatment effect on OS. This is often assumed to 

take the form of a hazard ratio estimated from the within-trial period which is then extrapolated 

for the duration of the model. The PSM allows alternative specifications of the hazard ratio 

over time, for example no further treatment effect (hazard ratio=1.0) or waning of the treatment 

effect over time, or for treatment to result in a certain survivorship at a specified time point 

(e.g. 10% of patients alive at year 5). It does not, however, allow for important clinically 

plausible scenarios including no further treatment effect following disease progression, or a 

reduced treatment effect on mortality following disease progression.  

PSMs can generate estimates of mean time spent within each health state and how these differ 

between treatments. However, it is not possible to review individual transitions which can make 

the plausibility of results difficult to assess.  

For example, if a PSM predicts that treatment extends mean time spent in the progressed state 

then this indicates that treatment is associated with reductions in the rate of post-progression 

mortality. However, as this transition is not modelled in a PSM, it is not possible to establish 

from the model whether this effect was supported by the trial data.  

There are instances where a PSM can predict a PFS curve that lies above the OS curve and 

therefore estimate that a higher proportion of patients are progression-free than alive. This 

reflects the lack of structural relationship between PFS and OS endpoints. There is no obvious 
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solution to this problem and this has been addressed in NICE TAs through the use of ad hoc 

adjustments or restrictions.5  

 

Alternative approaches  

The main alternative to the PSM in oncology modelling is the STM which uses an explicit 

disease model to generate survival predictions.17 In principle, this allows the natural history of 

the disease and treatments effects on this to be explicitly reflected when extrapolating beyond 

the trial data, and can improve transparency around the mechanisms and processes 

underpinning results generated using extrapolation, and facilitate meaningful sensitivity 

analyses. Until recently, application of STMs to evaluate cancer drugs have often used strong 

assumptions, inappropriate statistical methods for estimating transition probabilities and have 

not adequately reflected observed trial survival outcomes.5 For example, models have often 

assumed a constant risk of post-progression death that does not vary between comparators, 

despite this resulting in OS predictions which are not reflective of observed OS data.  

STMs require estimates of the individual transition probabilities, as shown in Figure 2. These 

can be estimated using survival analytic methods that account for competing and sequential 

events such as multi-state survival analysis.18,19 

Application of STMs in contexts in which PSMs are used raises a number of implementation 

challenges. The first relates to the fact that survival analyses corresponding to the individual 

transitions shown in Figure 2 are not typically reported in clinical publications. This is not 

problematic in cases where modellers have access to the IPD for trials including all relevant 

comparators. If modellers do not have this access, as is often the case, then estimating the 

required transition probabilities is more challenging though methods literature is emerging to 

address this.19,20 If summary level data such as Kaplan Meier curves are available for PFS, OS 
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and PPS then it is possible to estimate the transition probabilities.19 If only PFS and OS is 

available transition probabilities can still be estimated20 though the available methods are 

restricted to estimating constant transition probabilities which may not be appropriate in many 

clinical contexts.  

An alternative approach is to use STM only for those comparators for which IPD is available. 

This would allow PFS and OS predictions to be generated for these treatments from the STM. 

Estimates of the relative treatment effects for the other comparators (e.g. hazard ratios for PFS 

and OS from other trials or a (network) meta-analysis) could then be applied to these “baseline” 

event rates. This would require a careful consideration of how comparator treatment effects 

should be applied in the extrapolation period as these treatment effects are disconnected from 

the disease process within the STM.   

Even with the required survival data there are a number of considerations regarding how to 

appropriately analyse this data to inform the required transition probabilities. This requires 

multi-state survival analytic methods.18,19,21,22 A recent tutorial paper by Williams et al.19 

provides a step-by-step guide to using these methods to estimate transition probabilities for 

STMs. Nonetheless, there remain a number of challenges to obtaining robust transition 

probability estimates. Firstly, as key outcomes such as OS are determined by a combination of 

survival models, achieving a satisfactory fit to the observed data can be challenging and should 

be assessed carefully. Secondly, there is limited research and guidance about how to specify 

models (e.g. inclusion of patient history covariates); model selection; and generalising evidence 

relating to PPS to the extrapolation period (Box 1)). The third challenge is in reflecting time-

varying transition probabilities. A range of methods are available to address this issue including 

tunnel states,7 semi-Markov approaches23 and patient level simulation.8 These methods are 

frequently employed in STMs in oncology and other therapeutic areas, though will result in 

models that are more complex than PSMs. 
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Box 1: Considerations in analysis and extrapolation of post-progression survival data 

Features of post-progression survival (PPS) data 

• PPS data only reflects the experience of those patients who progress within the trial period. 

These patients may have a different prognosis from patients who progress beyond the trial 

period. Using within-trial PPS data to represent PPS for patients who progress beyond the 

trial may therefore result in inaccurate extrapolations.  

• The duration of follow up for PPS depends on time of progression. Patients who progress 

earlier are followed up for longer than those who progress later. If timing of progression is 

related to prognosis then PPS estimates will be subject to bias due to informative censoring.  

 

Potential issues with a naïve analysis of post-progression survival  

• If early progressors have a worse prognosis than late progressors, a naïve analysis of within-

trial PPS may underestimate PPS in the extrapolation period. This is likely to be particularly 

acute in the tail of the PPS curve which is informed only by the earliest progressors.  

 

Potential issues with a naïve analyses describing treatment effect on post-progression survival 

• If the active treatment is found to extend PFS then a higher proportion of individuals will 

have progressed in the control arm compared to the active treatment arm. For example, if 

10% have progressed on active treatment and 15% on control treatment then the PPS data is 

potentially informed by the 10% sickest patients in the active arm and the 15% sickest 

patients in the control arm. This may make PPS shorter in the active arm (i.e. a hazard ratio 

for active treatment in excess of 1.0), even if the treatment itself doesn’t affect PPS. This is 

not a causal effect of treatment, but reflects a real difference. Care is required when 

considering if this would continue in the extrapolation period.  
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Recommendations in TSD 19 

Table 1 summarises the recommendations from TSD 19. These recommendations aim to 

improve the quality of submissions including PSMs and STMs in oncology by improved 

reporting, using a wider set of information when generating and validating extrapolations and 

more carefully considering appropriate sensitivity analyses around these extrapolations. Due 

to the challenges in robustly estimating transition probabilities, for the time being we 

recommend STMs are used alongside PSMs to support the assessment of their extrapolations.  
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Table 1: Summary of TSD 19 recommendations 

Recommendation 

focus 

Recommendation 

Selecting and 

reporting of 

modelling 

approach 

1. Report model conceptualisation and rationale for modelling 

approach selected 

2. Use appropriate terminology to describe PSM and do not describe 

as a STM 

3. Report and justify structural assumptions of PSM  

Representing 

uncertainties in 

extrapolation 

within PSMs and 

STMs 

4. Recognise limitations of PSM for extrapolation resulting from lack 

of explicit structural link with intermediate endpoints 

5. Report within-trial survival curves for individual clinical events (e.g. 

progression, pre-progression deaths and post-progression deaths), to 

allow evidence relating to disease process and treatment effects on 

this to impact on judgements regarding extrapolation. Holders of IPD 

should be encouraged to report individual clinical events to support 

implementation of this recommendation 

6. Reflect all relevant evidence in extrapolation including additional 

information on individual clinical events (see recommendation 5), 

external empirical data and expert opinion where appropriate 

7. Perform appropriate sensitivity analyses to reflect uncertainty in 

baseline risk and treatment effects over the extrapolation period 

Use of STMs  8. STMs should use transition probabilities estimated using 

appropriate forms of survival analysis  
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 9. (research recommendation) Further research should explore 

appropriate approaches to statistical modelling when using multi-

state survival analysis to inform STMs 

10. (research recommendation) Further research is required to support 

incorporation of summary data (e.g. PFS and OS) in to STMs 

Understanding 

and validating 

outputs of PSM 

and STMs 

11. Use STM alongside PSM to verify plausibility of PSM 

extrapolations and explore key clinical uncertainties in the 

extrapolation period 

12. Use tabulations to show the health states in which life year and 

QALY differences between interventions occur and discuss the 

mechanisms behind these differences and their clinical plausibility 

13. (research recommendation) Further research to identify biases 

associated with PSM and STM 

PSM=partitioned survival model; STM=state transition model.  
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Current state of play 

Published literature  

At the time TSD 19 was developed there was little research evaluating PSM as a modelling 

approach. We therefore returned to the literature to identify relevant papers. The review 

methods are summarised in Appendix A.  

A recent review has updated and extended the review conducted in TSD 19.17 This included 

100 NICE oncology appraisals published in 2013-2018 and found that PSMs were the most 

popular structure and used in 54% of TAs, followed by STMs which were used in 41%.  In the 

wider published literature STMs were more dominant comprising 82% of 124 reviewed studies. 

PSMs comprised only 12% of studies though this may be influenced by the exclusion of 

country-adaptations of existing models, and by PSMs being incorrectly reported as STMs.17 

The authors confirm findings from TSD 19 that there has been limited justification of 

modelling approach and exploration of uncertainties relating to model structure. Additionally, 

a recent tongue-in-cheek discussion of PSM highlighted concerns with its implementation.24 In 

particular, that applications of PSMs often ignore good practice guidance on model 

conceptualisation, parametric model selection, indirect comparisons and use of appropriate 

sensitivity analyses to explore structural uncertainties.  

There are now a number of published studies comparing the impact on model predictions and 

cost-effectiveness of using PSM and STMs.25-30 Only one30 was published prior to TSD 19.  

Four studies used the same data cut across methods, and allowed all transitions probabilities 

within the STM to depend on time in state and treatment.25,28-30 These are therefore considered 

the most comparable in structural assumptions to the PSM. Three of the studies25,29,30 used 

three-state model structures as shown in Figures 1 and 2.  Pan 201828 compared a three-state 

PSM to a more complex discrete event simulation model reflecting different lines of treatment. 
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In this model time to event estimates included time-dependent predictors (e.g. ECOG at the 

start of treatment) as well as time spent in previous treatment.28 A scenario analysis examined 

the impact of excluding these predictors. Smare 202029 explored two approaches for the STM, 

one where PPS was independent of patient history, and a second where PPS depended on time 

taken to progress. The second approach allowed patients with early progression to have a larger 

PPS benefit from immunotherapy, the authors provided additional clinical data and 

commentary to support this. Gao 201925 developed models using only summary data on PFS, 

OS and PPS whereas the other studies used IPD. 

Mean survival estimates from these models are presented in Table 2. There are large differences 

in absolute and incremental survival predictions between PSM and STM, and between STMs 

using different specifications for transition probabilities. All studies reported that both model 

types were able to adequately represent the within-trial data. The differences between 

approaches therefore occur in the extrapolation period, though differences may be attributable 

to factors other than model structure such as the selection of survival models. In addition, no 

study directly addressed the considerations in PPS estimation outlined in Box 1. The papers 

provided little discussion of the drivers of differences in OS predictions between models, with 

only Williams 2016 reporting mean survival time by health state.30  

Two models compared model extrapolations to longer term OS follow-up from the underlying 

trials. Pan 2018 compared model predictions based on 27.1 month data to data observed at 49.2 

months. The STM provided a better fit to the longer-term data than the PSM for the active trial 

arm (the comparison for the control arm was not shown). When predictors other than treatment 

were excluded from the time-to-event equations the STM less accurately predicted long-term 

OS though still outperformed the PSM. Smare 2020 compared model predictions based on 14-

month follow-up to data observed at 38 months. The STM including time to progression as a 

predictor of PPS outperformed the PSM, which outperformed the simpler STM.  
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Table 2: Mean OS (life year) estimates from papers comparing partitioned survival 

models to STMs  

Paper Partitioned survival model STM 

Active Comparator Incremental Active Comparator Incremental 

Gao 2019 1.51 0.86 0.65 1.32 0.91 0.41 

Pan 2018  2.99 NR  NR 3.61 NR NR 

Pan 2018 STM no biomarkers 2.99 NR  NR 3.37 NR NR 

Smare 2020  2.77 2.22 0.55  2.58  1.94  0.64 

Smare 2020 STM-TTP 2.77 2.22 0.55 3.00 2.39 0.61 

Smare 2020 38 mnth1 4.23 3.48 0.76 3.24 2.65 0.59 

Smare 2020 STM-TTP 38 mnth1  4.23 3.48 0.76 3.43 2.80 0.63 

Williams 2016 5.96 5.31 0.65 5.29 4.97 0.32 

NR = not reported; STM=state transition model; STM no biomarkers indicates the analysis where all covariates 

other than treatment were excluded from the time-to-event equations; STM-TTP indicates analysis where post-

progression survival was stratified according to time to progression (TTP). 

1 Note that as well as comparing predictions from the model developed using 14-month data to the observed 38-

month data, Smare 2020 also presented results based on fitting the model to the 38-month data as shown here.  
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Other studies that compared the methods used different data for the PSM and STM or 

implemented a more restrictive type of STM assuming constant transition probabilities.26,27 

This makes it difficult to determine whether the differences observed are attributable to the 

differences in the data, model assumptions or the modelling approach itself.  

Finally, one methodological paper was identified focused on estimating transition probabilities 

when only PFS or OS is available.20 The methods developed assume constant transition 

probabilities. Further work could usefully seek to relax this assumption, for example, by using 

external data to inform likely time trends in event rates.  

In addition to those studies identified by our review, we are also aware that applied cost-

effectiveness studies in oncology are starting to use competing risks and multi-state survival 

analysis to inform transition rates.31-35 

 

Recent NICE appraisals  

We also reviewed the 10 most recent NICE oncology TAs as of July 2019 to understand current 

practice with respect to selection, reporting and implementation of modelling approaches and 

in particular the information used to inform extrapolations of survival data and assess 

uncertainty around these extrapolations. The review methods are described in Appendix B.  

As shown in Table 3, six of the appraisals used a PSM, 3 used a model structure that included 

a STM component and one used both approaches in response to concerns raised at the first 

NICE committee meeting relating to the PSM submitted by the manufacturer. Eight of the 

appraisals referenced TSD 19. STMs were used more frequently in cases where IPD was 

available for all comparators. TA587 developed a STM, even though IPD was not available for 

all comparators. In this appraisal STM predictions of PFS and OS were generated for those 



20 

 

comparators for which IPD was available. Hazard ratios describing the effects of the remaining 

treatments were then applied to these “baseline” event rates.  

Table 3: Summary of modelling approaches used in recent NICE oncology appraisals  

TA # Drug appraised Cancer Modelling approaches 

used (includes 

sensitivity analyses) 

IPD available 

for all 

comparators 

567 Tisagenlecleucel  Diffuse large B-cell 

lymphoma 

Decision tree and PSM No 

573 Daratumumab 

with bortezomib  

Multiple myeloma PSM No 

577 Brentuximab 

vedotin 

Cutaneous T-cell 

lymphoma 

PSM Yes 

578 Durvalumab Non-small cell lung 

cancer 

Semi-Markov Yes 

579 Abemaciclib Breast cancer PSM No 

580 Enzalutamide Prostate cancer Semi-Markov Yes 

581 Nivolumab with 

ipilimumab 

Renal cell carcinoma PSM No 

584 Atezolizumab Non-small cell lung 

cancer 

PSM No 

587 Lenalidomide Multiple myeloma Hybrid: PSM for 92 

weeks then Markov 

model 

No 
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589 Blinatumomab Acute lymphoblastic 

leukaemia 

PSM and Semi-Markov 

model developed 

Yes 

PSM = partitioned survival model; STM=state transition model. 

 

Appraisals using PSM  

The justifications provided for using PSM included reliance on summary level external data, 

that the maturity of available data increased the validity of the approach, that there were 

insufficient clinical data to inform estimation of transition probabilities, and concerns about 

biases in estimates of PPS when using STM. Three appraisals used the method without 

justification (TA577, TA579, TA581). Four appraisals acknowledged the independence of 

clinical endpoints (TA567, TA573, TA584, TA589), though there was limited discussion of 

the implications of this for extrapolation. Four of the appraisals included the possibility of cure 

(TA567, TA577, TA581, TA589) by assuming a fixed proportion of individuals achieved cure 

or that beyond a certain time point all patients were cured.  

Generally OS extrapolations were validated against external data and expert clinical opinion. 

None of the PSMs reviewed presented survival curves for individual clinical events (e.g. 

progression, pre-progression deaths or post-progression deaths), and mean time spent in 

individual health states was only discussed in two appraisals (TA567, TA577).  

Exploration of uncertainty around survival extrapolations focused on the use of alternative 

parametric survival models. Some models also explored uncertainty in the duration of treatment 

effects. The additional structure introduced by models including a cure element allowed for 

exploration of clinical uncertainties relating to the cure rate, timing of cure, and outcomes 

following cure.  
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Appraisals using state transition modelling  

The justifications provided for using STM included the need to reflect the link between 

intermediate prognostic endpoints and OS, the need to reflect the impact of subsequent 

treatment usage on OS and avoiding logical inconsistencies in models (PFS and OS curves 

crossing).  

All but TA587 reflected time-dependency in event rates and two (TA587, TA589) used multi-

state survival analysis to estimate transition probabilities. The others used ad hoc approaches 

to analysing the IPD. None of the appraisals modelled the potential impact of patient history 

on subsequent event rates. Concerns were raised in three of the appraisals about the sample 

size available to estimate the transition probabilities and/or biases in the estimation of PPS 

(TA578, TA580, TA589).  

All but TA589 assessed the internal validity of STM survival predictions, within TA580 

concerns were raised about the correspondence between model predictions and longer-term 

follow-up data. Generally, OS extrapolations were also validated against external data or expert 

opinion. There was limited discussion of the plausibility of treatment effects on individual 

transitions and none of the appraisals discussed the mean time spent in individual health states.  

The models explored uncertainty at different points in the treatment process including the 

treatment effect on the intermediate outcome, the impact of the treatment under evaluation on 

PPS, and the impact of different subsequent therapies on PPS. Appraisals did not routinely 

examine the sensitivity of the models to both baseline risk of mortality from the progression 

state and treatment effects on this. Models including a cure element also explored uncertainty 

in relation to the approach to modelling cure and the point of cure.  

 

Summary of current state of play  
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PSMs continue to be used extensively to assess the cost-effectiveness of oncology drugs in the 

NICE TA programme, and broader literature. A growing body of empirical literature now 

suggests that PSM and STMs can produce quite different survival predictions in the 

extrapolation period.  

Our review of NICE appraisals following the publication of TSD 19 indicates descriptions of 

PSMs have improved, extrapolations from both model types are generally validated against 

external empirical data and/or expert opinion, and application of STMs are becoming more 

sophisticated by allowing for time-dependency and treatment differences in transition 

probabilities. Across appraisals limited attention was paid to discussing whether incremental 

life years were accrued in the progression-free or post-progression health states, appraisals 

using PSM did not use evidence on individual clinical events or STMs to support assessment 

of extrapolations, and STMs were used to explore uncertainty around PPS to only a limited 

extent. 

 

Discussion 

PSM represents an approach to predicting state membership within cost-effectiveness models 

that is distinct from commonly used methods such as STMs. In the context of a within-trial 

analysis or a case in which data have been fully observed, PSM and STM are expected to 

produce similar results as relationships between endpoints are reflected within the data. When 

there is a need to extrapolate, the approaches make different assumptions and use different 

information, and are therefore expected to produce different results. Recent work comparing 

the predictions generated by PSM and STMs has shown that the approaches produce different 

predictions of absolute survival and differences in survival between comparators, and that these 
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differences are attributable to differences in the extrapolation period.25,28-30 These differences 

could have marked implications for decision making informed by cost-effectiveness models. 

In TSD 19 we made a series of recommendations to improve use of both PSM and STM. Our 

review of NICE appraisals following the publication of TSD 19 shows variable adherence to 

these recommendations. We emphasise here that, regardless of modelling choice, predictions 

of life years accrued in individual health states should be reviewed for clinical plausibility. This 

should include reviewing the extent to which incremental life-year gains accrue in individual 

health states, and in the observed data versus extrapolation periods.36 Survival curves for 

individual clinical events for each treatment should be used to support an assessment of 

whether the degree of benefit in the extrapolation period is clinically realistic and where 

sensitivity analyses should focus. More routine use of STMs to explore key uncertainties in the 

extrapolation period should be encouraged. For example, if available data on individual clinical 

events supports an effect of treatment on progression but evidence on post-progression 

outcomes are highly uncertain due to limited follow-up then it may be important to conduct 

sensitivity analyses exploring PPS and how this varies by treatment. These sensitivity analyses 

should be informed by empirical evidence where available but will often require a level of 

judgement when estimating the impact of a recently licensed treatment on PPS. This should 

reflect whether, and to what extent, effects of treatment will continue post-progression and how 

the new treatment modifies post-progression treatment pathways.    

Applications of STMs should carefully consider survival model specification. Recent work 

suggests that inclusion of a covariate describing time taken to progress (or other predictors of 

prognosis at the time of progression) may improve the accuracy of extrapolations of PPS and 

therefore OS.28-30,32 Use of this approach assumes that the relationship between time to 

progression and PPS observed within the trial period applies to patients who progress during 
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the extrapolation period. Further research to support specification of survival regressions in 

this setting remains of high priority. 

 

Role of the funding source 

The study sponsor did not have any role in the study design; in the collection, analysis, and 

interpretation of data; in the writing of the report; or in the decision to submit the paper for 

publication. 
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Figure titles and legends 

Figure 1: Determining state membership in a three-state partitioned survival model 

OS(t) denotes the OS curve at time t, and PFS(t) the Progression-Free Survival curve at time t.  

Figure 2: Specification for a state transition model 

ppf.p denotes the probability of disease progression observed prior to death in a model cycle; 

ppf.d the probability of death from the progression-free state, and pp.d the probability of death 

from the progressed state.  
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