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Abstract: We introduce super quantum Airy structures, which provide a supersymmet-
ric generalization of quantum Airy structures. We prove that to a given super quantum
Airy structure one can assign a unique set of free energies, which satisfy a supersymmet-
ric generalization of the topological recursion. We reveal and discuss various properties
of these supersymmetric structures, in particular their gauge transformations, classical
limit, peculiar role of fermionic variables, and graphical representation of recursion rela-
tions. Furthermore, we present various examples of super quantum Airy structures, both
finite-dimensional—which include well known superalgebras and super Frobenius alge-
bras, and whose classification scheme we also discuss—as well as infinite-dimensional,
that arise in the realm of vertex operator super algebras.
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1. Introduction

In recent years we have learnt that solutions to a plethora of problems in physics and
mathematics that involve some form of quantization arise from a universal system of
recursive equations, referred to as the Chekhov–Eynard–Orantin topological recursion
[24,37,38]. The topological recursion was originally discovered in the realm of matrix
models as a way of solving loop equations, which enables computation of the free
energy to all orders in the large N expansion, based on the information encoded in the
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spectral curve of the matrix model [24]. Soon after, Eynard and Orantin realized that
the topological recursion can be formulated independently of matrix models, as a tool
that assigns symplectic invariants to a large class of algebraic curves (which play the
role of spectral curves in the context of matrix models) [37,38]. More recently, a more
general and abstract reformulation of the topological recursion was provided in the form
of quantum Airy structures [4,47,52,62] (see also the lecture notes [10]).

To date, the study of the topological recursion proceeded along two (of course in-
terrelated) main lines. First, various generalizations thereof have been discovered, such
as those mentioned above, as well as its β-deformed version [25], the formulation for
curves with higher ramifications and the global version [14,17], the blobbed version
[13], the geometric recursion [5], etc. Second, a lot of effort has been put in identi-
fying various systems and problems whose solutions are captured by the topological
recursion. This led to the simplification or better understanding of the structure of pre-
vious solutions, or to new solutions of those problems. The topological recursion turned
out to play such a role in areas such as topological strings and Gromov–Witten the-
ory [18,22,34,40,41], the theory of quantum curves [15,46,58], knot theory [12,29],
Hurwitz theory [2,16,19,31,36], just to name a few.

The main aim of this paper is to follow the first line of research mentioned above,
and to introduce a supersymmetric generalization of quantum Airy structures, which
we call super quantum Airy structures. After defining a super quantum Airy structure,
as in the original (non-supersymmetric) case we assign to it free energies, and prove
their existence and uniqueness. We write down recursion relations satisfied by these free
energies: these recursion relations generalize the original (non-supersymmetric) topo-
logical recursion. Among various interesting features of super quantum Airy structures,
we reveal a peculiar role played by fermionic variables. We provide several finite- and
infinite-dimensional examples of super quantum Airy structures, and hint how their clas-
sification could be conducted. Furthermore, we expect that super quantum Airy structures
should have interesting applications in various contexts, which we briefly mention in
what follows.1

In view of the matrix model origin of the (non-supersymmetric) topological recur-
sion and its reformulation in terms of quantum Airy structures, one may expect similar
connections in the supersymmetric context. However, such relations are obscure, even
though corresponding supersymmetric structures in matrix models are known. Indeed,
supersymmetric generalizations of matrix models, referred to supereigenvalue mod-
els, have been introduced and discussed some time ago [3,8], and also more recently
[20,26–28,61]. By construction, loop equations for such supereigenvalue models can be
rewritten in the form of super-Virasoro constraints. This generalizes the reformulation of
loop equations in terms of Virasoro constraints in the non-supersymmetric case, and thus
one might hope that super-Virasoro constraints for supereigenvalue models lead imme-
diately to supersymmetric topological recursion. However, in [20,61] it was shown that
such a generalization is not automatic: one can indeed write down a recursive system
that determines the partition function of a supereigenvalue model, but it is augmented
by an auxiliary equation, which does not have a simple interpretation. In a sense, this
makes the super quantum Airy structures that we introduce here even more interesting,
and revealing their meaning in the context of supereigenvalue models is an important
task.

A similar situation arises in the context of quantum curves. On the one hand, for
large classes of spectral curves it was shown that the topological recursion can be used

1 For the subsequent progress in this context see [21].
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to reconstruct the wave-function associated to a given classical curve, and at the same
time the corresponding quantum curve [15,46,58]. On the other hand, various types
of supersymmetric quantum curves (also called super quantum curves) have been con-
structed recently in the formalism of supereigenvalue models, and reinterpreted from
the conformal field theory point of view [26–28]. Therefore one might expect that super
quantum Airy structures provide a more general framework to construct super quantum
curves, and to develop their theory further. We hope to address this issue in future work.

Super quantum Airy structures may also have interesting connections with various
problems in enumerative geometry: we postpone this analysis for future work. They
may be related to enumerative problems involving odd cohomology classes, such as
Gromov–Witten theory of non-singular target curves. For instance, in [60] Okounkov and
Pandharipande show that these invariants are encoded in a set of bosonic and fermionic
operators forming a representation of a super-Virasoro algebra. These operators could
potentially be related to super quantum Airy structures.

Super quantum Airy structures could also play a role in the theory surrounding
Mirzakhani’s recursion relations for the Weil–Petersson volumes of the moduli spaces
of Riemann surfaces [55]. In the non-supersymmetric case, it was shown that Mirza-
khani’s recursion relations can be transformed into the form of the topological recursion
[39,57], which plays a fundamental role in the connection between Jackiw–Teitelboim
(JT) gravity and matrix models [63]. Very recently, Stanford and Witten generalized
this fascinating story to the supersymmetric realm [64]. In the process, they found a
generalization of Mirzakhani’s recursion relations to the volumes of the moduli spaces
of super Riemann surfaces. Those new recursion relations could presumably be related
to the supersymmetric topological recursion that we present here, and the corresponding
super quantum Airy structures.

We discuss many more open problems and potential applications of super quantum
Airy structures in Section 5, which we believe deserve further investigation.

1.1. Outline. The plan of this paper is as follows. In Section 2 we define super quan-
tum Airy structures, and prove the existence and uniqueness of the corresponding free
energies. We also show that these free energies satisfy a recursion relation, which is a
supersymmetric version of the bosonic topological recursion, and we provide its graphi-
cal interpretation. We also introduce and discuss gauge transformations and the classical
limit of super quantum Airy structures.

In Section 3 we present several finite-dimensional examples of super quantum Airy
structures. We also discuss a classification scheme for such finite-dimensional structures.
We illustrate this discussion by presenting the osp(1|2) example, and conclude this
section by constructing super quantum Airy structures from super Frobenius algebras.

In Section 4 we construct examples of infinite-dimensional super quantum Airy struc-
tures. The construction follows along the lines of [11,54]. We construct our examples as
untwisted and Z2-twisted representations for the free boson–fermion vertex operator su-
per algebra (VOSA). In the process, we also generalize slightly the bosonic construction
of [11], by considering larger families of subalgebras of the algebra of modes to con-
struct our quantum Airy structures (from the point of view of vertex operator algebras,
this should be related to the construction of Whittaker modules for the (super-)Virasoro
algebra). As a byproduct, we obtain a realization of the “topological recursion without
branched covers” of [4] in terms of untwisted representations for the free boson vertex
operator algebra.



452 V. Bouchard, P. Ciosmak, L. Hadasz, K. Osuga, B. Ruba, P. Sułkowski

We conclude the paper with Section 5, where we list several open problems and
potential applications of super quantum Airy structures. Finally, for completeness we
provide a computational proof of existence of the free energies associated to a super
quantum Airy structure in “Appendix A”.

2. Super Quantum Airy Structures

In this section we define super quantum Airy structures. We associate to them a unique
free energy, which can be calculated recursively. We study their classical limits, and
explain how super quantum Airy structures can be obtained as quantizations of super
classical Airy structures. We also provide a graphical interpretation for the recursive
computation of the free energy associated to a super quantum Airy structure.

2.1. Definition of Super Quantum Airy Structures. Quantum Airy structures were in-
troduced in [4,52] (see also [10]) as an abstract framework underlying the Chekhov–
Eynard–Orantin topological recursion [24,37,38]. Just as the Chekhov–Eynard–Orantin
topological recursion can be generalized to spectral curves with arbitrary ramification
[14,17], quantum Airy structures admit a natural generalization as higher quantum Airy
structures: those were studied in [11].2 In this section, we propose a further generaliza-
tion, by introducing fermionic degrees of freedom.

2.1.1. Background and Notation The starting point of quantum Airy structures is a
vector space V , with dimension either finite or countably infinite,3 over K = R or C.
We introduce fermionic degrees of freedom by considering instead a super vector space
V : that is, a Z2-graded vector space V . We denote the even and odd subspaces of V by
V0 and V1, and elements of V0 and V1 will be called respectively even and odd. We write
|v| = α for the parity of homogeneous elements v ∈ Vα , α = 0, 1.

We will only use bases composed of homogeneous elements. For a basis {x i }i∈I

in V , we denote by {yi }i∈I the corresponding dual set in V ∗ = HomK(V, K). Here,
I = {1, 2, . . .} is a (possibly countably infinite) index set. We abbreviate |i | = |x i |.

Remark 2.1. In order to distinguish the Z2-grading on V from a Z-grading of different
structures that will appear in what follows, we denote the latter ones with a superscript.
For instance, for any Z-graded superalgebra A we have:

A =
⊕

n∈Z

An, (2.1a)

An · Am ⊆ An+m . (2.1b)

We also define A≤n =
⊕

m≤n Am and A≥n =
⊕

m≥n Am . For any a ∈ A we write

a =
∑

n an with an ∈ An . Moreover we set a≤n =
∑

m≤n am and a≥n =
∑

m≥n am .

2 In the nomenclature used in this paper, higher quantum Airy structures would be simply quantum Airy

structures, while the original quantum Airy structures would be particular quantum Airy structures that are
quadratic.

3 In fact this restriction is not essential, but it simplifies the notation a bit. It is satisfied in all interesting
examples explored until now.
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We define K[V, �] as the space of all polynomials in x i and �. Similarly, we let
W�(V ) be the space of differential operators which can be written as a sum of finitely
many terms of the form

�m+k x i1 . . . x in c
j1... jm
i1...in

∂ j1 . . . ∂ jm , (2.2)

where for each fixed j1, ..., jm there exist finitely many i1, ..., in such that c
jm ... j1
in ...i1

�= 0.4

This condition does not depend on the choice of basis. It is equivalent to the statement
that the set of coefficients c represents an element of Hom(V ⊗m, V ⊗n).

We introduce a Z-grading on W�(V ) by declaring an expression of the form (2.2) to
be homogeneous of degree n + m + 2k. In particular we have

deg(x i ) = 1, deg(�∂i ) = 1, deg(�) = 2. (2.3)

The same rule defines a grading on the space K[V, �].
So far we have defined the space W�(V ) of differential operators acting on K[V, �].

An element of W�(V ) may be written as a sum of finitely many terms of the form
(2.2). We will also need to consider formal series in variables �, x i , and act on these
with operators which are infinite sums of terms of the form (2.2). In order to define this
precisely, we will introduce a topology on K[V, �].

Let R be a ring and I ⊆ R an ideal. We define on R the I -adic topology by declaring
the collection {I n}∞n=0 to be the neighbourhood basis of zero. With this topology R is a

topological ring.5 It satisfies the Hausdorff axiom if and only if
⋂∞

n=0 I n = {0}.
Using this notion we equip K[V, �] with a K[V, �]≥1-adic topology and denote its

completion with respect to this topology by K[[V, �]].
Example 2.2. To see explicitly what this means, let’s take the simplest example: V ∼= K.
Consider the algebra K[V ] of polynomials in x together with the ideal I = K[V ]≥1 of
polynomials with vanishing constant term. The difference of two polynomials p, q ∈
K[V ] belongs to I n+1 if p(x) and q(x) agree up to the term of the order xn . The space
K[[V ]] obtained by completing K[V ] with respect to the I -adic topology contains,
besides polynomials, also formal power series in x .

W�(V ) can now be regarded as a space of operators on K[[V, �]] and endowed with
the topology of pointwise convergence. This means that a generalized sequence Tα in
W�(V ) converges to an element T if and only if for every f ∈ K[[V, �]] we have
Tα f → T f in K[[V, �]]. We claim that with this topology, multiplication on W�(V ) is
continuous. Indeed, let Tα and Sα be two generalized sequences in W�(V ), with Tα → T

and Sα → S. Choose f ∈ K[[V, �]]. We have

(SαTα − ST ) f = Sα(T − Tα) f + (Sα − S)T f. (2.4)

By definition, (Sα−S)T f → 0. Now given an n ∈ N, there exists α0 such that (T −Tα) f

belongs to K[[V, �]]≥n for α ≥ α0. Then also Sα(T − Tα) f ∈ K[[V, �]]≥n for α ≥ α0,
so (SαTα − ST ) f → 0. Since f was arbitrary, we obtain SαTα → ST . Continuity
of multiplication on W�(V ) guarantees that it extends uniquely to a continuous mul-

tiplication on the completion, which will be denoted by Ŵ�(V ). Explicitly, one has
T S = limn→∞ T ≤n S≤n =

∑∞
n=0

∑n
k=0 T k Sn−k for T, S ∈ Ŵ�(V ).

4 Here and henceforth we use the Einstein summation convention, in which repeated indices are summed
over.

5 This means that R is equipped with a topology such that addition and multiplication, regarded as maps
R × R → R (with R × R given the product topology), are continuous.
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2.1.2. Super Quantum Airy Structures We are now ready to define super quantum Airy
structures. To this end, let us introduce a little more notation. Let V be a super vector
space. As above, we choose a basis {x i }i∈I in V , with I = {1, 2, . . .}, and the corre-
sponding dual set {yi }i∈I in V ∗. Let Ṽ = V ⊕ K0|1. We let x0 be a basis for K0|1. In
other words, Ṽ has one more fermionic dimension than V .

To clearly distinguish between V and Ṽ , we denote indices which take value in
the set {0, 1, 2, . . .} by small letters from the beginning of the alphabet, i.e. a, b, c, d =
0, 1, 2, . . ., while the indices denoted by letters from the “middle” of the alphabet, i, j, k,

take values in the set I = {1, 2, . . .}. Consequently, we denote by {xa}a≥0 a basis in

Ṽ = K0|1 ⊕ V .

Definition 2.3. Let V be a super vector space, and Ṽ = V ⊕K0|1. A super quantum Airy

structure is a pair (V, L), with L : V ∗ → Ŵ�(Ṽ ) an even (that is, grade-preserving)
continuous linear operator such that:

(1) The left ideal L ⊆ Ŵ�(V ) generated by L(V ∗) is involutive, i.e. [L,L] ⊆ � · L,
(2) L(yi )

≤1 = �∂i .

Here [·, ·] is the super-commutator, which for two homogeneous elements v, v′ ∈ V ∗ is
given by

[L(v), L(v′)] = L(v)L(v′) − (−1)|v||v′|L(v)L(v′). (2.5)

It is convenient to abbreviate L i = L(yi ). The condition (1) guarantees that

[L i , L j ] = � f k
i j Lk (2.6)

for some elements f k
i j ∈ Ŵ�(V ). Continuity of L implies that for fixed k there are only

finitely many i, j such that f k
i j �= 0. It also follows from continuity of L that all L(φ)

are determined by L i

L(φ) = lim
J∈Pfin(I )

∑

j∈J

φ(x j )L j , (2.7)

where Pfin(I ) is the set of all finite subsets of I , ordered by inclusion.

Remark 2.4. We note that in the definition of super quantum Airy structures, the domain
is the super vector space V ∗, while the image consists of differential operators acting on
the space K[[Ṽ , �]], where Ṽ = V ⊕ K0|1. In other words, the linear operator L acts on
a space with one more fermionic dimension than V ∗. That is, the operators {L i }i≥1 can
depend on the extra fermionic variable x0, but there is no operator L0. This possibility is
a peculiar feature of super quantum Airy structures, which is not present for traditional
quantum Airy structures. It turns out to be crucial in many interesting examples of super
quantum Airy structures.

Remark 2.5. We remark that in the particular case where L(V ∗) ⊂ Ŵ�(V ) ⊂ Ŵ�(Ṽ )

(i.e. the L i do not depend on the extra fermionic variable x0 in Ṽ ), and V = V0

(V is an even vector space with no fermionic dimension), Definition 2.3 becomes the
standard definition of higher Airy structures of [11]. We will call such super quantum
Airy structures bosonic.

The definition 2.3 is rather general, as it allows operators that are infinite sums of
terms of the form (2.2), and also differential operators of infinite order. Nonetheless, in
practice we will mostly consider finite order differential operators.



Super Quantum Airy Structures 455

Definition 2.6. Let (V, L) be a super quantum Airy structure. If L(φ) ⊆ Ŵ�(Ṽ )≤n for
some positive integer n, we call the smallest such n the order of L . If n = 2, we say
that the super quantum Airy structure is quadratic. If there is no such n, we say that the
super quantum Airy structure has infinite order.

We will also be interested in the particular case of super quantum Airy structures
where the stronger requirement that the L i themselves span a Lie superalgebra is satisfied,
instead of the milder constraint (1) in Definition 2.3.

Definition 2.7. We say that a super quantum Airy structure (V, L) is subalgebraic if the
stronger requirement that [L(V ∗), L(V ∗)] ⊆ � · L(V ∗) is satisfied. In other words, the
L i span a Lie superalgebra.

Condition [L(V ∗), L(V ∗)] ⊆ � · L(V ∗) is equivalent to existence of f k
i j ∈ K such

that

[L i , L j ] = � f k
i j Lk . (2.8)

Continuity of L implies that for fixed k there are finitely many i, j , such that f k
i j �= 0.

This means that if we endow V with the discrete topology, and V ∗ with the topology
of pointwise convergence, then the expression [yi , y j ] = f k

i j yk extends uniquely to a

continuous Lie bracket on V ∗.
In some cases we will also be interested in restricting to super quantum Airy structures

such that the L i can be written as finite sums of terms of the form (2.2). That is, we want
to consider the particular case where the L i are in W�(Ṽ ).

Lemma 2.8. Let (V, L) be a super quantum Airy structure with L(V ∗) ⊆ W�(Ṽ ). Then

there exists n ∈ N such that L(V ∗) ⊆ W�(Ṽ )≤n for some n.

Proof. Each L i is an element of W�(Ṽ ), so it is actually in W�(Ṽ )≤ni for some ni .
Suppose that ni are not uniformly bounded. Then for φ ∈ V ∗ such that φ(x i ) = 1 for
all i the right-hand side of (2.7) is manifestly divergent. Contradiction. Hence there is
an n ∈ N such that L i ∈ W�(Ṽ )≤n for each i . Since W�(Ṽ )≤n is closed in W�(Ṽ ), the
result follows from the formula (2.7). ⊓⊔

Remark 2.9. With all these definitions, we recover the original definition of quantum
Airy structures in [4,52] as the particular case of a super quantum Airy structure that is
bosonic (there is no fermionic variable), quadratic (L i ∈ W�(V )≤2), and subalgebraic
([L(V ∗), L(V ∗)] ⊆ � · L(V ∗)). Note that we do not require that V is finite-dimensional.

2.1.3. Free Energy and Partition Function Perhaps the most important reason to study
quantum Airy structures is that one can assign to them a unique free energy, which for
special choice of L i turns out to be a generating function for some interesting enumerative
invariants [4,10,11,52]. In this section we generalize this construction to super quantum
Airy structures.

To every super quantum Airy structure we assign a partition function Z(x) = e
F(x)

� ,

with free energy F(x) ∈
(
Ṽ · K[[Ṽ , �]]

)≥3

0
, which is defined, loosely speaking, as a

solution to the equation

L i · Z(x) = 0. (2.9)

The requirement that F(x) ∈
(
Ṽ · K[[Ṽ , �]]

)≥3

0
means that:
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• F(x) is a formal power series in the variables xa and � with no term independent
of the xa ;

• F(x) is even with respect to the Z2-grading;
• F(x) only has terms of degree ≥ 3 with respect to the Z-grading.

Following [52] we will demonstrate that there is a unique such Z(x). To this end it is
useful to reformulate (2.9) slightly.

Every F ∈
(
Ṽ · K[[Ṽ , �]]

)≥3

0
induces a continuous automorphism

Ŵ�(Ṽ ) ∋ D �→ ψF (D) =
∞∑

n=0

1

n!

(
−

1

�
[F, · ]

)n

(D) ∈ Ŵ�(Ṽ ). (2.10)

In particular acting on topological generators6 of Ŵ�(Ṽ ) one gets:

ψF (�) = �, (2.11a)

ψF (xa) = xa, (2.11b)

ψF (�∂a) = �∂a + ∂a F. (2.11c)

Since
(
− 1

�
[F, · ]

)n
(D) ∈ Ŵ�(Ṽ )≥n , the series in the definition of ψF (D) converges.

Linearity of ψF is obvious. Continuity follows from the fact that the subspaces Ŵ�(Ṽ )≥n

are ψF -invariant. ψF (D1 D2) = ψF (D1)ψF (D2) is a consequence of − 1
�
[F, · ] being

a derivation and ψ−1
F is given explicitly as ψ−F , what proves that ψF is indeed an

automorphism. We thus say that F is the free energy associated to the super quantum
Airy structure (V, L) if

∀φ ∈ V ∗, ψF (L(φ)) · 1 = 0. (2.12)

We can now formulate the main result of this section:

Theorem 2.10. Every super quantum Airy structure admits a unique free energy.

Proof. Pick some F ∈
(
Ṽ · K[[Ṽ , �]]

)≥3

0
and let E(φ) = ψF (L(φ)))·1. Then E(φ)≤1 =

0. We make an inductive hypothesis that F≤n may be chosen in a unique way so that

E(φ)≤n−1 = 0. Acting with ψF (L i ) = �∂i + ∂i F + ψF (L
≥2
i ) on 1 we obtain

(E(yi ))
n = ∂i

(
Fn+1

)
+ Hn

i , (2.13)

where Hn
i is a function of F≤n . Continuity of L and ψF guarantees that for fixed n there

are only finitely many i such that Hn
i �= 0. Evaluating ψF

(
[L i , L j ] − � f k

i j Lk

)
· 1 we

get

∂i Hn
j − (−1)|i || j |∂ j Hn

i = 0, (2.14)

so the equation (E(yi ))
n = 0 can be solved for Fn+1 as

Fn+1 = −(1 + x i∂i )
−1x j Hn

j , (2.15)

up to the addition of an arbitrary integration constant in the extra fermionic variable
x0 in Ṽ . But F is required to be even, and hence this integration constant must vanish.
Therefore, the solution is unique, and hence Fn+1 is uniquely determined by the condition
E(φ)≤n = 0. ⊓⊔

6 For a topological ring R, subset S ⊆ R is said to be a set of topological generators if the smallest closed
subring of R containing S coincides with R.
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Remark 2.11. One could ask whether we cannot enlarge Ṽ further. For instance, one
could consider L : V ∗ → Ŵ�(V ⊕ X) and F ∈ K[[V ⊕ X, �]], for more general X . In
general, the proof of Theorem 2.10 would then guarantee existence of the free energy, but
not uniqueness. Existence and uniqueness are obtained only when dim X = 0|1, since in
this case the requirement that F is even is sufficient to guarantee that ∂i Fn+1 + Hn

i = 0
has a unique solution.

In particular, as is clear from this argument, there is no such freedom of enlarging V

for bosonic quantum Airy structures. The possibility of having an extra coordinate x0 is
a purely fermionic phenomenon.

2.1.4. A Little More Structure In the previous section we showed that we can associate

a unique free energy F ∈
(
Ṽ · K[[Ṽ , �]]

)≥3

0
to every super quantum Airy structure, by

requiring that ψF (L(φ)) · 1 = 0 for all φ ∈ V ∗. However, we started the section by

saying that the free energy was defined such that the partition function Z(x) = e
F(x)

� is
a solution to the system of equations L i · Z(x) = 0. Let us now explore the connection
between the two statements more precisely. To this end, we now define a convenient ring
of series.

Definition 2.12. Let R be the super K-vector space of formal series of the form

f =
∞∑

a=−∞

∞∑

b=0

�a fa,b(x), (2.16)

where fa,b(x) is a polynomial of degree b in the variables x i and fa,b = 0 if 3a + b < 0.
Note that we allow both positive and negative powers of � here. Each term �a fa,b(x) is
declared to be homogeneous of degree 2a + b, as is consistent with our Z-grading.7

It is easy to check that the condition 3a + b ≥ 0 combined with b ≥ 0 entail that
2a + b ≥ 0, so the degree of each term is always non-negative. For fixed d = 2a + b we
have inequalities 2a ≤ d and a ≥ −d, so f may be rewritten as

f =
∞∑

d=0

2a≤d∑

a=−d

�a fa,d−2a(x) =
∞∑

d=0

f d , (2.17)

where we introduced the homogeneous components f d of f . Notice that each f d is a
polynomial in x, � and �−1 with f 0 being a constant. Therefore:

Lemma 2.13. R is a supercommutative K-algebra, with a product given by

f g =
∞∑

d=0

d∑

k=0

f k gd−k . (2.18)

Remark 2.14. Since we are considering series which include both positive and negative
powers of �, the condition fa,b = 0 for 3a + b < 0 is needed to make the multiplication
in R well defined. Let us remark that a weaker condition fa,b = 0 for 2a + b < 0 would
also work here, but it is insufficient to make sense of gauge transformations which will
be discussed in Section 2.3.

7 This is not a typo: we use both combinations 2a + b and 3a + b in our considerations.
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We can go further:

Lemma 2.15. R is a local superring with maximal ideal m = { f ∈ R| f 0 = 0}.
Proof. Since the degree is non-negative, elements of m cannot be invertible. On the other
hand, for any ǫ ∈ m and u ∈ K×, the inverse of the element u + ǫ is given explicitly by

1

u + ǫ
= u−1

∞∑

k=0

(−u−1ǫ)k . (2.19)

The infinite sum on the right hand side is well-defined because only the first d terms
contribute to the homogeneous component of degree d. The identity (u + ǫ) · u−1

∑∞
k=0

(−u−1ǫ)k = 1 is then quite obvious, and we conclude that all elements of R\m are
invertible. ⊓⊔

It is easy to see that R equipped with the m-adic topology is a complete Hausdorff
space. In particular, for any f ∈ m and g ∈ K[[t]] we have an element g( f ) ∈ R. The
most important for us (perhaps except for polynomials) examples of this construction
are

exp( f ) =
∞∑

k=0

f k

k!
, (2.20a)

log(1 + f ) = −
∞∑

k=1

(− f )k

k
. (2.20b)

We note that log(exp( f )) = f and exp(log(1 + f )) = 1 + f .
Since elements of each degree in R are polynomials, we can act on them by elements

of the completed Weyl algebra Ŵ�(Ṽ ). After projecting to homogeneous terms, this
reduces to the computation of a finite sums of terms in which a differential operator of
finite degree acts on a polynomial. We conclude that:

Lemma 2.16. R, equipped with the m-adic topology, is a topological Ŵ�(Ṽ )-module.

Now let us go back to the free energy and partition function associated to a super
quantum Airy structure. Following [52], we defined the free energy associated to a
super quantum Airy structure as an automorphism ψF = exp

(
1
�
[F, · ]

)
with F ∈(

Ṽ · K[[Ṽ , �]]
)≥3

0
, and such that for all i the operator ψF (L i ) annihilates 1. Observe

now that F (and hence also Z = e
F
� ) is a well-defined element of the ring R. Moreover

Z0 = 1, so Z is invertible. Simple manipulation with the involved series shows that the
identity8

Z−1 (L i · Z) = ψF (L i ) · 1 (2.21)

indeed holds, as expected. Therefore Z ∈ R is annihilated by all L i , as claimed originally.
An explicit formula for the partition function in terms of the free energy reads

Z = 1 +

∞∑

k=1

2a≤k−1∑

a=−k

�a
∑

{(gα,nα)}α∈A

∏

α∈A

Fgα,nα , (2.22)

8 After projecting to terms of given total degree we always get finite sums, so this is a purely combinatorial

problem. It boils down to identity [A, · ]n(B) =
∑n

k=0

(n
k

)
Ak B(−A)n−k for even A.
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where the last sum is taken over all finite sets of pairs (g, n) ∈ N2 such that n ≥ 1,∑
α∈A(gα − 1) = a, and

∑
α∈A[2(gα − 1) + nα] = k. This sum is always finite.

Two remarks are in order.

Remark 2.17. In the definition of the ring R, we allow both positive and negative powers
of �. One may then revisit the proof of existence and uniqueness of the free energy
(Theorem 2.10) with slightly more general assumptions. Instead of requiring from the

start that F ∈
(
Ṽ · K[[Ṽ , �]]

)≥3

0
, one could consider F ∈ R≥3, with the requirement

that F = 0 for x = 0. The difference here is that we allow terms with negative powers of
�, as long as they are accompanied with sufficiently many powers of xa so that the degree
of each term is ≥ 3. Then, following the same steps as in the proof of Theorem 2.10, one
sees that existence and uniqueness of the free energy associated to a super quantum Airy

structure is still true, and hence it must belong to
(
Ṽ · K[[Ṽ , �]]

)≥3

0
. In other words, the

lack of negative powers of � in F is a result, rather than an assumption.

Remark 2.18. One may ask why we did not prove existence and uniqueness of the par-
tition function Z directly by solving the system of equations L i Z = 0 subject to the
condition that Z evaluated at x = 0 is equal to 1. This is certainly possible: the proof
technique is exactly the same. Then one may define F = � log Z . In this approach
however it is not clear to us how to prove directly that the free energy does not contain
negative powers of �. (Of course, this must still be true, since it is the same unique free
energy as the one obtained above.)

2.2. Recursive System. For simplicity, in this section we focus on super quantum Airy
structures that are quadratic and subalgebraic, and thus can be regarded as supersym-
metric analogs of the original quantum Airy structures of [4,52]. In the spirit of [4], we
derive explicit conditions for the coefficients of the operators L i such that the L i form a
super quantum Airy structure. We also compute a recursive system for the coefficients
of the free energy uniquely associated to a super quantum Airy structure.

2.2.1. Constraints on the Coefficients As in the previous section, we choose a basis
{x i }i≥1 for the super vector space V and denote by x0 a basis vector for K0|1. We let

Ṽ = K0|1 ⊕ V , and denote by {xa}a≥0 a basis in Ṽ . We denote indices which take
value in the set {0, 1, 2, . . .} by small letters from the beginning of the alphabet, i.e.
a, b, c, d = 0, 1, 2, . . ., while indices denoted by the letters from the “middle” of the
alphabet, i, j, k, take values in the set {1, 2, . . .}.

Super quantum Airy structures were introduced in Definition 2.3. To construct a
quadratic super quantum Airy structure, we need to find an even continuous linear
operator L : V ∗ → Ŵ�(Ṽ )≤2 such that:

• for each i ≥ 1 we have L i = L(yi ) = �∂i + L2
i where L2

i ∈ Ŵ�(Ṽ )2;

• [L i , L j ] = � f k
i j Lk for some structure constants f k

i j ∈ K.

Explicitly, we can write

L i = �∂i −
1

2
Aiabxa xb − �Bb

ia xa∂b −
1

2
�2Cab

i ∂a∂b − �Di (2.23)

=: L
≤1
i + L A

i + L B
i + LC

i + L D
i , (2.24)
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with the coefficients Aiab, Bb
ia, Cab

i , Di ∈ K. As we have already remarked, continuity

of L imposes that, if Ṽ is infinite-dimensional, for fixed i only finitely many Aiab are
non-zero, and for fixed i and b only finitely many Bb

ia are non vanishing. Clearly, we
may assume the symmetry conditions

Aiab = (−1)|a||b| Aiba, Cab
i = (−1)|a||b|Cba

i . (2.25)

Since L : V ∗ → Ŵ�(Ṽ )≤2 is assumed to be even, we can think of the coefficients

Aiab, Bb
ia, Cab

i , and Di as components of even tensors

A ∈ V ⊗ Ṽ ⊗ Ṽ , B ∈ Hom(Ṽ , V ⊗ Ṽ ), C ∈ Hom(Ṽ ⊗ Ṽ , V ), D ∈ V . (2.26)

In the spirit of [4], we can reformulate the Lie superalgebra requirement [L i , L j ] =
� f k

i j Lk , as a set of constraints on the tensors A, B, C, D. This is to be compared with

Lemma 2.2 of [4].

Lemma 2.19. The differential operators L i in (2.23) form a super quantum Airy struc-

ture if and only if the following conditions are satisfied

A j ia = (−1)|i || j | Ai ja, (2.27a)

f k
i j = (−1)|i || j | Bk

i j − Bk
ji , (2.27b)

0 = (−1)|i || j | B0
i j − B0

j i , (2.27c)

and

Bc
ia A jcb + (−1)|a||b|Bc

ib A jca + (−1)|i || j |Bk
i j Akab = (−1)|i || j |(i ↔ j), (2.28a)

Bc
ia Bb

jc + (−1)|a||b|Cbc
i A jca + (−1)|i || j |Bk

i j Bb
ka = (−1)|i || j |(i ↔ j), (2.28b)

Cac
i Bb

jc + (−1)|a||b|Cbc
i Ba

jc + (−1)|i || j |Bk
i j C

ab
k = (−1)|i || j |(i ↔ j), (2.28c)

1

2
Cba

i A jab + (−1)|i || j |Bk
i j Dk = (−1)|i || j |(i ↔ j). (2.28d)

Proof. These conditions are very similar to those of Lemma 2.2 in [4], with appropriate
signs, and range of indices to take into account the extra fermionic variable. The proof is
also a straightforward computation. We simply expand the super-commutator [L i , L j ]
and collect terms with respect to xa and ∂a . Then by comparing with � f k

i j Lk , we obtain

the set of constraints. ⊓⊔

2.2.2. Topological Recursion In Section 2.1.3 we associated a unique free energy F ∈(
Ṽ · K[[Ṽ , �]]

)≥3

0
to every super quantum Airy structure. In this section, we show how

its coefficients can be calculated recursively. In the spirit of [4], and for the sake of
completeness, we also show how existence and uniqueness of the free energy can be
proven computationally from the recursive structure.

Theorem 2.20. Let (V, L) be a quadratic super quantum Airy structure, and let F ∈(
Ṽ · K[[Ṽ , �]]

)≥3

0
be its associated free energy. We can expand F in the basis {xa}a≥0

for Ṽ as:

F =
∑

g≥0

∑

n≥1

∑

a1,...,an≥0

�g

n!
Fg,n[a1, . . . , an]xa1 . . . xan , (2.29)
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where the coefficients Fg,n[a1, . . . , an] ∈ K are Z2-symmetric (with signs) under per-

mutations of the indices {a1, . . . , an}. Then the coefficients Fg,n[a1, . . . , an] satisfy the

recursive system:

Fg,n+1[i,�] = Aia1a2δg,0δn,2 + Diδn,0δg,1

+

n∑

k=1

σak⊂�

∑

b≥0

Bb
iak

Fg,n[b,�\ak] +
1

2

∑

b,c≥0

Cbc
i Fg−1,n+2[c, b,�]

+
1

2

∑

b,c≥

∑

g1+g2=g

∑

�1∪�2=�

σ�1⊂�Cbc
i Fg1,n1+1(b,�1)Fg2,n2+1[c,�2],

(2.30)

with the auxiliary equation

Fg,n+1[0, a1, a2, . . . , an] = (−1)|a1|Fg,n+1[a1, 0, a2, . . . , an]. (2.31)

Here, � = {a1, . . . , an} is an ordered set, and σ�1⊂� denotes the sign of the permutation

from � to �1 ∪ (�\�1).

We remark that the recursive formula makes sense for infinite-dimensional V , since
by induction one can show that for any g and n only finitely many Fg,n[a1, . . . , an] are
non-vanishing, and hence the sums on the right-hand-side are all finite.

Proof. By Theorem 2.10, there exists a unique F ∈
(
Ṽ · K[[Ṽ , �]]

)≥3

0
such that ψF (L i )·

1 = 0. We now show that this implies the recursive system (2.30) and the auxiliary
equation (2.31).

To derive (2.30) from ψF (L i ) · 1 = 0, we consider for n ≥ 0

∂an . . . ∂a1 ·
(
ψF (L i ) · 1

)∣∣∣
x=0

= 0. (2.32)

Note that the order of the derivatives is important to have the correct sign. As ψF (L i ) is

linear, we list the computational results for each term in L i = L
≤1
i + L A

i + L B
i + LC

i + L D
i

for completeness:

∂an . . . ∂a1 ·
(
ψF

(
L

≤1
i

)
· 1

)∣∣∣
x=0

=
∑

g≥0

�g Fg,n+1[i, a1, . . . , an]

∂an . . . ∂a1 ·
(
ψF

(
L

(A)
i

)
· 1

)∣∣∣
x=0

= −
∑

g≥0

�g
(

Aia1a2δn,2δg,0

)

∂an . . . ∂a1 ·
(
ψF

(
L

(B)
i

)
· 1

)∣∣∣
x=0

= −
∑

g≥0

�g

n∑

k=1

∑

b≥0

σak⊂�Bb
iak

Fg,n[b,�\ak]

∂an . . . ∂a1 ·
(
ψF

(
L

(C)
i

)
· 1

)∣∣∣
x=0

= −
∑

g≥0

�g

2

∑

p,q≥0

Cbc
i

(
Fg−1,n+2[c, b,�] +

∑

g1+g2=g

∑

�1∪�2=�

σ�1⊂�

Fg1,n1+1[b,�1]Fg2,n2+1[c,�2]
)
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∂an . . . ∂a1 ·
(
ψF

(
L

(D)
i

)
· 1

)∣∣∣
x=0

= −
∑

g≥0

�g
(
Diδn,0δg,1

)
. (2.33)

Collecting terms order by order in �, we obtain (2.30).

As for the auxiliary equation, it is necessary because Fg,n+1[0, a1, a2, . . . , an] is not
fixed by the recursive system, since there is no L0. However, Fg,n+1[a1, 0, a2, . . . , an]
is fixed, and hence Fg,n+1[0, a1, a2, . . . , an] is uniquely fixed by symmetry as in (2.31).
⊓⊔

Remark 2.21. We can in fact prove existence and uniqueness of the free energy from
this computational point of view, in the spirit of [4]. This provides an alternative proof
of Theorem 2.10. The proof proceeds in three steps:

(1) We first show that ψF (L i ) · 1 = 0 implies the recursive system (2.30) and (2.31),
as in Theorem 2.20.

(2) Assuming existence of a free energy F ∈
(
Ṽ · K[[Ṽ , �]]

)≥3

0
, with expansion given

by (2.29), we show that (2.30) and (2.31) uniquely reconstructs it. This is clear,
since (2.30) is a recursive system on 2g + n that reconstructs (in conjunction with
(2.31)) all coefficients Fg,n[a1, . . . , an] from the initial conditions

F0,3(i, a, b) = Aiab, F0,3(0, i, a) = (−1)|i | Ai0a, F1,1(i) = Di , (2.34)

where we used (2.31) for the second condition.
(3) What remains to be proved is that the free energy F actually exists, which is

the difficult part. As in [4], the idea is to start from the recursive system (2.30)
and (2.31), and show that, while it is not manifestly symmetric, the coefficients
Fg,n[a1, . . . , an] that it constructs indeed are Z2-symmetric. Therefore, the recur-

sive system does reconstruct a free energy F ∈
(
Ṽ · K[[Ṽ , �]]

)≥3

0
through its

expansion (2.29). By (1), it is a solution to ψF (L i ) · 1 = 0, and by (2), it is unique,
and hence we have proven existence and uniqueness. The essence of the proof of
existence thus consists in showing that the recursive system (2.30) and (2.31) re-
constructs Z2-symmetric coefficients. An interesting aspect of this computational
proof is that it highlights the importance of the Lie superalgebra requirement. For
completeness, we present this computational proof of existence in “Appendix A”.

2.2.3. Graphical Interpretation The recursive system (2.30) has a nice interpretation in
terms of sums of trivalent graphs, in parallel to the graphical interpretation presented
for bosonic quantum Airy structures in [4,10]. For completeness, we present this graph-
ical interpretation in this section, focusing on quadratic super quantum Airy structures
without the extra fermionic variable. We follow very closely the presentation in [10]. It
remains to be seen whether the graphical interpretation can be extended to super quantum
Airy structures with an extra fermionic variable.

The graphical interpretation is very similar to the one presented in Section 1.3 of
[10]. In fact, the graphs are the same, but we need to change slightly the assignment of
weights to the graphs to take into account the signs arising from Z2-symmetry.

Let us first define the set Gg,n+1, which is the same as Definition 1.4 of [10].

Definition 2.22. [Definition 1.4 of [10]] For g ≥ 0 and n ≥ 0 such that χg,n := 2g +
n − 2 ≥ 0, we form the set Gg,n+1 consisting of pairs Ŵ = (G, T ) where:
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• G is a connected trivalent graph with 2g − 1 + n trivalent vertices, n + 1 ordered
one-valent leaves, and first Betti number b1(G) = g. We single out a leave and call
it the root of G.
• T ⊆ G is a spanning tree that includes the root of G, but none of the leaves.
• The edges e = {v, v′} of G which are not in the spanning tree T connect parent
vertices, i.e. the common ancestor of v and v′ in the rooted spanning tree T is either
v or v′.

We denote the ordered leaves by ℓ, ℓ1, ℓ2, . . . , ℓn in counterclockwise order,9 with ℓ

being the root. We denote by E ′(Ŵ) the set consisting of leaves (including the root) of
G and edges of G that are not loops.

Definition 2.23. An automorphism of Ŵ = (G, T ) ∈ Gg,n+1 is a permutation of the
edges in G that preserves the graph structure. We denote by Aut(Ŵ) the set of automor-
phisms of Ŵ = (G, T ).

By convention, we set G0,1 = G0,2 = ∅. G0,3 and G1,1 both contain only one
element, which are shown in Section 1.3 of [10].

Furthermore, as explained in [10], Gg,n+1 has a recursive structure on χg,n . If we
remove from a given graph Ŵ ∈ Gg,n+1 the vertex incident to the root ℓ with two more
edges/leaves {e1, e2}, the resulting graph falls into one of the following three cases:

I a graph Ŵ′ ∈ Gg,n , if one of e1 or e2 (we call it e2 without loss of generality) is a leaf
of Ŵ. We let e1 be the root of Ŵ′.

I′ a graph Ŵ′ ∈ Gg−1,n+1. We let e1 be the root of Ŵ′, and e2 its first leaf. Note that
we need to specify which of e1 and e2 is the root and the first leaf here, unlike [10],
because of Z2-symmetry.

II a non-ordered disjoint union of Ŵ′
1 ∪ Ŵ′

2 where Ŵ′
i ∈ Ggi ,|�i |+1 is a graph with root

ei and leaves L i such that g1 + g2 = g and L1 ∪ L2 are leaves of Ŵ distinct from the
root ℓ.

We would like to assign a weight to each graph Ŵ = (G, T ) ∈ Gg,n+1. To do this,
we need to equip Ŵ with a colouring.

Definition 2.24. A colouring of Ŵ = (G, T ) ∈ Gg,n+1 is a map γ : E ′(Ŵ) → I , where
I is the index set I = {1, 2, 3, . . .}. In other words, it assigns a positive integer to all
leaves of G and edges of G that are not loops.

To each graph Ŵ ∈ Gg,n+1 with colouring γ , with χg,n ≥ 0, we assign a weight
ω(Ŵ, γ ) as follows, using the recursive decomposition (I, I′, II). First of all, we define
the cases with χg,n = 0 as

ω(Ŵ0,3, γ ) = Aγ (l1)γ (l2)γ (l3), ω(Ŵ1,1, γ ) = Dγ (l1). (2.35)

For graphs with χg,n ≥ 1, we recursively determine the weight in terms of the decom-
position (I, I′, II):

I ω(Ŵ, γ ) = σγ (e1)⊂γ (L) B
γ (e2)

γ (ℓ1)γ (e1)
ω(Ŵ′, γ ′), (2.36)

I′ ω(Ŵ, γ ) = C
γ (e2)γ (e1)

γ (ℓ1)
ω(Ŵ′, γ ′), (2.37)

II ω(Ŵ, γ ) = σγ (L1)⊂γ (L)C
γ (e1)γ (e2)

γ (ℓ1)
ω(Ŵ1, γ1) ω(Ŵ2, γ2), (2.38)

9 In [10] the counterclockwise requirement is not specified, because the assigned weights are symmetric,
whereas in our case we need to be a little more careful because the weights are only Z2-symmetric.
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where L = (ℓ1, ..., ℓn) and γ (L) = (γ (ℓ1), ..., γ (ℓn)) is the colouring of leaves. The
sign factor σ is defined in Theorem 2.20. γ ′ denotes the colouring for the corresponding
decomposed graph, that is, the restriction of γ to E ′(Ŵ′). L i , γi are similarly defined.
Let us emphasize that the order of edges/leaves is important, because of the sign factors.

Since this weight assignment precisely captures the recursive equation (2.30), we
obtain the following lemma:

Lemma 2.25. For any g, n ≥ 0, and i, i1, ..., in ∈ I , we have

Fg,n+1[i, i1, ..., in] =
∑

Ŵ∈Gg,n+1

∑

γ∈I E ′(γ )

γ (ℓ j )=i j

ω(Ŵ, γ )

|Aut(Ŵ)|
. (2.39)

We refer the reader to [4] and [10] for pretty pictures of the graphical representation
of topological recursion.

2.3. Gauge Transformations. In this section we study gauge transformations of super
quantum Airy structures.

Recall that Ṽ = V ⊕ K0|1. We consider the symplectic super vector space W =
Ṽ ⊕ Ṽ ∗ equipped with the product topology and the symplectic form given by ω(φ, v) =
φ(v) for φ ∈ Ṽ ∗ and v ∈ Ṽ .

Topology on W was chosen in such a way that the following properties hold:

• if {an}∞n=0 is a sequence of distinct indices, lim
n→∞

yan = 0,

• if {vn}∞n=0 ⊆ V is a convergent sequence, then vn are eventually constant.

2.3.1. Linear Gauge Transformations With this under our belt, we can define gauge
transformations for super quantum Airy structures. We proceed as follows. Let T be a
linear operator W → W represented by matrices

T xa = ta
b xb + bab yb, (2.40a)

T ya = cabxb + db
a yb. (2.40b)

Then for each fixed a there are finitely many b such that ta
b �= 0 or cab �= 0. Moreover

T is continuous if and only if the following conditions are satisfied:

• there are finitely many pairs a, b such that10 cab �= 0,
• for each fixed b there are finitely many a such that11 db

a �= 0.

If T : W → W is an even, linear and continuous symplectomorphism (T ∈ Aut(W)

for short), there exists a unique continuous automorphism T̃ of W�(Ṽ ) which acts on
generators as in formulas (2.40) with ya replaced by �∂a and T̃ (�) = �. It may be
extended uniquely to a continuous automorphism of Ŵ�(Ṽ ). Indeed, it is obvious that
proposed transformation preserves algebraic relations in W�(Ṽ ). By the preceding dis-
cussion, also finiteness conditions in the definition of W�(Ṽ ) are preserved. Continuity
of T̃ is easy to see.

10 In other words cabxa ⊗ xb ∈ Ṽ ⊗ Ṽ .
11 This means that db

a represents the transpose of some operator V → V .



Super Quantum Airy Structures 465

Now consider an even, linear and continuous symplectomorphism Ts ∈ Aut(W ) that
acts trivially on Ṽ ∗. In terms of generators, it takes the form

Ts(xa) = xa + sab yb, (2.41a)

Ts(ya) = ya, (2.41b)

where s is even and Z2-symmetric (that is sab = (−1)|a||b|sba). We think of s as s ∈
Hom(Ṽ , Ṽ ∗)S2

0 .

Let (V, L) be a super quantum Airy structure, and let T̃s be the continuous automor-
phism of Ŵ�(Ṽ ) uniquely induced by Ts . Then (V, T̃s ◦ L) is also a super quantum Airy
structure.

Definition 2.26. We say that the super quantum Airy structure (V, T̃s ◦ L) is gauge

equivalent to (V, L), and we call T̃s a linear gauge transformation.

Remark 2.27. We note here that linear gauge transformations do not change the order of
a super quantum Airy structure, since it preserves the Z-grading on Ŵ�(Ṽ ).

Let us now explain the geometric meaning of gauge transformations. For any subspace
L ⊆ W we define its symplectic complement L⊥ = {w ∈ W | ω(l, w) = 0 for all l ∈
L}. We say that L is Lagrangian if L = L⊥. If L is a Lagrangian subspace, every
Lagrangian subspace C such that W = L ⊕ C is called a Lagrangian complement of L .
There is a bijection between Hom(Ṽ , Ṽ ∗)S2 and the set of Lagrangian complements of
Ṽ ∗, given by s �→ Ts(Ṽ ).

2.3.2. Non-linear Gauge Transformations There are more general gauge transforma-
tions that one can consider. Since the L i can have arbitrary order, we do not need to
insist that gauge transformations preserve the order of a super quantum Airy structure.
Thus we can also consider non-linear gauge transformations.

Consider a formal series in y of the form

s =
∞∑

k=2

1

k
sa1...ak ya1 ...yak

. (2.42)

We require that each term in (2.42) is even and that each sa1...ak is Z2-symmetric. The
largest k such that sa1...ak �= 0 is called the order of s. We also allow s of infinite order,
since the L i can have infinite order. Then the polynomial transformation

Ts(xa) = xa +
∂s

∂ya

, (2.43a)

Ts(ya) = ya, (2.43b)

induces (by replacing ya with �∂a) an automorphism T̃s of Ŵ�(Ṽ ), which leaves the
defining properties of super quantum Airy structures invariant.

Definition 2.28. We say that the super quantum Airy structure (V, T̃s ◦ L) is gauge

equivalent to (V, L), and if the order of s is greater than two, we call T̃s a non-linear

gauge transformation.
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2.3.3. The Partition Functions of Gauge Equivalent Super Quantum Airy Structures

Given two gauge equivalent super quantum Airy structures, what is the relation between
their partition functions? To answer this question we need to understand gauge trans-
formations as conjugations of the differential operators L i of a super quantum Airy
structure. Let Ds ∈ Ŵ�(Ṽ )≥2 be of the form

Ds =
∞∑

k=2

�ksa1...ak ∂a1 ...∂ak
, (2.44)

where the s are even Z2-symmetric tensors. We claim that the L ′
i of the super quan-

tum Airy structure (V, T̃s ◦ L) gauge equivalent to (V, L) are given by the conjugated
differential operators

L ′
i = exp

(
Ds

�

)
L i exp

(
−

Ds

�

)
. (2.45)

But for this we need to make sense of this expression.

Clearly Ds

�
, regarded as an operator on the ring R introduced in the Section 2.1.4,

satisfies:

∀n ∈ N, ∃n0 ∈ N, n′ ≥ n0 �⇒
(

Ds

�

)n′

(R) ⊆ mn . (2.46)

Therefore exp
(

Ds

�

)
makes sense as an operator on R. More precisely, for every f ∈ R

let

exp

(
Ds

�

)
f =

∞∑

n=0

1

n!

(
Ds

�

)n

f. (2.47)

After projecting the right-hand-side onto terms of fixed degree in � and x , only finitely

many terms are nonzero, so this is well defined. We have exp
(

Ds

�

)
exp

(
Dt

�

)
= exp

(
Ds+t

�

)
.

Moreover, for any f ∈ R we have the identity

exp

(
[Ds, · ]

�

)
(L i ) · f = exp

(
Ds

�

)
L i exp

(
−

Ds

�

)
f. (2.48)

Therefore, (2.45) makes sense, and indeed reconstructs the differential operators L ′
i of

the gauge equivalent Airy structure (V, T̃s ◦ L).
Now let Z be the partition function associated to the super quantum Airy structure

L i , that is, Z is annihilated by the L i , and Z evaluated at x = 0 is equal to 1. Then

exp
(

Ds

�

)
Z is annihilated by the gauge transformed operators L ′

i . Let N be equal to

exp
(

Ds

�

)
Z evaluated at x = 0. It is easy to check that N = 1 + O(�). Therefore

N −1 ∈ R exists and

Z ′ = N
−1 exp

(
Ds

�

)
Z ∈ R (2.49)

is a solution of equation L ′
i Z ′ = 0 such that Z ′ evaluated at x = 0 is equal to 1. By the

uniqueness of partition function, Z ′ coincides with the partition function associated to
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the Airy structure L ′
i . This gives us the relation between the partition function Z ′ of the

gauge transformed super quantum Airy structure (V, T̃s ◦ L) to the partition function Z

of the original super quantum Airy structure (V, L).

Remark 2.29. In [4] an alternative formula for Z ′ in terms of formal gaussian integrals
was given. A similar formula also works also in the supersymmetric case. However, it
is only valid for linear gauge transformations. We are not aware of its generalization for
non-linear gauge transformations.

2.4. Classical Versus Quantum. Quantum Airy structures were originally defined in
[52] in terms of quantizations of classical Airy structures. In this section we explore the
parallel story for super Airy structures.

2.4.1. Classical Limit We now define the classical limit of super quantum Airy struc-

tures. We introduce the algebras K[W ] = W�(Ṽ )

�·W�(Ṽ )
and K[[W ]] = Ŵ�(Ṽ )

�·Ŵ�(Ṽ )
.

Definition 2.30. We denote the quotient map by Cl, and call it the classical limit.

Taking the classical limit thus amounts to replacing all �∂a by ya , and setting all
terms of higher order in � to zero. We interpret K[W ] and K[[W ]] as the superalgebras
of polynomials and formal series respectively on some classical phase space with linear
coordinate system xa, ya . The natural symplectic structure on W induces a Poisson
bracket on K[W ] and K[[W ]], which may also be computed as

{Cl( f ), Cl(g)} = Cl

(
1

�
[ f, g]

)
. (2.50)

Now let (V, L) be a super quantum Airy structure. Define Lcl
i (x, y) = Cl(L i ) as being

the classical limit of the operators L i . The equation Lcl
i = 0 may then be thought of as

defining a “characteristic variety” � in phase space, even if this is slightly artificial in the
presence of odd coordinates. Nevertheless, some geometric notions may still be defined,
e.g. the Zariski cotangent space. It may be identified naturally with V ⊕ K0|2, with K0|2

spanned by the additional Grassman variable together with its conjugate momentum. In
particular, it is coisotropic (and in fact Lagrangian if there is no extra Grassman variable).
The classical limit of the free energy may be interpreted as a parametrisation of � in
terms of the variables x in a formal neighbourhood of zero. In fact, by repeating the steps
performed in the proof of existence and uniqueness of the partition function associated
to a super quantum Airy structure, one may show the following fact:

Theorem 2.31. There exists a unique Fcl ∈ K[[Ṽ ]]≥3 such that Lcl
i (x, d Fcl) = 0. It

coincides with the classical limit of the free energy associated to L i .

2.4.2. Super Classical Airy Structures and Quantization In the previous subsection we
defined the classical limit of super quantum Airy structures. In fact, we could have started
by defining super classical Airy structures, and think of super quantum Airy structures
as quantizations of classical structures, in the spirit of [52].

Definition 2.32. Let V be a super vector space, Ṽ = V ⊕ K0|1, and W = Ṽ ⊕ Ṽ ∗.
A super classical Airy structure is a pair (V, Lcl), with Lcl : V ∗ → K[[W ]] an even
continuous linear operator such that:
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(1) The left ideal L ⊆ K[[W ]] generated by Lcl(V ∗) is involutive under the Poisson
bracket, i.e. {L,L} ⊆ L;

(2) Lcl(yi )
≤1 = yi .

We have seen that every super quantum Airy structure determines uniquely its clas-
sical limit. But given a super classical Airy structure, does there exist a quantization that
is a super quantum Airy structure? This turns out to be a difficult problem in general.

Nevertheless, it admits a simple solution in the special case of quadratic Lcl. Define
L initially by replacing ya �→ �∂a , with all derivatives to the right of xa . Then all
L(φ) are well-defined elements of the Weyl algebra, but they need not satisfy correct
commutation relations. Simple calculation shows that

ζ(φ,ψ) =
1

�
L([φ,ψ]) −

1

�2
[L(φ), L(ψ)] (2.51)

is a number for each φ,ψ ∈ V ∗. It follows from the Jacobi identity that ζ is a Lie super-
algebra cocycle (see [43] for the relevant definitions). Clearly ζ is even and continuous.
Upon replacement

L(φ) �→ L(φ) + φ(v), v ∈ V0, (2.52)

ζ changes by a coboundary. It follows that the cohomology class [ζ ] ∈ H2(V ∗, K)0

(continuous, even Lie superalgebra cohomology) doesn’t depend on the operator or-
dering prescription. Moreover quantization of Lcl exists if and only if [ζ ] = 0. In the
finite-dimensional case it is guaranteed that ζ is a coboundary, because Weyl quanti-
zation is always possible. In this ordering scheme mixed terms xa yb are replaced by
�

2

(
xa∂b + (−1)|a||b|∂bxa

)
.

Now, given a quantization, one can still ask if other quantizations may be obtained
by performing transformations of the form (2.52). This is possible only if v is such
that [φ,ψ](v) = 0 for any φ,ψ . In other words, v has to be a cocycle. Therefore if a
quantization exists, its ambiguity is measured by the cohomology group H1(V ∗, K)0.

2.4.3. Bosonic Classical Airy Structures

Definition 2.33. We call a classical Airy structure Lcl : V ∗ → K[[W ]] bosonic, if
V = V0 and Lcl does not depend on the extra fermionic variable comming from K0|1.

Given any super classical Airy structure Lcl : V ∗ → K[[W ]], one can always
produce a bosonic one based on V0. Indeed, consider a restriction of this map to Lcl

0 :
(V0)

∗ → K[[W ]]. Since Lcl is even, so is its restriction. Therefore image of Lcl
0 consists

of even elements. Those elements are linear combination of monomials, which can be of
two types: either have no fermionic variables or have an even number of them. Observe
that both of these subsets are closed under the Poisson bracket. Let W0 = V0⊕V ∗

0 and let
π0 : K[[W ]] → K[[W0]] be the projection onto the subspace spanned by those elements
which have no fermionic variables. We define a bosonic Airy structure as a composition
Lcl,b = π0 ◦ Lcl

0 : (V0)
∗ → K[[W0]]. The subspace spanned by those monomials in

K[[W ]], which have even and nonzero number of fermionic variables, is a left ideal with
respect to the Poisson bracket. Therefore the condition {Lcl

i , Lcl
j } = � f k

i j Lcl
k , for some

f k
i j ∈ K[[W ]], implies that {L

cl,b
i , L

cl,b
j } = �π0( f k

i j )L
cl,b
k . This proves that Lcl,b is a

classical Airy structure.
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Remark 2.34. The analog of the construction outlined above doesn’t work for quantum
super Airy structures in general. The reason is that the commutator of two terms with
even, nonzero number of fermionic variables may contain terms with no fermionic
variables. Instead one may consider the classical limit, remove fermionic variables and
generators and then try to quantize again. This is always possible to carry out (but is
possibly ambiguous) in the finite-dimensional case.

3. Finite-Dimensional Examples

In this section we study examples of finite-dimensional quadratic super quantum Airy
structures. Moreover we propose a classification scheme for these objects.

3.1. Low-Dimensional Examples. Our first step is to consider super vector spaces V of
low dimension. The “purely bosonic" case, with dim V1 = 0 and no extra fermionic
variable, is not the subject of our current studies. The case with dim V1 = 0 but with an
extra fermionic variable, i.e. Ṽ = V0 ⊕ K0|1 is straightforward. Thus we will assume
that dim V1 ≥ 1. The “purely fermionic" case, with dim V0 = 0, is essentially trivial,
since the only allowed super quantum Airy structure has the form

L i = �∂θi
, (3.1)

with θi odd variables. Thus we may also assume that dim V0 ≥ 1.

3.1.1. The Superalgebras of Dimension (1|1) The simplest non-trivial case then consists
in the superalgebras of dimension (1|1). In this section we classify all quadratic super
quantum Airy structures that can be constructed from these superalgebras, assuming
that we have no extra fermionic variables. We leave the case with an extra fermionic
variables for future work.

Remark 3.1. We remark that from the point of view of the partition function, all ex-
amples based on superalgebras of dimension (1|1) with no extra fermionic variables
are rather trivial, since the partition function is purely bosonic (i.e. does not depend
on the single Grassmann variable entering in the construction). This follows directly
from the requirement that the free energy is Z2-even. Nevertheless, from an algebraic
viewpoint it is interesting to classify which quadratic super quantum Airy structures can
be constructed based on superalgebras of dimension (1|1).

Up to isomorphism, there exist three distinct complex Lie superalgebras of dimension
(1|1). We denote the bosonic generator by L and the fermionic generator by G.

(1) The abelian superalgebra, with commutation relations:

[L , L] = 0, [L , G] = 0, [G, G] = 0. (3.2)

(2) The algebra of affine automorphisms of C0|1, with commutation relations:

[L , L] = 0, [L , G] = �G, [G, G] = 0. (3.3)

(3) The N = 1, d = 1 supersymmetry (SUSY) algebra, with commutation relations:

[L , L] = 0, [L , G] = 0, [G, G] = �L . (3.4)
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Below we provide all quadratic super quantum Airy structures that can be constructed
as representations of these algebras, up to changes of bases and gauge transformations.
This classification can be proved directly, by brute force calculations. For the sake of
brevity, we omit the details.

In the following, A, B, C, D ∈ C always stand for arbitrary constants. We denote
the bosonic variable by x and the fermionic variable by θ .

(1) For the abelian superalgebra, there are three families of quadratic super quantum
Airy structures. The first one takes the form:

G = (1 − x)�∂θ , (3.5a)

L = �∂x −
1

2
Ax2 − �(x∂x + θ∂θ ) − �D, (3.5b)

while the second one is:

G = (1 − �∂x )�∂θ , (3.6a)

L = �∂x −
�2

2
C∂2

x − �D. (3.6b)

The third possibility is

G = �∂θ , (3.7a)

L = L0, (3.7b)

where L0 is an arbitrary θ -independent bosonic generator.
(2) For the algebra of affine automorphisms of C0|1, there are also three families of

quadratic super quantum Airy structures.The first one is:

G = (1 − x)�∂θ , (3.8a)

L = �∂x −
1

2
Ax2 − �x∂x − 2�θ∂θ − �D. (3.8b)

The second family reads:

G = (1 − �∂x )�∂θ , (3.9a)

L = �∂x − �θ∂θ −
�2

2
C xx

x ∂2
x − �D, (3.9b)

while the third one is:

G = �∂θ , (3.10a)

L = −�θ∂θ + L0, (3.10b)

where L0 is an arbitrary θ -independent bosonic generator.
(3) For the N = 1, d = 1 SUSY algebra we have L = 2

�
G2, so it is sufficient to

provide the form of G. There are again three possibilities:

G = �∂θ +
�

2
(θ∂x + x∂θ ) , (3.11a)

G = �∂θ +
�

2
θ∂x − �2∂x∂θ , (3.11b)

G = �∂θ +
�

2
θ∂x . (3.11c)
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3.1.2. Superalgebras of Dimensions (2|1) and (1|2) The brute force classification of
quadratic super quantum Airy structures that can be obtained as representations of su-
peralgebras of dimensions (2|1) and (1|2) is already a little tedious. We will thus only
present a few interesting examples here.

Example 3.2. Our first example starts with the (2|1)-dimensional N = 1, d = 1 SUSY
algebra extended by a dilatation operator. We denote the two bosonic generators by
L1, L2 and the fermionic generator by G. It has commutation relations:

[L1, L2] = �L2, [L1, G] =
�

2
G, [L2, G] = 0, [G, G] = �L2. (3.12)

We construct a quadratic super quantum Airy structure with no extra fermion as a rep-
resentation of this algebra. We denote the bosonic variables by x, y and the fermionic
variable by θ .

The quadratic super quantum Airy structure reads:

L1 = �∂x −
1

2
Ax2 − �

(
1

2
+ B

)
θ∂θ − �(1 + B)y∂y − �Bx∂x − �D, (3.13a)

L2 = �∂y − �x∂y, (3.13b)

G = �∂θ +
�

2
θ∂y − �Bx∂θ , (3.13c)

where A, B, D ∈ C are arbitrary constants.

Note that, as for the (1|1) examples, the partition function here does not depend on
the fermionic variable θ , since it must be Z2-even.

Let us now study examples where the partition function depends on fermionic vari-
ables.

Example 3.3. For our next example, we start with the same (2|1)-dimensional N =
1, d = 1 SUSY algebra extended by a dilatation operator, with commutation rela-
tions (3.12), but we construct a quadratic super quantum Airy structures with an extra
fermionic variable. We denote the bosonic variables by x1, x2 and the fermionic variables
by θ0, θ1.

The representation reads:

L1 = �∂x1 − 2�x1∂x1 − �x2∂x2 −
�

2
θ1∂θ1 +

3�

2
θ0∂θ0 , (3.14a)

L2 = �∂x2 − β�x2∂x1 − θ0θ1, (3.14b)

G = �∂θ1 + θ0x2 +
�

2
θ1∂x2 −

�2

2
β∂θ0∂x1 , (3.14c)

with β ∈ C an arbitrary constant.

The constraints L1 Z = L2 Z = G Z = 0 uniquely fix the partition function Z . The
result is

Z = exp

(
1

�
x2θ0θ1

)
. (3.15)
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Example 3.4. Our last example in this section is a quadratic super quantum Airy structure
with no extra fermionic variable, but such that its partition function depends on fermionic
variables. To this end, we start with a superalgebra of dimension (1|2). We denote its
bosonic generator by L and its fermionic generators by G1, G2, and the corresponding
bosonic and fermionic variables by x and θ1, θ2 respectively.

We choose the superalgebra with commutation relations:

[L , Gi ] = � Gi ,
[
Gi , G j

]
= 0, i, j = 1, 2. (3.16)

Our representation is:

L = �∂x − x2 − θ1θ2 + �2∂2
x + �2∂θ1∂θ2 , (3.17a)

G1 = �∂θ1 − xθ2 + �x∂θ1 − �θ2∂x + �2∂x∂θ1 , (3.17b)

G2 = �∂θ2 + xθ1 + �x∂θ2 + �θ1∂x + �2∂x∂θ2 . (3.17c)

From the constraints L Z = G1 Z = G2 Z = 0, it is straightforward to compute the
free energy perturbatively. Up to terms of order five in the variables x, θ1, θ2, we get:

F =
1

3
x3 −

1

5
x5 +

(
x − x3

)
θ1θ2 − �

(
x2 + θ1θ2

)
+ �2x + · · · . (3.18)

Thanks to the simplicity of the Airy structure (3.17b) the classical free energy can be in
this case expressed in terms of elementary functions:

Fcl =
1

8
log

(
2x +

√
1 + 4x2

)
+

x

4

√
1 + 4x2 −

x

2
+

√
1 + 4x2 + 2x − 1

√
1 + 4x2 + 2x + 1

θ1θ2.

(3.19)

We will use this example to illustrate the action of the gauge symmetry on the partition
function. Notice that under the gauge transformation

x → x + �∂x , θ1 → θ1 − �∂θ2 , θ2 → θ2 + �∂θ1 , (3.20)

the operators go to

L → L ′ = �∂x − x2 − 2�x∂x − � − θ1θ2 − �θ1∂θ1 − �θ2∂θ2 , (3.21a)

G1 → G ′
1 = �∂θ1 − xθ2 − 2�θ2∂x , (3.21b)

G2 → G ′
2 = �∂θ2 + xθ1 + 2�θ1∂x . (3.21c)

In particular, L ′, G ′
1 and G ′

2 are now all first order differential operators, and we can
solve explicitly for the free energy at the quantum level. We get:

F ′ = −
1

4
x(x + 1) −

1

8
(1 + 4�) log(1 − 2x) +

x + 2�

1 − 2x
θ1θ2. (3.22)

According to our discussion in Section 2.3—see (2.49)—we have an identity

e
1
�

F =
∞∑

k=0

(−�)k

k!

([
1
2
∂2

x + ∂1∂2, ·
])k

e
1
�

F ′
. (3.23)

Using a simple Mathematica code, validity of (3.23) may be checked to any required
order (at least for the explicitly known classical part of the l.h.s. of (3.23)).
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3.2. Classification Scheme. So far we have studied a few examples of low-dimensional
quadratic super quantum Airy structures. In this section we present a classification
scheme for finite-dimensional super quantum Airy structures whose vector space V ∗ is
a finite-dimensional Lie superalgebra g. We focus on finite-dimensional super quantum
Airy structures, but we remark here that part of the discussion is also valid for the
infinite-dimensional case.

Let g be a finite-dimensional Lie superalgebra. We denote its structure constants
by f . The process of finding all quadratic super quantum Airy structures for g can be
divided into three steps:

(1) Classify at most quadratic classical hamiltonians Lcl
i up to affine automorphism.

(2) Look for points of the zero locus Lcl
i = 0 at which gradients of Lcl

i are linearly

independent in order to rewrite Lcl
i in the form required by the definition of super

classical Airy structures.
(3) Quantize the system.

Parts of this procedure are expressed as classical problems in representation theory
(classify all representations of a given dimension, find all invariant symplectic forms,
compute certain cohomology groups) or algebraic geometry (describe the zero locus of
a given set of polynomials), whose solutions are known at least in certain special cases.

Remark 3.5. For clarity in this section we will write L i for the classical hamiltonians,
dropping the superscript cl.

3.2.1. Purely Quadratic Hamiltonians As a first step one has to classify all representa-
tions of g by purely quadratic hamiltonians:

{L2
i , L2

j } = f k
i j L2

k, (3.24)

where {·, ·} is the Poisson bracket. L2
i have to be polynomials in 2 dim g variables (or

with one extra Grassman variable together with its conjugate momentum) za subject to
the elementary Poisson bracket relations

{za, zb} = ωab, (3.25)

where ω is a symplectic form on the super vector space W with basis {za}. Hence

L2
i =

1

2
za Mab

i zb, (3.26)

with Mab
i = (−1)|a||b|Mba

i . This symmetry condition is equivalent to demanding that the

linear operator on W given by za �→ zb Mbc
i ωca is an infinitesimal symplectomorphism.

The Poisson bracket relations (3.24) are satisfied if and only if the operators Mi furnish
a linear representation of g on W . Conversely, given any representation of g with an
invariant symplectic form ω we may construct the space K[z], with Poisson bracket
given by (3.25), and then we define the L2

i by (3.26).
To summarize, the classification of purely quadratic hamiltonians (depending on a

given number of variables) representing the algebra g is equivalent to classifying all
symplectic representations12 of g of dimension 2 dim g or 2 dim g + 0|2.

12 Two symplectic representations W1, W2 are regarded as equivalent if there exists an even g-intertwiner
W1 → W2 which is also a symplectomorphism.
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3.2.2. Affine Extensions Now fix a representation of g by quadratic hamiltonians L2
i . We

ask if we can add linear and constant terms L1
i , L0

i such that the commutation relations
are preserved:

L i = L2
i + L1

i + L0
i , (3.27a)

{L i , L j } = f k
i j Lk . (3.27b)

Assuming that Eq. (3.24) holds, (3.27b) reduces to the following system of equations:

{L2
i , L1

j } + {L1
i , L2

j } − f k
i j L1

k = 0, (3.28a)

{L1
i , L1

j } − f k
i j L0

k = 0. (3.28b)

We observe that given any solutions of these equations, a new solution may be obtained
by shifting even variables:

L ′
i = exp ({ǫ(z), ·}) (L i )

= L i + {ǫ(z), L1
i + L2

i } +
1

2
{ǫ(z), {ǫ(z), L2

i }}, (3.29)

where ǫ(z) is an arbitrary linear combination of even za . This is equivalent to the re-
placement:

L1
i �→ L1

i + {ǫ(z), L2
i }, (3.30a)

L0
i �→ L0

i + {ǫ(z), L1
i } +

1

2
{ǫ(z), {ǫ(z), L2

i }}. (3.30b)

Shifting even variables is an isomorphism of the Poisson algebra. Solutions related by
such transformations should be regarded as equivalent at this stage.

Definition 3.6. We say that two solutions of (3.27b) are equivalent if they are related by
a shift of even variables as in (3.30).

Our plan to classify solutions of equations (3.28) up to equivalence is as follows: first
solve the constraint (3.28a), then find solutions of (3.28b) for a given L1

i .

Lemma 3.7. Given L2
i that satisfy (3.24), the space of all solutions to (3.28a) up to

equivalence coincides with the even subspace of the cohomology group H1(g, W ).

Proof. Observe that equation (3.28a) is linear in L1. Moreover it has the form of a 1-
cocycle condition for g valued in the module W . Solutions of the form L1

i = {ǫ(z), L2
i }

for some linear combination of even variables ǫ(z) may be identified with coboundaries.
Therefore the space of all solutions up to equivalence coincides with the even subspace
of the cohomology group H1(g, W ). ⊓⊔

Let us now turn to (3.28b). Equation (3.28b) is quadratic in L1. If L1 is already
chosen such that (3.28a) is satisfied, (3.28b) is a linear equation for L0. For some L1 it
may turn out that there are no solutions at all.

Definition 3.8. We call linear terms L1
i such that there exists some solution to (3.28b)

admissible.
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Admissibility depends only on the equivalence class of L1. Indeed, if L1 is such that
a consistent L0 can be chosen, then for any L ′1 of the form L ′1

i = L1
i + {ǫ(z), L2

i }, a

consistent L ′0 can be found in the form of (3.30b).

Lemma 3.9. Given an admissible L1
i that satisfies (3.28a), the space of all solutions to

refeq:L0spsconstraint) is an affine space over
(

g

[g,g]

)∗

0
.

Proof. Suppose that L1 is admissible and pick one L0 satisfying (3.28b). Then L ′0 is
another solution if and only if

f k
i j

(
L ′0

k − L0
k

)
= 0. (3.31)

This equation means that the even linear functional L ′0 − L0 ∈ g∗
0 vanishes on the

commutator ideal [g, g]. Therefore it may be regarded as an element of
(

g

[g,g]

)∗

0
. ⊓⊔

3.2.3. Choice of the Origin and a Lagrangian Complement Suppose that we have cho-
sen a set of at most quadratic hamiltonians L i satisfying (3.27b). Now we look for
hamiltonians in the same equivalence class that are in the form required by the definition
of super classical Airy structures. In other words, we want to perform a shift (3.29) to
bring the hamiltonians in a form such that L0

i = 0 and the L1
i are linearly independent.

After such shift, L0
i changes according to (3.30b). Requiring that the new L0

i vanishes,
we get an equation for ǫ(z):

L0
i + {ǫ(z), L1

i } +
1

2
{ǫ(z), {ǫ(z), L2

i }} = 0. (3.32)

Its set of all solutions may be identified with the zero locus � = {z ∈ W0 | (L i )0(z) = 0}
(here the subscript 0 means that we ignore odd variables and odd generators of g). Not
all solutions are admissible, because we must ensure that after the shift, the linear terms
L1

i are linearly independent. This means that we must keep only those points for which
the matrix of partial derivatives

Da
i =

∂

∂za

L i

∣∣∣∣
z=0

(3.33)

has rank dim(g). The set of all elements of � satisfying this condition will be denoted by
�s . It is a Zariski open subset of �. In [52] elements of �s were called the smooth points
of �. We note that this is not completely consistent with the standard terminology. For
example the zero locus Z( f ) of the polynomial f (x, y) = x2 ∈ K[x, y] is nonsingular,
even though we have d f |Z( f ) = 0.

Once a point of �s is chosen and the generators L i are put in a form with L0
i = 0

with linearly independent L1
i , we define

yi = L1
i . (3.34)

Equation (3.28b) combined with L0
i = 0 gives

{yi , y j } = 0. (3.35)
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Therefore the variables yi span an isotropic subspace in W . If there is no “extra” odd
variable, that is dim W = 2 dim g, this subspace is Lagrangian. For simplicity, for the
remainder of this section we restrict attention to this special case. The analysis in the
situation with an additional fermion has to be slightly adjusted. The linear span of yi

will be denoted by V ∗.

We may now find elements x i such that

{yi , x j } = δ
j
i , (3.36a)

{x i , x j } = 0. (3.36b)

The set of all solutions to these conditions is in one-to-one correspondence with the set
of Lagrangian complements V of the subspace V ∗ ⊂ W spanned by yi . Once the L i are
expressed in terms of the yi and x i , we have a super classical Airy structure.

Let us end this section by specifying how the super classical Airy structures con-
structed by the procedure outlined above depend on a number of arbitrary choices made
along the way.

First of all, there is an ambiguity in the choice of x i , or equivalently, in the choice
of the Lagrangian complement V of the subspace V ∗ ⊆ W . As described earlier, this
ambiguity is precisely the so-called gauge freedom. We regard Airy structures related by
a gauge transformation as equivalent. Indeed, not only gauge-transformed generators are
related by an explicit automorphism of the Poisson algebra, but also (after quantization)
partition functions are related by a formal gaussian smearing transformation.

Secondly, we have chosen a point of �s . We can get more such points by exponen-
tiating the action of g0 on K[z]0. This is possible, because action of a Lie algebra on
a finite-dimensional vector space exponentiates to an action of the corresponding Lie
group, and each {L i , ·} preserves a filtration of K[z] by finitely-dimensional subspaces
{K[z]≤n}n∈N of all polynomials of degree at most n. Clearly hamiltonians related by
G-transformations give rise to isomorphic Airy structures. It may happen that the set �s

is disconnected. Then it is possible that several non-isomorphic Airy structures may be
obtained from the same set of hamiltonians.

Since the dimension of �s coincides with the dimension of g0 and the stabilizer of
each point of �s in G is discrete, G acts locally transitively on �s . Therefore G-orbits
are open in �s (with respect to the analytic topology). Since set �s is semialgebraic,
it has finitely many connected components. Therefore its connected components are
clopen. Combining these two facts we conclude that the orbits of the G-action on �s

are precisely the connected components of �s . Notice that this is not necessarily true
for the G-action on the whole �, since the G-orbits in � are in general not open in
�. For example if L i are homogeneous of degree 2, then z = 0 is always a solution
which is a fixed point for G, hence an orbit. Except for some trivial cases it is not a
discrete point of �, hence we have orbits of G in � which are proper subsets of their
connected components. For any orbit O ⊆ �s the stabiliser Ŵ of any p ∈ O is discrete.

This means that O may be identified with the homogeneous space G
Ŵ

and that G is the
universal covering space of O . In particular, we conclude that the homotopy groups of
O are given by π1(O) ∼= Ŵ and πk(O) ∼= πk(G) for k ≥ 2. Finally, we observe that
the hamiltonian vector fields generated by L i provide a global framing for the tangent
bundle of O , so T O ։ O is trivial.

3.2.4. Quantization Suppose that we have constructed a quadratic super classical Airy
structure through the procedure outlined above. We then ask whether this classical Airy
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structure may be lifted to the quantum level. We will see that, in the finite-dimensional
case, the answer is always affirmative. (In the infinite-dimensional case, there is a pos-
sible cohomological obstruction). Moreover it turns out that the set of all consistent

quantizations is an affine space over
(

g

[g,g]

)∗

0
.

Lemma 3.10. Let the L i form a quadratic super classical Airy structure, and define

ζi j =
1

�2

(
[L i , L j ] − � f k

i j Lk

)
, (3.37)

which is a constant, independent of xi , yi and �. Then the L i can be lifted to a quadratic

super quantum Airy structure if and only if the cohomology class [ζ ] ∈ H2(g, K)0

vanishes. If this is the case, the space of all consistent quantizations is an affine space

over
(

g

[g,g]

)∗

0
.

Proof. To quantize L i , we need to replace all yi by � ∂

∂x i . The meaning of this operation is

ambiguous for mixed terms, i.e. for products x i y j , which supercommute on the classical
level but not after quantization. Due to this ambiguity, in general we need to introduce
constants of order � in our quantum hamiltonians. These terms are invisible at the
classical level.

Note that it is always possible to replace x i y j by the “normally-ordered" expressions

�x i ∂

∂x i , but unfortunately this ordering prescription does not lead to differential operators
satisfying the commutation relations of the algebra g in general. However, a simple
calculation shows that this is almost true, in the sense that the quantity

ζi j =
1

�2

(
[L i , L j ] − � f k

i j Lk

)
(3.38)

does not depend on x , y or �. By the Jacobi identity, it satisfies the 2-cocycle condition

ζk[i f k
jl] = 0, (3.39)

where square bracket denotes Z2-graded skew-symmetrization. One may try to get rid
of the problematic ζ by shifting the generators by constants proportional to �:

L i �→ L i + �Di , (3.40)

with Di = 0 for |i | = 1. This transformation has the following effect on ζ :

ζi j �→ ζ ′
i j = ζi j − f k

i j Dk . (3.41)

This means that ζ changes by a coboundary. In other words, the cohomology class
of ζ depends only on the classical generators and not on the choice of the ordering
prescription. In order to get the commutation relations of g at the quantum level, we
have to impose the condition ζ ′

i j = 0. By the preceding discussion, this is possible if

and only if the cohomology class [ζ ] ∈ H2(g, K)0 vanishes. Now suppose that we have
found a particular solution Di such that ζ ′

i j = 0. We ask if other choices D′
i are possible.

It follows from the formula (3.41) that D′
i is a consistent constant term for L i if and only

if

f k
i j

(
D′

i − Di

)
= 0. (3.42)

This condition means that the functional D ∈ g∗
0 vanishes on the commutator ideal

[g, g]. Therefore the space of all consistent constant terms is affine over
(

g

[g,g]

)∗

0
. ⊓⊔
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The situation is simpler when g is finite-dimensional, in which case there is no
cohomological obstruction to quantization.

Lemma 3.11. If g is finite-dimensional, then [ζ ] = 0, and all quadratic super classical

Airy structures can be quantized.

Proof. If g is finite-dimensional, there exists a simpler quantization procedure, namely
Weyl quantization. In this scheme every term of the form x i y j in the classical hamil-

tonians is replaced by �

2

(
x i ∂

∂x j + ∂

∂x j x i
)

at the quantum level. This has the advantage

that the commutation relations between quantum L i are automatically satisfied. Thus a
quantization always exists: it not necessary to shift further with Di -terms (although it
is still possible to construct other quantizations as in the previous Lemma). Since the
space of consistent quantizations now has a distinguished origin, it is a vector (rather
than affine) space. This has the corollary that the cohomology class [ζ ] described in the
previous paragraph vanishes identically, since Weyl quantization guarantees existence
of a quantization for finite-dimensional quadratic super classical Airy structures. ⊓⊔

Remark 3.12. In the infinite-dimensional case, Weyl quantization fails in general. In-
deed, in order to have well-defined operators L i , we need to be able to use commu-

tation relations to put all ∂

∂x j to the right of all x i in such a way that the coefficient
in front of each derivative is finite. If we insist on Weyl ordering, this may turn out to

be impossible. Indeed, we would like to replace expressions of the form b
j

i x i y j with

�

2
b

j
i

(
x i ∂

∂x j + ∂

∂x j x i
)

= �

2
b

j
i x i ∂

∂x j + �

2
bi

i . Unfortunately, the contraction bi
i is meaning-

less in general, as it contains an infinite sum. Therefore [ζ ] �= 0 is possible.

We have claimed earlier that Weyl quantization, whenever possible, is distinguished
among all quantization schemes. The main reason for this is that it is canonical, with no
room for arbitrary choices. Another pleasant property is that it is covariant with respect to
symplectic transformations, in the sense that classical hamiltonians expressed in different
coordinates are quantized to the same (up to isomorphism) quantum operators. This is
not true for all quantization schemes. We illustrate this feature with the simplest possible
example.

Example 3.13. Consider the purely quadratic hamiltonian

L =
1

2
x2 −

1

2
y2. (3.43)

In this situation Weyl quantization and normal ordering quantizations agree. Both give

Lq =
1

2
x2 −

�2

2
∂2

x . (3.44)

Define now a = x+y√
2

and b = x−y√
2

. The classical hamiltonian takes the form

L ′ = ab. (3.45)

The Weyl quantization of this hamiltonian differs from the normal ordering quantization
(and infinitely many different quantization prescriptions). It gives

L ′
q = �b

∂

∂b
+

�

2
. (3.46)
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We introduce new generators x = b+∂b√
2

, ∂x = −b+∂b√
2

. They satisfy the same algebraic

relations as b, ∂b. Reexpressing13 L ′
q in terms of x, ∂x we recover the hamiltonian Lq .

This doesn’t happen if L ′ is quantized with any other ordering prescription.

3.2.5. An Example We now illustrate the steps outlined in the classification scheme
in a specific example. Our starting point is the Lie superalgebra with a single bosonic
generator H and two fermionic generators Q1, Q2, with the only nonzero commutator
[Q1, Q2] = H . We note that the simply connected Lie group generated by the bosonic
part of this algebra is isomorphic to C.

(1) The first step in the classification is the construction of all representations of the
superalgebra by purely quadratic hamiltonians. For the sake of brevity, we will not
perform this step here. Rather, we will focus on one choice of a purely quadratic
representation of the superalgebra.
Let us denote the bosonic variables by x, y satisfying {y, x} = 1, and the fermionic
variables by θ1, θ2, ξ1, ξ2 satisfying {θi , θ j } = {ξi , ξ j } = 0 and {ξi , θ j } = δi j . We
will choose the following purely quadratic representation of the superalgebra:

Q2
1 := xθ1, (3.47a)

Q2
2 := yξ1, (3.47b)

H2 := {Q2
1, Q2

2} = xy − θ1ξ1. (3.47c)

(2) The second step consists in adding linear and constant terms in a way that preserves
the Poisson brackets. We first construct the most general linear terms by solving
(3.28a), up to equivalences generated by shifts of even variables (see Definition 3.6).
We then solve for constant terms using (3.28b).
In our context, (3.28a) becomes the equations:

{Q2
1, Q1

2} + {Q1
1, Q2

2} = H1, (3.48a)

{Q2
1, Q1

1} = 0, (3.48b)

{Q2
2, Q1

2} = 0, (3.48c)

with Q1
1, Q1

2 odd, and H1 even. The most general solution to these equations is

Q1
1 = α1θ1 + β1θ2 + γ1ξ2, (3.49a)

Q1
2 = α2ξ1 + β2ξ2 + γ2θ2, (3.49b)

H1 = α2x + α1 y, (3.49c)

for constants α1, α2, β1, β2, γ1, γ2 ∈ C. However, the terms α1θ1 and α2ξ1 in Q1
1

and Q1
2 respectively (and the corresponding terms in H1) can be obtained by shifting

the even variables x �→ x + α1 and y �→ y + α2. According to the classification
scheme, we consider these solutions as equivalent (see Definition 3.6), and so we
can set α1 = α2 = 0 without loss of generality, and we get the linear terms

Q1
1 = β1θ2 + γ1ξ2, (3.50a)

13 This transformation may be implemented by an automorphism of the Weyl algebra.
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Q1
2 = β2ξ2 + γ2θ2, (3.50b)

H1 = 0. (3.50c)

We then need to add constant terms using (3.28b). First, since Q1 and Q2 are
fermionic, they cannot have constant terms. From (3.28b), the equations that we
have to solve are

{Q1
1, Q1

1} = {Q1
2, Q1

2} = 0, {Q1
1, Q1

2} = H0. (3.51)

The first two equalities impose that β1γ1 = β2γ2 = 0. In particular, we must
have that either β1 = 0 or γ1 = 0. In the case with β1 non-zero, we can always
use the transformation θ2 �→ ξ2, ξ2 �→ θ2 (which does not modify the original
quadratic hamiltonians and preserves Poisson brackets) to make β1 vanish. Thus
we can assume without loss of generality that β1 = 0. The linear terms become

Q1
1 = γ1ξ2, (3.52a)

Q1
2 = β2ξ2 + γ2θ2, (3.52b)

H1 = 0. (3.52c)

Then, from the last equality in (3.51), we get:

H0 = γ1γ2. (3.53)

As a result, up to equivalences we have found the general representation:

Q1 = γ1ξ2 + xθ1, (3.54a)

Q2 = β2ξ2 + γ2θ2 + yξ1, (3.54b)

H = γ1γ2 + xy − θ1ξ1, (3.54c)

with β2γ2 = 0. By changing values of the coefficients γ1, β2, γ2 one may obtain
several genuinely different Airy structures.
For clarity we now pick one particular example. We remark that the “trivial” case
with γ1 = β2 = γ2 = 0 is rather boring; indeed, in this case it turns out that �s is
empty. Thus we consider the slightly more complicated case with γ1 = γ2 = 1 and
β2 = 0. The generators take the form:

Q1 = ξ2 + xθ1, (3.55a)

Q2 = θ2 + yξ1, (3.55b)

H = 1 + xy − θ1ξ1. (3.55c)

(3) The third step is to shift even variables to find an equivalent representation with the
generators in the form of a super quantum Airy structure (if possible). As explained
in Section 3.2.3, this corresponds to finding these points of the zero locus

(H)0 = 1 + xy = 0 (3.56)

where the gradient of (H)0 is nonzero. They take the form

x = a, y = −
1

a
, (3.57)
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with a ∈ C\{0}. We see that �s is connected and isomorphic to C× ∼= C

Z
, so

its fundamental group is Z. Hence the stabiliser of any point with respect to the
C-action is isomorphic to Z. We can double check that this is correct by solving
for the Hamiltonian flow generated by (H)0. To this end we evaluate the Poisson
brackets

{H, x} = x, (3.58a)

{H, y} = −y. (3.58b)

Therefore the solution of the Hamilton equations
d f

dt
= {H, f } takes the form

x(t) = et x(0), (3.59a)

y(t) = e−t y(0). (3.59b)

Clearly we can obtain any element of �s by flowing from any given initial point, say
x(0) = 1, y(0) = −1. The relation xy + 1 = 0 is explicitly preserved by the flow.
Moreover we have (x(t), y(t)) = (x(0), y(0)) if and only if t ∈ 2π iZ, confirming
that the stabiliser of (x(0), y(0)) is infinite cyclic.
Since �s is connected, we are free to choose a = 1. Performing the corresponding
shifts of the even variables x �→ x + 1 and y �→ y − 1 brings the generators in the
form:

Q1 = θ1 + ξ2 + xθ1, (3.60a)

Q2 = θ2 − ξ1 + yξ1, (3.60b)

H = y − x + xy − θ1ξ1. (3.60c)

(4) Finally, the last step in the classification is to choose a Lagrangian complement.
First, we define new canonical momenta π1 = Q1

1, π2 = Q1
2, and p = H1 to bring

the linear terms in the form of a super quantum Airy structure. More explicitly,

π1 = θ1 + ξ2, (3.61a)

π2 = θ2 − ξ1, (3.61b)

p = y − x . (3.61c)

Then, we have to choose a Lagrangian complement, i.e. odd linear generators κ1, κ2

and an even q such that {πi , κ
j } = δ

j

i , {p, q} = 1, {κ i , κ j } = 0. The following
choice is convenient:

κ1 =
1

2
(θ2 + ξ1) , (3.62a)

κ2 =
1

2
(ξ2 − θ1) , (3.62b)

q =
1

2
(x + y) . (3.62c)

In terms of these variables, the generators become:

Q1 = π1 +
1

4
(2q − p)(π1 − 2κ2), (3.63a)

Q2 = π2 +
1

4
(2q + p)(2κ1 − π2), (3.63b)
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H = p + q2 −
1

4
p2 −

1

4
(π1 − 2κ2)(2κ1 − π2). (3.63c)

This completes the construction of the super classical Airy structure. It can be
quantized as usual to get a super quantum Airy structure. For instance, using Weyl
quantization, the generators become the following differential operators in the vari-
ables κ1, κ2 and q:

Q1 = �∂κ1 − qκ2 +
�

2
q∂κ1 +

�

2
κ2∂q −

�2

4
∂q∂κ1 , (3.64a)

Q2 = �∂κ2 + qκ1 −
�

2
q∂κ2 +

�

2
κ1∂q −

�2

4
∂q∂κ2 , (3.64b)

H = �∂q + q2 − κ1κ2 +
�

2
κ1∂κ1 −

�

2
κ2∂κ2 −

�2

4
∂2

q +
�2

4
∂κ1∂κ2 . (3.64c)

By construction, those differential operators have the form of a super quantum Airy
structure, and they form a representation of the original superalgebra, with the only
non-zero commutator [Q1, Q2] = H .

3.3. The osp(1|2) Example. In this section we explain how we can construct quadratic
super quantum Airy structures using representation theory of Lie superalgebras, fol-
lowing [4]. We then apply the procedure to the particular case of the osp(1|2) Lie
superalgebra.

Let (V ∗, [ · , · ]) be a finite dimensional Lie superalgebra. A quadratic super classical
Airy structure Lcl can be understood as a Lie superalgebra homomorphism: for any
φ,ψ ∈ V ∗, and with { · , · } denoting the canonical Poisson bracket on W = V ∗ ⊕ V ,
we have

{
Lcl(φ), Lcl(ψ)

}
= Lcl ([φ,ψ]) . (3.65)

For a quadratic Airy structure Lcl(φ) = φ + L(φ), L(φ) ∈ K[W ]2, (3.65) is equivalent
to

{L(φ),L(ψ)} = L([φ,ψ]), (3.66a)

{φ,L(ψ)} + {L(φ), ψ} = [φ,ψ]. (3.66b)

In particular L is itself a Lie superalgebra homomorphism, and the formula

ρW (φ)(w) = {L(φ),w} , for φ ∈ V ∗, w ∈ W, (3.67)

defines a representation of (V ∗, [ · , · ]) on W .

Following [4], we now show how one can use representation theory to construct a
super classical Airy structure. Suppose that ρM is a representation of the Lie superalgebra
V ∗ on a 2 dim V dimensional space M equipped with a V ∗ invariant symplectic form
ωM . Suppose further that there exists � ∈ M such that ρM (V ∗) · � is a Lagrangian
subspace of M. Thus, in particular, dim ρM (V ∗) · � = dim V and the map

I : V ∗ ∋ φ �→ I (φ) = ρM (φ) · � ∈ ρM (V ∗) · � (3.68)
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is an even isomorphism. Choose a Lagrangian complement � of ρM (φ) · �, and define
a map K : � → V ∗∗ ≃ V by the formula

{φ, K (s)} = ωM (ρM (φ) · �, s) , for φ ∈ V ∗, s ∈ �. (3.69)

Clearly K is also an even isomorphism and consequently

J = I −1 ⊕ K : M = ρM (V ∗) · � ⊕ � �→ V ∗ ⊕ V = W, (3.70)

is an even isomorphism as well. J is a symplectomorphism, which follows from the fact
that the four (sub)spaces V, V ∗, ρM (V ∗) · � and � are Lagrangian, and for s ∈ �,φ ∈
V ∗ we have

{J (ρM (φ) · �) , J (s)} =
{

I −1 (I (φ)) , K (s)
}

= ωM (ρM (φ) · �, s) (3.71)

by (3.69). We can thus define a symplectic representation of V ∗ on W by the formula

ρW = J ◦ ρM ◦ J−1, (3.72)

and consequently, via (3.67), quadratic hamiltonians L(φ) satisfying (3.66a).

Equation (3.66b) is also satisfied, since with our definitions (viewing φ,ψ ∈ V ∗ via
the natural embedding V ∗ ≃ V ∗ ⊕ 0 →֒ V ∗ ⊕ V = W as elements of W ), we have for
homogeneous φ and ψ ,

{L(φ), ψ} + {φ,L(ψ)} = ρW (φ)(ψ) − (−1)|L(ψ)||φ|ρW (ψ)(φ)

= J (ρM (φ)I (ψ)) − (−1)|L(ψ)||φ| J (ρM (ψ)I (φ))

= J (ρM (φ)ρM (ψ) · �) − (−1)|L(ψ)||φ| J (ρM (ψ)ρM (φ) · �)

= I −1 (ρM ([φ,ψ]) · �) = [φ,ψ]. (3.73)

So to summarize, the construction goes as follows:

(1) We start with a Lie superalgebra V ∗ and a representation ρM (V ∗) on some 2 dim V -
dimensional space M ;

(2) We construct a symplectomorphism J : M → W = V ∗ ⊕ V , and a representation
ρW = J ◦ ρM ◦ J−1 on W ;

(3) By (3.67), this gives us a quadratic super classical Airy structure. It may be then
quantized using Weyl prescription.

Let us now apply this construction to the osp(1|2) Lie superalgebra. Recall that
osp(1|2) is generated by three even and two odd vectors, l0, l± and q± respectively,
satisfying the relations

[l0, l±] = ±l± [l+, l−] = 2l0.

[l0, q±] = ± 1
2
q±, [l±, q∓] = q±,

[q±, q±] = ±l±, [q+, q−] = −l0. (3.74)
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Proposition 3.14. Let V be a (3|2)-dimensional super vector space, and let Ṽ = V ⊕
K0|1. We choose a basis {x1, x2, x3} and {θ1, θ2} for the even and odd subspaces of V

respectively, with dual basis {y1, y2, y3} and {ξ1, ξ2}. We let θ0 be a basis for K0|1. Then

the linear operator L : V ∗ → Ŵ(Ṽ ) defined by

L(y1) = �∂x1 −
√

3 θ0θ1 − 12
(

x1
)2

−
3

2
�x2∂x1 −

10

3
�x3∂x2

+ 2
√

3� θ1∂θ0 + �θ2∂θ1 , (3.75a)

L(y2) = �∂x2 −
1

2
�x1∂x1 −

3

2
�x2∂x2 −

5

2
�x3∂x3

− �θ1∂θ1 − 2�θ2∂θ2 −
3

4
�, (3.75b)

L(y3) = �∂x3 −
16

3
�x1∂x2 −

3

2
�x2∂x3 +

√
3

2
� θ0∂θ1 + 4�θ1∂θ2

+
3

16
�2∂2

x1 −
√

3 �2∂θ1∂θ0 , (3.75c)

and

L(ξ1) = �∂θ1 +
√

3 x1θ
0 −

1

2
�θ1∂x1 +

1

3
�θ2∂x2 + 2

√
3� x1∂θ0

−
3

2
�x2∂θ1 + 5�x3∂θ2 , (3.76a)

L(ξ2) = �∂θ2 +

√
3

8
�θ0∂x1 −

4

3
�θ1∂x2 +

1

2
�θ2∂x3 + 2�x1∂θ1 −

3

2
�x2∂θ2

+

√
3

4
�2∂θ0∂x1 , (3.76b)

is a quadratic super quantum Airy structure (with an extra fermionic variable), realized

as a differential representation of the osp(1|2) Lie superalgebra under the identification

{l−, l0, l+, q−, q+} �→ {L(y1), L(y2), L(y3), L(ξ1), L(ξ2)}. (3.77)

Remark 3.15. Clearly, the operator L satisfies the second property in the definition of
super quantum Airy structures (see Definition 2.3), and it is quadratic. All that remains
to be checked is that it forms a representation of the osp(1|2) Lie superalgebra. This
could be checked by brute force calculation. Let us instead construct this super quantum
Airy structure using the general approach presented above.

Proof. We apply the construction described above for the particular case of the osp(1|2)

Lie superalgebra, with generators satisfying the relations (3.74). We let V be a (3|2)-
dimensional super vector space. We choose a basis {x1, x2, x3} and {θ1, θ2} for the
even and odd subspaces of V respectively, with dual basis {y1, y2, y3} and {ξ1, ξ2}. We
identify V ∗ with the algebra osp(1|2) by:

{y1, y2, y3, ξ1, ξ2} ↔ {l−, l0, l+, q−, q+}. (3.78)

The irreducible representations of osp(1|2) are odd-dimensional. We will modify the
construction above slightly, to allow our representation space M to be odd-dimensional.
We enlarge W by adding an extra fermionic variable. We define Ṽ = V ⊕ K0|1, and
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let W̃ = Ṽ ⊕ Ṽ ∗. We will construct a symplectomorphism J as a map between the
representation space M and a suitably chosen, odd-dimensional subspace of the space
W̃ . The result of the construction will be a quadratic super classical Airy structure with
an extra fermionic variable.

Since V is five-dimensional, we take M to be 11-dimensional and denote its ba-
sis vectors by fm and ek, where m = −2,−1, . . . , 2 and k = − 5

2
,− 3

2
, . . . , 5

2
. The

representation of osp(1|2) in question is given by

ρM (ξ2) fm =
√

3 + m

2
em+ 1

2
, ρM (ξ1) fm =

√
3 − m

2
em− 1

2
, (3.79)

and

ρM (ξ2)ek =

√
5
2

− k

2
fk+ 1

2
, ρM (ξ1)ek = −

√
5
2

+ k

2
fk+ 1

2
, (3.80)

so that ρM (ξ2)e 5
2

= ρM (ξ1)e− 5
2

= 0. The action of other generators can be computed

from (3.74).

The symplectic form on M, invariant with respect to the osp(1|2) algebra, i.e. satis-
fying

ωM (ρM (yi )ek, el) + ωM (ek, ρM (yi )el)

= ωM (ρM (yi ) fm, fn) + ωM ( fm, ρM (yi ) fn) = 0, (3.81a)

ωM

(
ρM (ξ j )ek, fn

)
+ ωM

(
ek, ρM (ξ j ) fn

)
= 0, (3.81b)

is determined uniquely up to an overall normalization. Its non-zero elements read

ωM (e 1
2
, e− 1

2
) = −ωM (e 3

2
, e− 3

2
) = ωM (e 5

2
, e− 5

2
) = 1, (3.82a)

ωM ( f0, f0) = −ωM ( f1, f−1) = ωM ( f2, f−2) = 1, (3.82b)

ωM ( fi , f j ) − ωM ( f j , fi ) = 0, (3.82c)

ωM (ei , e j ) + ωM (e j , ei ) = 0. (3.82d)

The maximal isotropic subspaces of M are of dimension 5 and we can choose one
of such subspaces to be generated by the action of ρm(V ∗) on e 3

2
(which thus plays the

role of the vector � from the initial paragraphs of this subsection):

M+ = ρM (V ∗)e 3
2

= span
{

e 1
2
, f1, e 3

2
, f2, e 5

2

}
. (3.83)

Defining the map I : V ∗ �→ M+ as in (3.68) we thus get

I (y1) = 2
√

2 e 1
2
, I (ξ1) = −

√
2 f1, I (y2) =

3

2
e 3

2
,

I (ξ2) =
1

√
2

f2, I (y3) =
√

5 e 5
2
. (3.84)

As a complement of M+, we take the space M0 ⊕ M−, where M0 = K f0 and

M− = span
{

e− 1
2
, f−1, e− 3

2
, f−2, e− 1

2

}
. (3.85)
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Note that M− is also a maximal isotropic subspace of M. We can now define the map
K : M− �→ V as in (3.69) with the result

K (e− 1
2
) = 2

√
2 x1, K ( f−1) =

√
2 θ1, K (e− 3

2
) = −

3

2
x2,

K ( f−2) =
1

√
2

θ2, K (e− 5
2
) =

√
5 x3. (3.86)

Let us now denote the basis of the K0|1 subspace appearing in the decomposition
Ṽ = V ⊕ K0|1 by θ0, and the corresponding element of the dual basis in Ṽ ∗ by ξ0.

Taking η = ξ0 + 1
2
θ0, so that

{η, η} = {ξ0, θ
0} = ξ0(η

0) = 1 = ωM ( f0, f0), (3.87)

and defining J0( f0) = η, we construct the symplectomorphism

J = I −1 ⊕ J0 ⊕ K : M+ ⊕ K f0 ⊕ M− �→ V ∗ ⊕ Kη ⊕ V (3.88)

satisfying the properties required for ρW̃ = J−1 ◦ρM ◦ J to define via (3.67) a quadratic

super classical Airy structure on K[W̃ ] (depending on an extra fermionic variable).
Calculating the matrix elements of ρW̃ , and using (3.67), we get

Lcl(y1) = y1 −
3

2
x2 y1 −

10

3
x3 y2 − 12

(
x1

)2
+ 2

√
3θ1η + θ2ξ1, (3.89a)

Lcl(y2) = y2 −
1

2
x1 y1 −

3

2
x2 y2 −

5

2
x3 y3 − θ1ξ1 − 2θ2ξ2 −

3

2
η2, (3.89b)

Lcl(y3) = y3 +
3

16
(y1)

2 −
16

3
x1 y2 −

3

2
x2 y3 +

√
3ηξ1 + 4θ1ξ2, (3.89c)

as well as

Lcl(ξ1) = ξ1 −
1

2
θ1 y1 +

1

3
θ2 y2 + 2

√
3x1η −

3

2
x2ξ1 + 5x3ξ2, (3.90a)

Lcl(ξ2) = ξ2 −
4

3
θ1 y2 +

1

2
θ2 y3 +

√
3

4
ηy1 + 2x1ξ1 −

3

2
x2ξ2. (3.90b)

Finally, applying Weyl quantization, we get

L(y1) = �∂x1 −
√

3 θ0θ1 − 12
(

x1
)2

−
3

2
�x2∂x1 −

10

3
�x3∂x2 + 2

√
3� θ1∂θ0

+ �θ2∂θ1 , (3.91a)

L(y2) = �∂x2 −
1

2
�x1∂x1 −

3

2
�x2∂x2 −

5

2
�x3∂x3 − �θ1∂θ1

− 2�θ2∂θ2 −
3

4
�, (3.91b)

L(y3) = �∂x3 −
16

3
�x1∂x2 −

3

2
�x2∂x3 +

√
3

2
� θ0∂θ1 + 4�θ1∂θ2 +

3

16
�2∂2

x1

−
√

3 �2∂θ1∂θ0 , (3.91c)
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and

L(ξ1) =�∂θ1 +
√

3 x1θ
0 −

1

2
�θ1∂x1 +

1

3
�θ2∂x2 + 2

√
3� x1∂θ0 −

3

2
�x2∂θ1 + 5�x3∂θ2 ,

(3.92a)

L(ξ2) =�∂θ2 +

√
3

8
�θ0∂x1 −

4

3
�θ1∂x2 +

1

2
�θ2∂x3 + 2�x1∂θ1 −

3

2
�x2∂θ2 +

√
3

4
�2∂θ0∂x1 .

(3.92b)

⊓⊔

We would like to make several remarks about the constructed super quantum Airy
structure:

• It is not possible to construct an additional odd generator, say Q, which together
with L(yi ) and L(ξi ) forms a super quantum Airy structure for some superalgebra
of dimension 3|3. Indeed, suppose that such an extension exists. Writing down the
Jacobi identity for the extended algebra and using the fact that the first cohomology
group of osp(1|2) valued in the adjoint module vanishes, one can show that with
no loss of generality Q may be assumed to be central. Similar arguments show that
Q has to annihilate the whole 6|6-dimensional module M ⊕ K0|1. This means that
we have to take the corresponding Hamiltonian to be purely linear. The only linear
variable which supercommutes with all L is ξ0 − 1

2
θ0, which does not work because

it is not nilpotent.
• It is not possible to construct a super quantum Airy structure for osp(1|2) which

does not involve and additional fermionic variable. The reason is that there is no
6|4-dimensional representation whose bosonic part is the irreducible 6-dimensional
representation of sl(2, C), which is known [4] to be necessary to construct an Airy
structure for the even subalgebra. For similar reasons, the irreducible representation
that we chose is the only one which allows the construction of a super quantum Airy
structure.

• In the language of the classification scheme for super quantum Airy structures that
we have outlined in Section 3.2, the fact that the Lagrangian embedding of osp(1|2)

into M⊕K0|1 may be obtained by acting with the generators on some reference vector
� is equivalent to the statement that the linear terms of our generators are trivial, i.e.
can be obtained by an affine shift of coordinates. There is no need to consider more
general linear terms, because the relevant cohomology groups vanish [48].

• We have [osp(1|2), osp(1|2)] = osp(1|2), so the quantization procedure is unique.

3.4. Super Frobenius Algebras. For our last finite-dimensional examples, we construct
super quantum Airy structures from super Frobenius algebras, in the spirit of [4] (see
also [10]).

We define super Frobenius algebras following [50], where a definition of G-twisted
Frobenius algebras is given. We concentrate on the G = Z2 case, which corresponds to
super Frobenius algebras.

Definition 3.16. A super Frobenius algebra As = A0⊕A1 over K is a finite-dimensional
Z2-graded vector space equipped with a super-commutative, associative product Ag ⊗
Ah → Agh respecting grading, and a non-degenerate bilinear form φ : Ag ⊗ Ah → K

where φ = 0 unless |g| + |h| = 0 and g, h ∈ {0, 1}.
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Given a super Frobenius algebra, for any choice of even elements θA, θB , θC ∈ A0,
we can construct a super quantum Airy structure as follows:

Lemma 3.17. Let {ei } be a basis for a super Frobenius algebra As , and {e j } be the dual

basis, i.e.

φ(ei , e j ) = (−1)|i || j |φ(e j , ei ) = δ
j

i . (3.93)

Then, for any even θA, θB , θC ∈ A0, the coefficients

Ai jk = φ(θAei e j ek), Bk
i j = φ(θBei e j e

k), C
jk

i = φ(θC ei e
j ek), (3.94)

together with an arbitrary coefficient Di , define a super quantum Airy structure on

V = As with vanishing structure constants f k
i j = 0.

Remark 3.18. We note that this super quantum Airy structure does not depend on an extra
fermionic variable, i.e. the number of differential operators match with the dimension
of the super vector space As .

Proof. To prove that this is a super quantum Airy structure, we will show that the
coefficients satisfy the conditions of Lemma 2.19.

Note that (3.93) implies that every a ∈ As can be written as a = φ(a, ei )ei . This
gives

B
p
ik A j pl = φ(θBei ekep)φ(θAe j epel) = φ(θAe jφ(θBei ekep)epel)

= φ(θAe jθBei ekel) = φ(θAθBe j ei ekel). (3.95)

Thus, we have

B
p

ik A j pl + (−1)|k||l| B p

il A j pk + (−1)|i || j | B p

i j Apkl

= φ(θAθBe j ei ekel) + (−1)|k||l|φ(θAθBe j ei elek) + (−1)|i || j |φ(θAθBei e j ekel)

= 3φ(θAθBe j ei ekel) = (−1)|i || j |(i ↔ j), (3.96)

and hence (2.28a) is satisfied.
Similarly, we find

B
p
ik Bl

j p = φ(θ2
Be j ei ekel), (3.97)

C
lp
i A j pk = φ(θAθC e j ei e

lek), (3.98)

C
kp
i Bl

j p = φ(θBθC e j ei e
kel), (3.99)

B
p

i j C
kl
p = φ(θBθC ei e j e

kel). (3.100)

These ensure that all terms in the remaining conditions (2.28b), (2.28c) and (2.28d) are
Z2-symmetrical under i ↔ j , and hence the conditions of Lemma 2.19 are
satisfied. ⊓⊔

A natural question then is to determine what this super quantum Airy structure asso-
ciated to a super Frobenius algebra calculates. What is the meaning of the Fg,n?

In the standard, bosonic case, it is well known that a two-dimensional topological
quantum field theory (2D TQFT) naturally defines the structure of a Frobenius algebra,
and that, conversely, to any Frobenius algebra can be associated a unique 2D TQFT.
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In this case, it is shown in [4,10] that the quantum Airy structure naturally associated
to a Frobenius algebra, with the choice θA = θB = θC = 1 and Di = φ(ei · H) for
H =

∑
j e j e

j , solves the corresponding TQFT, in the sense that its Fg,n compute the
amplitudes of the 2D TQFT (up to a simple combinatorial factor).

In the general setting, it is known that a G-equivariant 2D TQFT defines the structure
of a G-twisted Frobenius algebra, from which it can be recovered [44]. Super Frobenius
algebras correspond to the case with G = Z2. We expect that a story analogous to the
bosonic case holds here as well, namely, that the Fg,n associated to the super quantum
Airy structure naturally constructed from a super Frobenius algebra with θA = θB =
θC = 1 and choice of Di as above, compute the amplitudes of the corresponding 2D
super TQFT. This correspondence should be made precise and investigated further.

4. Infinite-Dimensional Examples

In this section we construct examples of infinite-dimensional, quadratic, subalgebraic,
super quantum Airy structures, as representations of subalgebras of super Virasoro al-
gebras. The construction follows along the lines of [11,54]. In the bosonic case, many
infinite-dimensional quantum Airy structures compute interesting enumerative invari-
ants, such as intersection numbers over the moduli space of curves, Hurwitz numbers,
Gromov–Witten invariants, etc. We expect the super quantum Airy structures that we
construct in this section to also have interesting enumerative interpretations, which we
leave for future work. In particular, they may be related to the recent supersymmetric
generalization of JT gravity presented in [64].

In this section we focus on constructing quadratic super quantum Airy structures.
But the construction can naturally be generalized to higher order super quantum Airy
structures along the lines of [11], which we also leave for future work.

We do not review the well known definitions for vertex operator algebras (VOAs),
vertex operator super algebras (VOSAs) and their representations. See [11] for relevant
definitions in the context of the construction presented here, and for instance [6,7,9,42,
49,53] for more details on VOAs and VOSAs.

4.1. Quantum Airy Structures from The Free Boson VOA. Before we study super quan-
tum Airy structures constructed as representations of subalgebras of the super Virasoro
algebra, let us review the standard bosonic construction for the Virasoro algebra. In the
process we will generalize the construction of [11], discovering a VOA realization of
the “topological recursion without branched covers” presented in [4].

Our goal in this section is to construct quantum Airy structures as representations of
subalgebras of the Virasoro algebra with central charge c = 1:

[Lm, Ln] = (m − n)Lm+n + δm,−n

1

12
m(m2 − 1). (4.1)

This algebra arises as the algebra of modes for the energy–momentum tensor of the free
boson VOA, which is central in our construction. So let us start by reviewing the main
features of the free boson VOA.
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4.1.1. The Free Boson VOA We study the free boson VOA (also called the Heisenberg
VOA). It is generated by a single vector b−1 | 0 〉 ∈ V , where V is the space of states.
Here | 0 〉 ∈ V is the vacuum vector. The state-operator correspondence reads

b(z) := Y (b−1 | 0 〉 , z) =
∑

m∈Z

bm z−m−1, (4.2)

where the modes of the bosonic field generate the Heisenberg algebra

[bm, bn] = mδm,−n . (4.3)

The vacuum vector | 0 〉 is annihilated by all bk with k ≥ 0, and the space of states V is
the Fock space consisting of all excited modes

b−k1 . . . b−kn
| 0 〉 , k1, . . . , kn ∈ Z>0. (4.4)

Their corresponding operators are

Y (b−k1 . . . b−kn
| 0 〉 , z) =◦◦

n∏

i=1

1

(ki − 1)!

(
d

dz

)ki −1

Y (b−1 | 0 〉 , z) ◦◦, (4.5)

where ◦◦ · · · ◦◦ denotes normal ordering, i.e., all modes bk with negative k are on the left
and those with positive k are on the right.

The conformal vector | ω 〉 for the free boson VOA is:

| ω 〉 =
1

2
b−1b−1 | 0 〉 . (4.6)

Its operator takes the form

T (z) := Y (| ω 〉 , z) =
∑

m∈Z

Lm z−m−2, (4.7)

with its modes generating the Virasoro algebra with central charge c = 1:

[Lm, Ln] = (m − n)Lm+n + δm,−n

1

12
m(m2 − 1). (4.8)

The modes of the conformal field can be related to the Heisenberg modes as follows.
From (4.5), we have:

T (z) =
1

2
Y (b−1b−1 | 0 〉) =

1

2
◦◦ Y (b−1 | 0 〉 , z)Y (b−1 | 0 〉 , z) ◦◦=

1

2
◦◦ b(z)b(z) ◦◦,

(4.9)

and hence

Lm =
1

2

∑

k∈Z

◦◦ bkbm−k ◦◦ . (4.10)
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4.1.2. Untwisted and Twisted Representations of the Free Boson VOA To construct quan-
tum Airy structures as representations of subalgebras of the Virasoro algebra, we will
start with two different representations of the free boson VOA: an untwisted represen-
tation, and a Z2-twisted representation (see for instance [11] for more details on twisted
representations for VOAs in the context of Airy structures).

In both cases, we will represent the bosonic modes bm as endomorphisms of the space
K[[V, �]], where V is an infinite-dimensional vector space. In other words, we represent
the modes of the Heisenberg algebra as differential operators in Ŵ�(V ), which turns
the Virasoro modes into differential operators in Ŵ�(V ) as well.

The untwisted representation is basically the VOA itself. The state-field correspon-
dence for the representation is

Y M (b−1 | 0 〉 , z) =
∑

m∈Z

bM
m z−m−1, (4.11)

with the bM
m endomorphisms of K[[V, �]]. The Virasoro modes of the untwisted repre-

sentation then take the form:

L M
m =

1

2

∑

k∈Z

◦◦ bM
k bM

m−k ◦◦ . (4.12)

For the Z2-twisted representation, we consider the order two automorphism that acts
on the Fock space as:

σ :V → V

b−k1 . . . b−kn
| 0 〉 �→ (−1)

∑n
i=1 ki b−k1 . . . b−kn

| 0 〉 . (4.13)

This automorphism preserves the vacuum vector | 0 〉 and the conformal vector | ω 〉 =
1
2

b−1b−1 | 0 〉. However, it does not preserve the fundamental vector b−1 | 0 〉, which
picks a sign.

Thus the state-field correspondence for this Z2-twisted representation takes the form

Y σ (b−1 | 0 〉 , z) =
∑

r∈Z+ 1
2

bσ
r z−r−1, (4.14)

with fractional exponents, and twisted modes that generate the Heisenberg algebra:

[bσ
r , bσ

s ] = rδr,−s . (4.15)

The Virasoro modes Lσ
m of the Z2-twisted representation are related to the twisted

bosonic modes bσ
r as follows:

Lemma 4.1. Consider the σ -twisted representation of the free boson VOA, with state-

field correpondence (4.14). The conformal field

Y σ (| ω 〉 , z) =
1

2
Y σ (b−1b−1 | 0 〉 , z) =

∑

m∈Z

Lσ
m z−m−2 (4.16)

has Virasoro modes given by

Lσ
m =

1

2

∑

r∈Z+ 1
2

◦◦ bσ
r bσ

m−r ◦◦ +
1

16
δm,0. (4.17)
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Proof. The proof goes as Lemma 4.2 of [11]. The conformal field is

Y σ (| ω 〉 , z) =
1

2
Y σ (b−1b−1 | 0 〉 , z). (4.18)

We want to rewrite it as a normal ordered product of twisted bosonic fields. For clarity,
let us denote the twisted bosonic field by bσ (z) := Y σ (b−1 | 0 〉 , z).

For this we can use the product formula for twisted representations (see for instance
Definition 3.18 in [11]):

Y σ (b−1b−1 | 0 〉 , z) =
1

2

[
∂2

∂z2
1

(
(z1 − z2)

2bσ (z1)b
σ (z2)

)]

z1=z2=z

. (4.19)

We have:

bσ (z1)b
σ (z2) = ◦◦ bσ (z1)b

σ (z2) ◦◦ +
∑

k1,k2∈Z+ 1
2

k1>0,k2<0

[bσ
k1

, bσ
k2

]z−k1−1
1 z

−k2−1
2

= ◦◦ bσ (z1)b
σ (z2) ◦◦ +

∑

k1∈Z+ 1
2

k1>0

k1z
−k1−1
1 z

k1−1
2

= ◦◦ bσ (z1)b
σ (z2) ◦◦ +

∑

k∈Z≥0

∂

∂z2

(
zk

2

zk+1
1

√
z2

z1

)

= ◦◦ bσ (z1)b
σ (z2) ◦◦ +

∂

∂z2

(
1

z1 − z2

√
z2

z1

)
. (4.20)

Substituting back in (4.19), we get:

Y σ (b−1b−1 | 0 〉 , z)

=
1

2

[
∂2

∂z2
1

(
(z1 − z2)

2
◦◦ bσ (z1)b

σ (z2) ◦◦ +(z1 − z2)
2 ∂

∂z2

(
1

z1 − z2

√
z2

z1

))]

z1=z2=z

=◦◦ bσ (z)bσ (z) ◦◦ +
1

8z2
, (4.21)

where the second line follows from a straightforward calculation. Therefore,

Y σ (| ω 〉 , z) =
1

2
◦◦ bσ (z)bσ (z) ◦◦ +

1

16z2
=

∑

m∈Z

Lσ
m z−m−2. (4.22)

Combining with (4.14), we extract the relation between the modes for the Z2-twisted
representation:

Lσ
m =

1

2

∑

r∈Z+ 1
2

◦◦ bσ
r bσ

m−r ◦◦ +
1

16
δm,0. (4.23)

⊓⊔
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4.1.3. Quantum Airy Structures from Untwisted Representations of the Free Boson VOA

Let us now construct quantum Airy structures using these representations of the free
boson VOA. We proceed in three steps:

(1) We choose a representation (untwisted or twisted) of the free boson VOA to obtain
a differential representation for the Virasoro modes: Ln ∈ Ŵ�(V ). As we will
see, the operators �Ln have degree 2 (with the notion of degree defined in (2.3)).
We thus have constructed a representation of the Virasoro algebra by quadratic
differential operators �L i .

(2) We pick a subalgebra of the Virasoro algebra. Our quantum Airy structure will be
obtained as a representation of this particular Virasoro subalgebra.

(3) We shift some of the bosonic modes to create linear terms to the operators �L i ,
without changing the algebra, so that the second condition of Definition 2.3 is
satisfied. This constructs a representation of the chosen Virasoro subalgebra in the
form of a quantum Airy structure.

For convenience, let us define the following notation. For any integer R, we define

δi≤R =
{

1 if i ≤ R

0 if i > R.
(4.24)

From untwisted representations of the free boson VOA, we construct the following
three classes of quantum Airy structures:

Proposition 4.2. We represent the Heisenberg algebra as

∀k ∈ Z≥1, bM
k =

√
�∂k, bM

−k =
1

√
�

kxk, bM
0 =

√
�∂0. (4.25)

Let {x0, x1, x2, . . .} be a basis for V , with dual set {y0, y1, y2, . . .}. Define the differential

operators Hi ∈ Ŵ�(V ), i ∈ Z≥0:

Hi = �∂i +
�

2

∑

k∈Z

◦◦ bM
k bM

i+N−1−k ◦◦, (4.26)

which form a representation of the Virasoro subalgebra

[Hi , H j ] = �(i − j)Hi+ j+N−1. (4.27)

(1) Let N be any integer N ≥ 0. The linear operator H : V ∗ → Ŵ�(V ) defined by:

∀i ∈ Z≥0, H(yi ) = Hi + �Diδi≤N−1, (4.28)

for arbitrary constant Di , i = 0, . . . , N − 1, forms a quantum Airy structure as a

representation of the Virasoro subalgebra (4.27).
(2) Let N be any integer N ≥ −1. The linear operator H : V ∗ → Ŵ�(V ) defined by

∀i ∈ Z≥1, H(yi ) = Hi + �Diδi≤N+1, (4.29a)

H(y0) = �∂0 +
�2

2
C0∂

2
0 + �D0, (4.29b)

for arbitrary constants Di , i = 0, . . . , N +1 and C0, forms a quantum Airy structure

as a representation of the Virasoro subalgebra (4.27) extended by:

[H(y0), H(yi )] = 0. (4.30)
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(3) Let N be any integer N ≥ −1. Let us now formally set the bosonic zero mode

bM
0 = 0. Consider the subspace Vred ⊂ V spanned by {x1, x2, . . .}. The linear

operator H : V ∗
red → Ŵ�(Vred) defined by

∀i ∈ Z≥1, H(yi ) = Hi

∣∣∣
bM

0 =0
+ �Diδi≤N+1, (4.31)

for arbitrary constants Di , i = 1, . . . , N + 1, forms a quantum Airy structure as a

representation of the Virasoro subalgebra (4.27).

Proof. We start with the untwisted representation of the free boson VOA. For our first two
classes of quantum Airy structures, we represent the bosonic modes as endomorphisms
on the space M = K[[V, �]], where V is an infinite-dimensional vector space with basis
{x0, x1, x2, . . .}, as:

∀k ∈ Z≥1, bM
k =

√
�∂k, bM

−k =
1

√
�

kxk, bM
0 =

√
�∂0, (4.32)

which form a representation of the Heisenberg algebra. From (4.12), the Virasoro modes
read:

�L M
m =

�

2

∑

k∈Z

◦◦ bM
k bM

m−k ◦◦ . (4.33)

We multiplied the Virasoro modes by � here so that they have degree 2 according to the
grading (2.3) on Ŵ�(V ). This rescales the Virasoro algebra by �.

We now choose the following infinite sequence of subalgebras of the Virasoro alge-
bra:

[L M
m , L M

n ] = (m − n)L M
m+n, m, n ≥ N , (4.34)

for arbitrary fixed integer N ≥ −1. We will construct quantum Airy structures for each
choice of such subalgebra, using the representation of the Virasoro algebra (4.33). To
do so, we need to bring the operators �L M

m in the form of quantum Airy structures by
creating appropriate linear terms.

For our first class of quantum Airy structures, we shift indices so that for any choice
of subalgebra (choice of N ) our operators are indexed by integers i = 0, 1, 2, . . .. Thus,
given an integer N ≥ −1, we define the quadratic hamiltonians:

∀i ∈ Z≥0, H2
i := �L M

i+N =
�

2

∑

k∈Z

◦◦ bM
k bM

i+N−k ◦◦, (4.35)

which have commutation relations:

[H2
i , H2

j ] = �(i − j)H2
i+ j+N . (4.36)

To create appropriate linear terms, we do the shift bN �→ bN + 1√
�

, which creates a

linear term H1
i =

√
�bi = �∂i in the hamiltonians without changing the commutation

relations. It however also creates an unwanted constant term H0
N = 1

2
, but since HN
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never appears in the right-hand-side of the commutation relations (4.36), we can get rid
of this constant term without changing the algebra. We thus obtain hamiltonians:

∀i ∈ Z≥0, Hi = �∂i +
�

2

∑

k∈Z

◦◦ bM
k bM

i+N−k ◦◦, (4.37)

which have the form of a quantum Airy structure. However, this quantum Airy structure
has no “A” or “D” terms (see (2.23)), and hence its associated partition function Z is
trivial: that is, Z = 1 (see (2.30)). For N = −1, there is not much that we can do.
However, for N ≥ 0 we can make the partition function non-trivial. Looking at the
commutation relations (4.36), we see that the operators Hi , i = 0, . . . , N never appear
on the right-hand-side of the commutation relations. Thus we can add quadratic “D”
terms of the form �Di to those operators without changing the commutation relations
(since these terms commute with all Hi ). We thus obtain our first class of quantum Airy
structures. For convenience, in this case we redefine N �→ N − 1, so that the operators
take the same form as for the other cases. We then have N ≥ 0. We obtain the quantum
Airy structure (4.28), as a representation of the algebra (4.27).

For our second class of quantum Airy structures, we shift indices so that for any N

our operators are indexed by integers i = 1, 2, . . .:

∀i ∈ Z≥1, H2
i := �L M

i+N−1 =
�

2

∑

k∈Z

◦◦ bM
k bM

i+N−1−k ◦◦, (4.38)

with commutation relations:

[H2
i , H2

j ] = �(i − j)H2
i+ j+N−1. (4.39)

To create linear terms, we do the shift bN−1 �→ bN−1 + 1√
�

, which creates a linear term

H1
i =

√
�bi = �∂i in the hamiltonians without changing the commutation relations.

We get rid of the unwanted constant term H0
N−1 = 1

2
as above, and introduce non-trivial

D-terms �Di for i = 1, . . . , N + 1, since the corresponding Hi , i = 1, . . . , N + 1 do
not appear on the right-hand-side of the commutation relations. This is not quite an
Airy structure though, since the hamiltonians depend on the variable x0, which does not
appear in the linear terms. We notice however that the Hi only depend on the derivative
∂0 through the bosonic zero mode bM

0 , they do not depend on the variable x0 itself. Thus,
we can introduce an auxiliary operator

H0 = �∂0 +
�2

2
C0∂

2
0 + �D0, (4.40)

which commutes with all Hi , i ≥ 0, to get a quantum Airy structure. The result is the
quantum Airy structure (4.29), as a representation of the algebra (4.30).

For our third class of quantum Airy structures, we modify the representation of the
Heisenberg algebra slightly, and set the bosonic zero mode bM

0 = 0. That is, we consider
a “momentum zero” representation. To get a quantum Airy structure, we do the same
manipulations as for the second class above. We end up with the quantum Airy structure
(4.31), as a representation of the algebra (4.27). ⊓⊔

Before we proceed, a few remarks are in order.
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Remark 4.3. Note that from the point of view of partition functions, the third class can
be understood as a special case of the second class. Indeed, consider the second class
of quantum Airy structures with C0 = D0 = 0. The constraint H0 Z = 0 implies that
Z does not depend on the variable x0. Then any term in the constraints Hi Z = 0 that
involves bM

0 identically vanishes, and hence the constraints Hi Z = 0 become identical
to the constraints of the third class of quantum Airy structures. Therefore, the partition
function of the third class is equal to the partition function of the second class with
C0 = D0 = 0.

Remark 4.4. In the construction above we introduced the shifts �Di as defining a new
representation for the Virasoro subalgebra. We could however take a different viewpoint.
We could stick with the representation without the added D-terms, and then, instead of
solving the constraints Hi Z = 0 to define the partition function, we could solve the
constraints

Hi Z = −�Di Z , (4.41)

with possibly non-vanishing Di in the allowed range (for instance i = 0, . . . , N − 1 in
the first class). This is entirely equivalent to what we did above, but from the point of
view of vertex operator algebras, by solving these constraints we would be constructing
so-called “Whittaker modules” for the Virasoro algebra. We are currently investigating
this connection further.

It turns out that the quantum Airy structures in the third class of Proposition 4.2 have
appeared in the literature before, in a different form. Indeed, in Section 10 of [4], a variant
of the Eynard–Orantin topological recursion was constructed, the so-called “topological
recursion without branched covers”. We now show that the quantum Airy structures of
Proposition 4.2 are examples of this topological recursion without branched covers. We
thus obtain a realization of the topological recursion without branched covers in terms of
representations of the free boson VOA, which sheds light on its origin. It remains to be
seen however whether the associated partition functions compute interesting enumerative
invariants, and whether the other quantum Airy structures of Proposition 4.2 have similar
realizations.

Proposition 4.5. The data of a spectral curve for the topological recursion without

branched covers of Section 10 of [4] is given by:

• A Riemann surface �;

• A meromorphic one-form ω0,1 on �;

• A bilinear differential ω0,2 on �2;

• A finite subset r ⊂ � such that ω0,1 has at most simple zeros on r;

• A meromorphic one-form ω1,1 on � such that for any point p ∈ r, z2 ω1,1(z)

ω0,1(z)
is

holomorphic at p, where z is a local coordinate near p.

Consider the spectral curve given by the data:

� = P1, ω0,1(z) = −
dz

zN
, ω0,2(z1, z2) =

dz1dz2

(z1 − z2)2
, r = {0},

ω1,1(z) = −
N+1∑

k=1

Dk

dz

zk+1
, (4.42)
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where z is a coordinate on P1 and N ∈ Z≥0. Then, for any N ≥ 0, the quantum Airy

structure associated to the topological recursion without branched cover on this spectral

curve, which was constructed in Section 10 of [4], precisely corresponds to the quantum

Airy structure in the third class of Proposition 4.2.

Proof. Following [4], we define, for k ∈ Z≥1,14

ξk(z) =
dz

zk+1
, ξ∗

k (z) = zk, θ(z) :=
1

ω0,1(z)
= −

zN

dz
. (4.43)

According to the recipe of Section 10 in [4] (see also Proposition 8.13), the coefficients
of the quantum Airy structure associated to topological recursion without branched
covers can be calculated as follows. The D-coefficients can be obtained by expanding
the one-form ω1,1(z) in the basis of differentials ξk(z):

ω1,1(z) = −
N+1∑

k=1

Dkξk(z). (4.44)

As for A, B, C , they can be calculated as:

Ai jk = Res
z→0

(ξ∗
i (z)dξ∗

j (z)dξ∗
k (z)θ(z)), (4.45)

Bk
i j = Res

z→0
(ξ∗

i (z)dξ∗
j (z)ξk(z)θ(z)), (4.46)

C
jk
i = Res

z→0
(ξ∗

i (z)ξ j (z)ξk(z)θ(z)). (4.47)

Substituting (4.43) in these equations, we obtain:

Ai jk = 0, Bk
i j = − jδi+ j+N−1,k, C

jk

i = −δi+N− j−1,k . (4.48)

Thus, the resulting differential operators are, for i ∈ Z≥1,

Hi = �
∂

∂x i
+ �

∑

k−l=−i−N+1

kxk∂l +
�2

2

∑

k+l=i+N−1

∂k∂l + �Diδi≤N+1, (4.49)

with k, l ∈ Z≥1, which can be rewritten as

Hi = �∂i +
�

2

∑

k∈Z

◦◦ bM
k bM

i+N−1−k ◦◦ +�Diδi≤N+1, (4.50)

with

bM
k =

√
�∂k, bM

−k =
1

√
�

kxk, bM
0 = 0, (4.51)

for all k ∈ Z≥1. Those are precisely the differential operators Hi of Proposition 4.2. ⊓⊔

14 Note that our definition for ξk and ξ∗
k+1

is rescaled by (k + 1)−1 and k respectively with respect to [4].
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4.1.4. Quantum Airy Structures from Z2-Twisted Representations of the Free Boson VOA

We now construct another class of quantum Airy structures obtained from the σ -twisted
representation of the free boson VOA (see Lemma 4.1). This is an example of the general
construction of [11] for W -algebras, although only the cases with N = −1 and N = 0
(and their generalizations to W -algebras) were considered there.

Proposition 4.6. Let N be any fixed integer N ≥ −1. We represent the Heisenberg

algebra for the twisted bosonic modes as:

∀r ∈ Z≥0 +
1

2
, bσ

r =
√

�∂r+ 1
2
, bσ

−r =
r

√
�

xr+ 1
2 . (4.52)

Let {x1, x2, x3, . . .} be a basis for V , with dual set {y1, y2, y3, . . .}. The linear operator

H : V ∗ → Ŵ�(V ) defined by:

∀i ∈ Z≥1,

Hi := H(yi ) = �∂i +
�

2

∑

r∈Z+ 1
2

◦◦ bσ
r bσ

i+N−1−r ◦◦ +
�

16
δi,1−N + �Diδi≤N+1, (4.53)

for arbitrary constants Di , i = 1, . . . , N + 1, forms a quantum Airy structure as a

representation of the Virasoro subalgebra

[Hi , H j ] = �(i − j)Hi+ j+N−1. (4.54)

Proof. We start with the σ -twisted representation of the free boson VOA. The twisted
bosonic modes, see (4.14), form the Heisenberg algebra [bσ

r , bσ
s ] = rδr,−s , where r, s ∈

Z+ 1
2

. We represent the twisted bosonic modes as endomorphisms on the space K[[V, �]]
as:

∀r ∈ Z≥0 +
1

2
, bσ

r =
√

�∂r+ 1
2
, bσ

−r =
r

√
�

xr+ 1
2 . (4.55)

Note that there is no choice of bosonic zero mode here, because the bosonic field is
twisted by the Z2 automorphism. From (4.23), the Virasoro modes take the form:

Lσ
m =

1

2

∑

r∈Z+ 1
2

◦◦ bσ
r bσ

m−r ◦◦ +
1

16
δm,0 (4.56)

Now as in Proposition 4.2, we choose the subalgebra

[Lσ
m, Lσ

n ] = (m − n)Lσ
m, m, n ≥ N , (4.57)

for an arbitrary fixed integer N ≥ −1. We now shift indices so that our operators are
indexed by integers i = 1, 2, 3, . . . for any N . For any N ≥ −1, we define the quadratic
hamiltonians:

H2
i := �Lσ

i+N−1 =
�

2

∑

r∈Z+ 1
2

◦◦ bσ
r bσ

i+N−1−r ◦◦ +
�

16
δi,1−N . (4.58)

Those have commutation relations:

[H2
i , H2

j ] = �(i − j)H2
i+ j+N−1. (4.59)
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To add linear terms, we consider the shift bN− 1
2

�→ bN− 1
2

+ 1√
�

, which creates linear

terms H1
i =

√
�bσ

i− 1
2

= �∂i . It also creates a constant term H0
N = 1

2
, but as usual

we get rid of it without changing the algebra since HN does not appear on the right-
hand-side of the commutation relations. We also add D-terms �Di for i = 1, . . . , N + 1
to the operators Hi , i = 1, . . . , N + 1, since they do not appear on the right-hand-
side of the commutation relations. The resulting quantum Airy structures are (4.53), as
representations of the algebra (4.54). ⊓⊔

These quantum Airy structures are known to produce interesting enumerative invari-
ants:

• For N = −1, the quantum Airy structure takes the explicit form

∀i ∈ Z≥1,

Hi = �∂i +
�2

2

i−2∑

j=1

∂ j∂i−1− j +
�

2

∞∑

j=i−1

(2 j − 2i + 3)x j−i+2∂ j

+
1

8
(x1)2δi,1 +

�

16
δi,2, (4.60)

where the second sum is understood to vanish for terms with j < 1. This the quantum
Airy structure associated to the Eynard–Orantin topological recursion on the Airy
spectral curve (up to trivial rescaling of the variables x i ) [37,38]. The constraints
Hi Z = 0 reproduce the well-known Virasoro constraints for the Kontsevich–Witten
tau-function of the KdV hierarchy, and Z is a generating function for intersection
numbers on the moduli space of curves [30,51,65].

• For N = 0, the quantum Airy structure takes the form:

∀i ∈ Z≥1, Hi = �∂i +
�2

2

i−1∑

j=1

∂ j∂i− j +
�

2

∞∑

j=i

(2 j − 2i + 1)x j−i+1∂ j

+
�

16
δi,1 + �D1δi,1. (4.61)

For D1 = 0, this is the quantum Airy structure associated to the Eynard–Orantin
topological recursion on the Bessel spectral curve (up to rescaling of variables x i )
[32]. In this case, the constraints Hi Z = 0 reproduce the Virasoro constraints for the
Brézin–Gross–Witten tau-function of the KdV hierarchy [1,23,45,56]. Z is now a
generating function for intersection numbers on the moduli space of curves involving
Norbury’s cohomology class [33,59].

• For arbitrary N ≥ 1, the quantum Airy structure reads (∀i ∈ Z≥1):

Hi = �∂i +
�2

2

i+N−1∑

j=1

∂ j∂i+N− j

+
�

2

∞∑

j=i+N

(2 j − 2i − 2N + 1)x j−i−N+1∂ j + �Diδi≤N+1. (4.62)

It is at the moment unknown whether the partition function that it computes has an
interesting enumerative interpretation. Remark that for N ≥ 1, the partition function
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is non-trivial only if the Di do not all vanish. In this case, is it a generating function
for some intersection numbers on the moduli space curves? Is Z a tau-function for
the KdV hierarchy? These questions certainly deserve further investigation.

4.2. Super Quantum Airy Structures from the Free Boson–Fermion VOSA. Along the
same lines as the bosonic construction of the previous section, we now construct classes
of examples of infinite-dimensional, quadratic, super quantum Airy structures as repre-
sentations of subalgebras of the super Virasoro algebra with central charge c = 3

2
:

[Lm, Ln] = (m − n)Ln+m + δm,−n

1

8
m(m2 − 1),

[Ln, Gr ] =
(n

2
− r

)
Gn+r ,

{Gr , Gs} = 2Lr+s + δr,−s

1

2

(
r2 −

1

4

)
. (4.63)

We will construct super quantum Airy structures as representations of subalgebras of
the super Virasoro algebra in both the Neveu-Schwarz (NS) sector (where r, s are half-
integers) and the Ramond sector (where r, s are integers).

Our main tool is the free boson–fermion vertex operator super algebra (VOSA), which
has N = 1 supersymmetry. We will construct our super quantum Airy structures from
untwisted and twisted representations of the free boson–fermion VOSA. So let us first
review the main features of this theory. We refer the reader to [6,42,49] for more details.

Remark 4.7. In this section we construct classes of super quantum Airy structures as
representations of subalgebra of the super Virasoro algebra in the NS and Ramond
sectors. A natural question then is whether the associated partition functions Z compute
interesting enumerative invariants. This is unclear at the moment, and certainly deserves
further investigation. For instance, it would be very interesting to see whether these super
quantum Airy structures are related to the supersymmetric generalization of JT gravity
and Mirzakhani’s recursion presented in [64].

We also remark that we only consider the free boson–fermion VOSA here, which has
N = 1 supersymmetry. But it would interesting to investigate whether super quantum
Airy structures can be constructed as representations of VOSAs with N = 2 supersym-
metry as well.

4.2.1. The Free Boson–Fermion VOSA The free boson VOA was introduced in Sec-
tion 4.1.1. Let us now introduce the free fermion VOSA. It is again generated by a single
vector ψ− 1

2
| 0 〉 ∈ V f , where V f is the space of states. Here | 0 〉 ∈ V f is the vacuum

vector. The state-operator correspondence reads:

Y (ψ− 1
2
| 0 〉 , z) =

∑

m∈Z

ψm+ 1
2
z−m−1 =

∑

r∈Z+ 1
2

ψr z−r− 1
2 , (4.64)

where the modes ψr generate the Clifford algebra {ψr , ψs} = δr,−s .
The vacuum vector | 0 〉 is annihilated by all ψk with k > 0, and the space of states

V f is the Fock space of all excited states

ψ−k1 . . . ψ−kn
| 0 〉 , k1, . . . , kn ∈ Z≥0 +

1

2
. (4.65)
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Define a normal ordering on the fermionic modes as:

◦◦ ψrψs ◦◦ =
{

ψrψs for r ≤ s,

−ψsψr for r > s.
(4.66)

Then the operators corresponding to the states in the Fock space are:

Y (ψ−k1 · · · ψ−kn
| 0 〉 , z)

=◦◦
1(

k1 − 1
2

)
!

(
d

dz

)ki − 1
2

Y (ψ− 1
2
| 0 〉 , z) . . .

1(
kn − 1

2

)
!

(
d

dz

)kn− 1
2

Y (ψ− 1
2
| 0 〉 , z) ◦◦ . (4.67)

The conformal vector | ω 〉 for the free fermion VOSA reads:

| ω 〉 =
1

2
ψ− 3

2
ψ− 1

2
| 0 〉 . (4.68)

Its operator takes the form

Y (| ω 〉 , z) =
∑

m∈Z

Lm z−m−2, (4.69)

with its modes generating the Virasoro algebra with central charge c = 1
2

:

[Lm, Ln] = (m − n)Lm+n +
1

24
m(m2 − 1)δm,−n . (4.70)

The Virasoro modes are related to the modes of the fermionic field as follows. From
(4.67), we have:

Y (| ω 〉 , z) =
1

2
◦◦

(
d

dz
Y (ψ− 1

2
| 0 〉 , z)

)
Y (ψ− 1

2
| 0 〉 , z) ◦◦

= −
1

2

∑

r1,r2∈Z+ 1
2

(
r1 +

1

2

)
◦◦ ψr1ψr2 ◦◦ z−r1−r2−2. (4.71)

Thus

Lm = −
1

2

∑

r∈Z+ 1
2

(
r +

1

2

)
◦◦ ψrψm−r ◦◦

=
1

2

∑

r∈Z+ 1
2

(
r +

m

2

)
◦◦ ψ−rψr+m ◦◦, (4.72)

where the second equality follows from a straightforward calculation.

Now let Vb be a free boson VOA, and V f be a free fermion VOSA. Let us consider
their tensor product V = Vb ⊗ V f . More precisely, the vector space is a Fock space of
all states excited by bosonic modes b−n and fermionic modes ψ−r , where we assume
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[bn, ψr ] = 0 for any n ∈ Z and r ∈ Z + 1
2

. The state-operator correspondence YV

satisfies YV (| u 〉 ⊗ | v 〉 , z) = YVb
(| u 〉 , z) ⊗ YV f

(| v 〉 , z) for | u 〉 ∈ Vb and | v 〉 ∈ V f .

We define the vacuum vector of the combined theory as | 0 〉 = | 0 〉Vb
⊗| 0 〉V f

. From

now on we will omit the tensor product symbols for clarity. The conformal vector | ω 〉
for V reads:

| ω 〉 =
1

2

(
b−1b−1 + ψ− 3

2
ψ− 1

2

)
| 0 〉 . (4.73)

Its modes are given by the sum of (4.10) and (4.72):

Ln =
1

2

∑

k∈Z

◦◦ bkbn−k ◦◦ +
1

2

∑

r∈Z+ 1
2

(
r +

n

2

)
◦◦ ψ−rψn+r ◦◦ . (4.74)

Those generate the Virasoro algebra with central charge c = 3/2:

[Lm, Ln] = (m − n)Lm+n +
1

8
m(m2 − 1)δm,−n . (4.75)

It turns out that this theory has N = 1 supersymmetry. This means that it has a
superconformal vector | τ 〉, whose modes, together with the Virasoro modes, gener-
ate a super Virasoro algebra in the NS sector. For the free boson–fermion VOSA, the
superconformal vector is [6]:

| τ 〉 = b−1ψ− 1
2
| 0 〉 . (4.76)

Its operator reads:

Y (| τ 〉 , z) =
∑

m∈Z

Gm− 1
2
z−m−1 =

∑

r∈Z+ 1
2

Gr z−r− 3
2 , (4.77)

with the modes Gr given by

Gr =
∑

m∈Z

ψr−mbm . (4.78)

These Gr , together with the Lm of (4.74), generate an N = 1 super Virasoro algebra in
the NS sector with central charge 3/2:

[Lm, Ln] = (m − n)Ln+m + δm,−n

1

8
m(m2 − 1),

[Ln, Gr ] =
(n

2
− r

)
Gn+r ,

{Gr , Gs} = 2Lr+s + δr,−s

1

2

(
r2 −

1

4

)
. (4.79)

We call this theory the free boson–fermion VOSA.
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4.2.2. Untwisted and Twisted Representations for the Free Boson–Fermion VOSA Our
goal is now to construct super quantum Airy structures as representations of subalgebras
of the super Virasoro algebra (in both NS and Ramond sectors). To this end, we will
construct untwisted and twisted representations for the free boson–fermion VOSA.

We will construct four different representations. The first one is the untwisted one,
which is obtained directly from the natural representation of the super Heisenberg alge-
bra. The super Virasoro modes take the form (4.74) and (4.78) in terms of the represen-
tation of the bosonic and fermionic modes.

For the three twisted ones, we will use three distinct Z2 automorphisms of the VOSA:

(1) The σ -twisted representation is obtained using the Z2 automorphism σ : V → V

that we already studied in Lemma 4.1, extended trivially to the fermionic sector.
It acts on the Fock space of the free boson–fermion VOSA as follows:

σ : b−k1 · · · b−km ψ−r1 · · · ψ−rn
| 0 〉

�→ (−1)
∑m

i=1 ki b−k1 · · · b−km ψ−r1 · · · ψ−rn
| 0 〉 . (4.80)

In other words, it acts on the bosons as before, but leaves the fermions invariant.
It preserves the vacuum vector | 0 〉 and the conformal vector | ω 〉. However, it
twists the boson b−1 | 0 〉, and also the superconformal vector | τ 〉 = b−1ψ− 1

2
| 0 〉.

Therefore, the σ -twisted representation will product a representation of the super
Virasoro algebra in the Ramond sector.

(2) The μ-twisted representation is obtained using the parity Z2 automorphism μ :
V → V , which sends odd vectors to minus themselves and keeps even vectors
invariant. On the Fock space, it acts as:

μ : b−k1 . . . b−km ψ−r1 · · · ψ−rn
| 0 〉

�→ (−1)nb−k1 . . . b−km ψ−r1 · · · ψ−rn
| 0 〉 . (4.81)

It preserves the vacuum vector | 0 〉 and the conformal vector | ω 〉, but it twists
the fermion ψ− 1

2
| 0 〉 and the superconformal vector | τ 〉 = b−1ψ− 1

2
| 0 〉. We will

then again obtain a representation of the super Virasoro algebra in the Ramond
sector.

(3) Our last twisted representation is the ρ-twisted representation, with ρ = σ ◦ μ :
V → V , where we combine both automorphisms. The combined Z2 automorphism
acts on the Fock space as:

σ ◦ μ : b−k1 . . . b−km ψ−r1 . . . ψ−rn
| 0 〉

�→ (−1)n+
∑m

i=1 ki b−k1 . . . b−km ψ−r1 · · · ψ−rn
| 0 〉 . (4.82)

As usual, it keeps the vacuum and the conformal vectors invariant. While it twists
both the boson vector b−1 | 0 〉 and the fermion vector ψ− 1

2
| 0 〉, it keeps the super-

conformal vector | τ 〉 = b−1ψ− 1
2
| 0 〉 invariant. Thus we will get a representation

of the super Virasoro algebra in the NS sector.

Let us now calculate the super Virasoro modes for all three Z2-twisted representations.

Lemma 4.8. • For the σ -twisted representation, the super Virasoro modes (in the

Ramond sector) take the form

Lσ
m =

1

2

∑

r∈Z+ 1
2

◦◦ bσ
r bσ

m−r ◦◦ +
1

2

∑

r∈Z+ 1
2

(
r +

m

2

)
◦◦ ψσ

−rψ
σ
m+r ◦◦ +

1

16
δm,0, (4.83a)
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Gσ
m =

∑

r∈Z+ 1
2

bσ
m−rψ

σ
r , (4.83b)

with m ∈ Z, in terms of the twisted bosonic modes and untwisted fermionic modes:

Y σ (b−1 | 0 〉 , z) =
∑

r∈Z+ 1
2

bσ
r z−r−1, Y σ (ψ− 1

2
| 0 〉 , z) =

∑

r∈Z+ 1
2

ψσ
r z−r− 1

2 . (4.84)

• For the μ-twisted representation, the super Virasoro modes (in the Ramond sector)

take the form

Lμ
m =

1

2

∑

i∈Z

◦◦ b
μ
i b

μ
m−i ◦◦ +

1

2

∑

i∈Z

(
i +

m

2

)
◦◦ ψ

μ
−iψ

μ
m+i ◦◦ +

1

16
δm,0, (4.85a)

Gμ
m =

∑

i∈Z

b
μ
m−iψ

μ
i , (4.85b)

with m ∈ Z, in terms of the untwisted bosonic modes and twisted fermionic modes:

Y μ(b−1 | 0 〉 , z) =
∑

m∈Z

bμ
m z−m−1, Y μ(ψ− 1

2
| 0 〉 , z) =

∑

n∈Z

ψμ
n z−n− 1

2 . (4.86)

• For the ρ = σ ◦ μ-twisted representation, the super Virasoro modes (in the NS

sector) take the form:

Lρ
m =

1

2

∑

r∈Z+ 1
2

◦◦ bρ
r b

ρ
m−r ◦◦ +

1

2

∑

i∈Z

(
i +

m

2

)
◦◦ ψ

ρ
−iψ

ρ
m+i ◦◦ +

1

8
δm,0, (4.87a)

Gρ
r =

∑

s∈Z+ 1
2

bρ
s ψ

ρ
r−s, (4.87b)

with m ∈ Z and r ∈ Z + 1
2

, in terms of the twisted bosonic modes and twisted

fermionic modes:

Y ρ(b−1 | 0 〉 , z) =
∑

r∈Z+ 1
2

bρ
r z−r−1, Y ρ(ψ− 1

2
| 0 〉 , z) =

∑

n∈Z

ψρ
n z−n− 1

2 . (4.88)

Proof. For the σ -twisted representation, the boson is twisted, while the fermion is not:

Y σ (b−1 | 0 〉 , z) =
∑

r∈Z+ 1
2

bσ
r z−r−1, Y σ (ψ− 1

2
| 0 〉 , z) =

∑

r∈Z+ 1
2

ψσ
r z−r− 1

2 . (4.89)

The calculation of the conformal field Y σ (| ω 〉 , z) is the same as in Lemma 4.1, since
only the boson is twisted. The superconformal field Y σ (| τ 〉 , z) is twisted, and we get:

Y σ (| τ 〉 , z) =
∑

m∈Z

Gσ
m z−m− 3

2
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= Y σ (b−1 | 0 〉 , z)Y σ (ψ− 1
2 ,z)

=
∑

r,s∈Z+ 1
2

bσ
r ψσ

s z−r−s− 3
2 . (4.90)

For the μ-twisted representation, the boson is untwisted, while the fermion is:

Y μ(b−1 | 0 〉 , z) =
∑

m∈Z

bμ
m z−m−1, Y μ(ψ− 1

2
| 0 〉 , z) =

∑

n∈Z

ψμ
n z−n− 1

2 . (4.91)

The bosonic part of the conformal field is untwisted. For the fermionic part, the calcu-
lation follows along the same lines as in Lemma 4.1. We will omit it for brevity. The
superconformal field Y μ(| τ 〉 , z) is twisted, and we get:

Y μ(| τ 〉 , z) =
∑

m∈Z

Gμ
m z−m− 3

2

= Y μ(b−1 | 0 〉 , z)Y μ(ψ− 1
2 ,z)

=
∑

i, j∈Z

b
μ
i ψ

μ
j z−i− j− 3

2 . (4.92)

For the ρ = σ ◦ μ-twisted representation, both boson and fermion are twisted:

Y ρ(b−1 | 0 〉 , z) =
∑

r∈Z+ 1
2

bρ
r z−r−1, Y ρ(ψ− 1

2
| 0 〉 , z) =

∑

n∈Z

ψρ
n z−n− 1

2 . (4.93)

The conformal field is calculated by combining the calculations for the σ -twisted and
μ-twisted representation. As for the superconformal field, it is untwisted, and we get:

Y ρ(| τ 〉 , z) =
∑

r∈Z+ 1
2

Gρ
r z−r− 3

2

= Y ρ(b−1 | 0 〉 , z)Y ρ(ψ− 1
2 ,z)

=
∑

s∈Z+ 1
2

∑

m∈Z

bρ
s ψρ

m z−m−s− 3
2 . (4.94)

⊓⊔

Let us now construct classes of super quantum Airy structures using these four rep-
resentations.

4.2.3. Super Quantum Airy Structures from Untwisted Representations of the Free Boson–

Fermion VOSA We first construct super quantum Airy structures from the untwisted
representation of the free boson–fermion VOSA.

Proposition 4.9. We represent the super Heisenberg algebra of untwisted bosonic and

fermionic modes as:

∀m ∈ Z≥1, bM
m =

√
�

∂

∂xm
, bM

−m =
m
√

�
xm, bM

0 =
√

�
∂

∂x0
,
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∀r ∈ Z≥0 +
1

2
, ψ M

r =
√

�
∂

∂θr+ 1
2

, ψ M
−r =

1
√

�
θr+ 1

2 . (4.95)

Let {x0, x1, . . .} (even) and {θ1, θ2, . . .} (odd) be a basis for the super vector space V ,

with dual sets {y0, y1, . . .} and {η1, η2, . . .}. Define the operators Hi , Fr ∈ Ŵ�(V ) for

i ∈ Zi≥0 and r ∈ Z≥0 + 1
2

:

Hi = �
∂

∂x i
+

�

2

∑

k∈Z

◦◦ bM
k bM

i+N−1−k ◦◦

+
�

2

∑

r∈Z+ 1
2

(
r +

i + N − 1

2

)
◦◦ ψ M

−rψ
M
i+N−1+r ◦◦, (4.96a)

Fr = �
∂

∂θr+ 1
2

+ �
∑

m∈Z

ψ M
r+N−1−mbM

m , (4.96b)

which generate the following subalgebra of the super Virasoro algebra in the NS sector:

[Hm, Hn] = (m − n)Hm+n+N−1,

[Hm, Fr ] =
(

m − N + 1

2
− r

)
Fm+r+N−1,

{Fr , Fs} = 2Hr+s+N−1. (4.97)

(1) Let N be any integer N ≥ 0. The linear operator H : V ∗ → Ŵ�(V ) defined by,

for all i ∈ Z≥0 and r ∈ Z≥0 + 1
2

,

H(yi ) = Hi + �Diδi≤N−1, H(ηr+ 1
2
) = Fr , (4.98)

for arbitrary constants Di , i = 0, . . . , N −1, forms a super quantum Airy structure

as a representation of the algebra (4.97).
(2) Let N be any integer N ≥ 1. The linear operator H : V ∗ → Ŵ�(V ) defined by,

for all i ∈ Z≥1 and r ∈ Z≥0 + 1
2

,

H(yi ) = Hi + �Diδi≤N−1, H(ηr+ 1
2
) = Fr ,

H(y0) = �
∂

∂x0
+

�2

2
C0

∂2

∂(x0)2
+ �D0, (4.99)

for arbitrary constants Di , i = 0, . . . , N − 1 and C0, forms a super quantum Airy

structure as a representation of the algebra (4.97) extended by

[H(y0), H(yi )] = [H(y0), H(ηr+ 1
2
)] = 0. (4.100)

(3) Let N be any integer N ≥ −1. Let Vred ⊂ V be the subspace spanned by

{x0, x1, . . .} and {θ2, θ3, . . .}. The linear operator H : V ∗
red → Ŵ�(V ) defined by,

for all i ∈ Z≥1 and r ∈ Z≥1 + 1
2

,

H(yi ) = Hi + �Diδi≤N+1, H(ηr+ 1
2
) = Fr ,
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H(y0) = �
∂

∂x0
+

�2

2
C0

∂2

∂(x0)2
+ �D0, (4.101)

for arbitrary constants Di , i = 0, . . . , N + 1, and C0, form a super quantum Airy

structure as a representation of the algebra (4.97) extended by

[H(y0), H(yi )] = [H(y0), H(ηr+ 1
2
)] = 0. (4.102)

This is a super quantum Airy structure with an extra fermionic variable, θ1.

We remark that we could have considered as separate cases setting the bosonic zero

mode bM
0 = 0. But since the result will be equivalent to the cases with an auxiliary

operator H0 with C0 = D0 = 0, we did not consider it separately.

Proof. We start with the untwisted representation, see Lemma 4.8. We represent the
Heisenberg algebra for untwisted bosonic and fermionic modes as:

∀m ∈ Z≥1, bM
m =

√
�

∂

∂xm
, bM

−m =
m
√

�
xm, bM

0 =
√

�
∂

∂x0
,

∀r ∈ Z≥0 +
1

2
, ψ M

r =
√

�
∂

∂θr+ 1
2

, ψ M
−r =

1
√

�
θr+ 1

2 . (4.103)

The super Virasoro generators (in the NS sector) take the form:

L M
n =

1

2

∑

k∈Z

◦◦ bM
k bM

n−k ◦◦ +
1

2

∑

r∈Z+ 1
2

(
r +

n

2

)
◦◦ ψ M

−rψ
M
n+r ◦◦, (4.104a)

G M
r =

∑

m∈Z

ψ M
r−mbM

m . (4.104b)

We consider the closed subalgebras {L M
m , G M

r } with m ≥ N −1 and r ≥ N − 1
2

for any
N ≥ 0, which have no central term. We shift indices to index the bosonic generators with
0, 1, 2, . . . and the fermionic ones with 1

2
, 3

2
, . . .. We define the quadratic hamiltonians:

H2
i := �L M

i+N−1 =
�

2

∑

k∈Z

◦◦ bM
k bM

i+N−1−k ◦◦

+
�

2

∑

r∈Z+ 1
2

(
r +

i + N − 1

2

)
◦◦ ψ M

−rψ
M
i+N−1+r ◦◦,

(4.105)

F2
r := �G M

r+N−1 = �
∑

m∈Z

ψ M
r+N−1−mbM

m , (4.106)

which have the commutation relations

[H2
m, H2

n ] = (m − n)H2
m+n+N−1,

[H2
m, F2

r ] =
(

m − N + 1

2
− r

)
F2

m+r+N−1,
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{F2
r , F2

s } = 2H2
r+s+N−1. (4.107)

We shift the bosonic mode bM
N−1 �→ bM

N−1 + 1√
�

to get linear terms H1
i =

√
�bM

i = � ∂

∂x i

and F1
r =

√
�ψ M

r = � ∂

∂θ
r+ 1

2

. We also get a constant term H0
N−1 = 1

2
, which we get

rid of without changing the algebra. We add D-terms �Di to the operators Hi with
i = 0, . . . , N − 1. This gives our first class of super quantum Airy structures.

We may want to consider θ1 as being an extra fermionic variable. For this we would
like to consider the smaller algebra {L M

m , G M
r } with m ≥ N and r ≥ N + 3

2
. This is

closed only for N ≥ 0. Then we proceed as in the previous case, and the D-terms that
we can add are the same. Thus, the operators are precisely the same as in the previous
case, minus the operator F1

2
. By uniqueness of the partition function, it follows that the

solution to the constraint is the same as in the previous case, and hence, in particular,
it also satisfies the constraint F1

2
Z = 0. Therefore it is the same super quantum Airy

structure.

The next thing that we can try is add an auxiliary operator H0 as in Proposition 4.2.
For this, we consider the subalgebra {L M

m , G M
r } with m ≥ N and r ≥ N − 1

2
, which

is closed for N ≥ 1. We then shift indices to index the bosonic operators with 1, 2, . . .

(without the 0) and the fermionic operators with 1
2
, 3

2
, . . .. To do this, we use the same

quadratic hamiltonians as (4.105), with commutation relations (4.107). We shift the

bosonic mode bM
N−1 �→ bM

N−1 + 1√
�

to create linear terms H1
i =

√
�bM

i = � ∂

∂x i and

F1
r =

√
�ψ M

r = � ∂

∂θ
r+ 1

2

. We also get a constant term H0
N−1 = 1

2
which we get rid of as

usual. We add D-terms �Di for i = 1, . . . , N − 1. To get a quantum Airy structure, we
need to supplement with the auxiliary operator

H0 = �
∂

∂x0
+

�2

2
C0

∂2

∂(x0)2
+ �D0, (4.108)

which commutes with all other operators. This is our second class of super quantum
Airy structures.

For the third class, we want to keep using H0, but we would like to think of θ1 as an
extra fermionic variable. For this, we consider the subalgebra {L M

m , G M
r } with m ≥ N

and r ≥ N + 1
2

for any N ≥ −1. We want to shift indices so that bosonic generators are

indexed with 1, 2, . . . and fermionic ones with 3
2
, 5

2
, . . .. The same hamiltonians (4.105)

will do the job, with commutation relations (4.107). To create appropriate linear terms,
we shift the bosonic mode bM

N−1 �→ bM
N−1 + 1√

�
as usual. We add D-terms �Di for

i = 1, . . . , N + 1, and the auxiliary operator (4.108). This gives our third class of super
quantum Airy structures.

We note that we could also consider separately the cases where we set the bosonic
zero mode bM

0 = 0, but in the end it is equivalent to the special case of the auxiliary
operator H0 with C0 = D0 = 0, and thus we do not consider it separately. ⊓⊔

4.2.4. Super Quantum Airy Structures fromσ -Twisted Representations of the Free Boson–

Fermion VOSA We now consider the σ -twisted representation of the free boson–fermion
VOSA. We construct the following two classes of super quantum Airy structures:
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Proposition 4.10. Let N be any integer N ≥ 0. We represent the super Heisenberg

algebra for the twisted bosonic modes and untwisted fermionic modes as:

∀r ∈ Z≥0 +
1

2
, bσ

r =
√

�
∂

∂xr+ 1
2

, bσ
−r =

r
√

�
xr+ 1

2 ,

∀r ∈ Z≥0 +
1

2
, ψσ

r =
√

�
∂

∂θr+ 1
2

, ψσ
−r =

1
√

�
θr+ 1

2 . (4.109)

Let {x1, x2, . . .} (even) and {θ1, θ2, . . .} (odd) be a basis for the super vector space V ,

with dual sets {y1, y2, . . .} and {η1, η2, . . .}. Define the differential operators Hi , Fi ∈
Ŵ�(V ), for i ∈ Z≥1,

Hi = �
∂

∂x i
+

�

2

∑

r∈Z+ 1
2

◦◦ bσ
r bσ

i+N−1−r ◦◦

+
�

2

∑

r∈Z+ 1
2

(
r +

i + N − 1

2

)
◦◦ ψσ

−rψ
σ
i+N−1+r ◦◦, (4.110a)

Fi = �
∂

∂θ i
+ �

∑

r∈Z+ 1
2

bσ
i+N−1−rψ

σ
r , (4.110b)

which form a representation of the following subalgebra of the super Virasoro algebra

in the Ramond sector:

[Hm, Hn] = (m − n)Hm+n+N−1,

[Hm, Fn] =
(

m − N + 1

2
− n

)
Fm+n+N−1,

{Fm, Fn} = 2Hm+n+N−1. (4.111)

(1) The linear operator H : V ∗ → Ŵ�(V ) defined by, for all i ∈ Z≥1,

H(yi ) = Hi + �Diδi≤N , H(ηi ) = Fi , (4.112)

for arbitrary constants Di , i = 1, . . . , N, forms a super quantum Airy structure as

a representation of the algebra (4.111)
(2) Let Vred ⊂ V be the subspace spanned by {x1, x2, . . .} and {θ2, θ3, . . .}. The linear

operator H : V ∗
red → Ŵ�(V ) defined by, for all i ∈ Z≥1 and j ∈ Z≥2,

H(yi ) = Hi + �Diδi≤N+1, H(η j ) = F j , (4.113)

for arbitrary constants Di , i = 1, . . . , N + 1, forms a super quantum Airy structure

with an extra fermionic coordinate θ1, as a representation of the algebra (4.111)

Proof. We start with the σ -twisted representation, see Lemma 4.8. We represent the
twisted bosonic modes and untwisted fermionic modes as:

∀r ∈ Z≥0 +
1

2
, bσ

r =
√

�
∂

∂xr+ 1
2

, bσ
−r =

r
√

�
xr+ 1

2 ,
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∀r ∈ Z≥0 +
1

2
, ψσ

r =
√

�
∂

∂θr+ 1
2

, ψσ
−r =

1
√

�
θr+ 1

2 . (4.114)

Here there is no bosonic or fermionic zero mode. From Lemma 4.8, the super Virasoro
generators take the form (4.83):

Lσ
m =

1

2

∑

r∈Z+ 1
2

◦◦ bσ
r bσ

m−r ◦◦ +
1

2

∑

r∈Z+ 1
2

(
r +

m

2

)
◦◦ ψσ

−rψ
σ
m+r ◦◦ +

1

16
δm,0, (4.115a)

Gσ
m =

∑

r∈Z+ 1
2

bσ
m−rψ

σ
r . (4.115b)

The super Virasoro algebra is in the Ramond sector.
For our first class of super quantum Airy structures, we consider the closed subalgebra

{Lσ
m, Gσ

n } with m, n ≥ N , for any N ≥ 0. It takes the form:

[Lσ
m, Lσ

n ] = (m − n)Lσ
m+n,

[Lσ
m, Gσ

n ] =
(m

2
− n

)
Gσ

m+n,

{Gσ
m, Gσ

n } = 2Lσ
m+n −

1

8
δm,0δn,0. (4.116)

To get rid of the central term, we redefine Lσ
0 �→ Lσ

0 − 1
16

, which does not change the
rest of the algebra. We shift indices as usual to define the quadratic hamiltonians, for
i ∈ Z≥1:

H2
i := �Lσ

i+N−1 =
�

2

∑

r∈Z+ 1
2

◦◦ bσ
r bσ

i+N−1−r ◦◦

+
�

2

∑

r∈Z+ 1
2

(
r +

i + N − 1

2

)
◦◦ ψσ

−rψ
σ
i+N−1+r ◦◦,

F2
i := �Gσ

i+N−1 = �
∑

r∈Z+ 1
2

bσ
i+N−1−rψ

σ
r ,

(4.117)

which satisfy the commutation relations:

[H2
m, H2

n ] = (m − n)H2
m+n+N−1,

[H2
m, F2

n ] =
(

m − N + 1

2
− n

)
F2

m+n+N−1,

{F2
m, F2

n } = 2H2
m+n+N−1. (4.118)

To create appropriate linear terms, we shift the bosonic modes bσ

N− 1
2

�→ bσ

N− 1
2

+ 1√
�

,

which creates terms H1
i =

√
�bσ

i− 1
2

= � ∂

∂x i and F1
i =

√
�ψσ

i− 1
2

= � ∂

∂θ i . This also

creates a constant term H0
N = 1

2
which we get rid of without changing the algebra. We

can also add D-terms �Di to Hi for i = 1, . . . , N without changing the algebra, which
gives our first class of super quantum Airy structures.
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For the second class, we consider a smaller closed subalgebra {Lσ
m, Gσ

n } with m ≥ N ,
n ≥ N + 1, for any N ≥ 0. The algebra is still (4.116) but with no central term now.
We shift indices as above: now Fi starts with i = 2, 3, . . .. We then shift the same
bosonic modes to create appropriate linear terms, and introduce D-terms �Di to Hi

for i = 1, . . . , N + 1. Note that we can add one more D-term, since HN+1 does not
appear anymore on the right-hand-side of the commutation relations. This gives a super
quantum Airy structure, where θ1 is considered as an extra fermionic variable (since it

does not appear in the linear terms). Note that in (4.113) we absorbed the term �

16
δi,1−N ,

which only appears for N = 0, into the arbitrary constant �D1. ⊓⊔

Remark 4.11. Note that the case with N = 0 for the second class of super quantum
Airy structures in Proposition 4.10 is interesting. Setting D1 = 1

16
to its natural value,

we get a non-trivial partition function. The pure bosonic part of the Virasoro generators
Hi is in this case equivalent to the Virasoro operators that annihilate the Brézin–Gross–
Witten tau-function of the KdV hierachy (see (4.61) and the discussion around there).
This suggests that the partition function associated to this super quantum Airy structure
may be a supersymmetric analog of the BGW tau-function, which would be worth
investigating further.

Remark 4.12. We also remark that for the second class of super quantum Airy structures
in Proposition 4.10, if the last arbitrary constant DN+1 is set to zero, then we recover the
same differential operators as the super quantum Airy structure in the first class, minus
F1. Then, by uniqueness of the partition function, we conclude that they share the same
partition function, and that F1 must also annihilate the partition function of the second
class. Thus the super quantum Airy structures in the second class differ from for the first
class only when DN+1 �= 0.

4.2.5. Super Quantum Airy Structures fromμ-Twisted Representations of the Free Boson–

Fermion VOSA We now consider the μ-twisted representation of the free boson–fermion
VOSA.

Proposition 4.13. We represent the super Heisenberg algebra for the untwisted bosonic

and twisted fermionic modes as:

∀m ∈ Z≥1, bμ
m =

√
�

∂

∂xm
, b

μ
−m =

m
√

�
xm, b

μ
0 =

√
�

∂

∂x0
,

∀m ∈ Z≥1, ψμ
m =

√
�

∂

∂θm
, ψ

μ
−m =

1
√

�
θm, ψ

μ
0 =

1
√

2�

(
θ0 + �

∂

∂θ0

)
.

(4.119)

Let {x0, x1, . . .} (even) and {θ1, θ2, . . .} (odd) be a basis for the super vector space

V , with dual sets {y0, y1, . . .} and {η1, η2, . . .}. Let Ṽ = V ⊕ K0|1, with {θ0} a basis

for K0|1. Let us define the differential operators Hi , F j ∈ Ŵ�(Ṽ ), for i ∈ Z≥0 and

j ∈ Z≥1:

Hi = �
∂

∂x i
+

�

2

∑

j∈Z

◦◦ b
μ
j b

μ
i+N−1− j ◦◦

+
�

2

∑

j∈Z

(
j +

i + N − 1

2

)
◦◦ ψ

μ
− jψ

μ
i+N−1+ j ◦◦, (4.120a)
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F j = �
∂

∂θ j
+

∑

k∈Z

b
μ
j+N−1−kψ

μ
k , (4.120b)

which form a representation of the subalgebra of the super Virasoro algebra in the

Ramond sector:

[Hm, Hn] = (m − n)Hm+n+N−1,

[Hm, Fn] =
(

m − N + 1

2
− n

)
Fm+n+N−1,

{Fm, Fn} = 2Hm+n+N−1. (4.121)

(1) Let N be any integer N ≥ 1. The linear operator H : V ∗ → Ŵ�(Ṽ ) defined by,

for all i ∈ Z≥0 and j ∈ Z≥1:

H(yi ) = Hi + �Diδi≤N−1, H(η j ) = F j , (4.122)

for arbitrary constants Di , i = 0, . . . , N −1, forms a super quantum Airy structure

as a representation of the algebra (4.121)
(2) Let N be any integer N ≥ 0. The linear operator H : V ∗ → Ŵ�(Ṽ ) defined by,

for all i ∈ Z≥1:

H(yi ) = Hi + �Diδi≤N , H(ηi ) = Fi ,

H(y0) = �
∂

∂x0
+

�2

2
C0

∂2

∂(x0)2
+ �D0, (4.123)

for arbitrary constants Di , i = 0, . . . , N and C0, forms a super quantum Airy

structure as a representation of the algebra (4.121) extended by:

[H(y0), H(yi )] = [H(y0), H(ηi )] = 0. (4.124)

We note that both of these super quantum Airy structures have an extra fermionic coor-

dinate θ0. We remark that we could also consider a third case, where we set the bosonic

zero mode b
μ
0 = 0, as in Proposition 4.2. But as it will be equivalent to the special case

of case (2) with C0 = D0 = 0 we do not consider it separately.

Proof. We start with the μ-twisted representation, see Lemma 4.8. We represent the
untwisted bosonic modes and twisted fermionic modes as:

∀m ∈ Z≥1, bμ
m =

√
�

∂

∂xm
, b

μ
−m =

m
√

�
xm, b

μ
0 =

√
�

∂

∂x0
,

∀m ∈ Z≥1, ψμ
m =

√
�

∂

∂θm
, ψ

μ
−m =

1
√

�
θm, ψ

μ
0 =

1
√

2�

(
θ0 + �

∂

∂θ0

)
.

(4.125)

We have both bosonic and fermionic zero modes. In particular, we expect to get only
super quantum Airy structures with an extra fermionic coordinate, namely θ0.

From Lemma 4.8, the super Virasoro generators (in the Ramond sector) take the
form:

Lμ
m =

1

2

∑

i∈Z

◦◦ b
μ
i b

μ
m−i ◦◦ +

1

2

∑

i∈Z

(
i +

m

2

)
◦◦ ψ

μ
−iψ

μ
m+i ◦◦ +

1

16
δm,0, (4.126a)



Super Quantum Airy Structures 513

Gμ
m =

∑

i∈Z

b
μ
m−iψ

μ
i . (4.126b)

For our first class of super quantum Airy structures, we consider the subalgebra
{Lm, Gn} with m ≥ N − 1, n ≥ N , for any N ≥ 1. We shift indices so that bosonic
operators are indexed by {0, 1, 2, . . .} and fermionic operators by {1, 2, 3, . . .}. Thus we
define quadratic hamiltonians:

H2
i := �L

μ
i+N−1 =

�

2

∑

j∈Z

◦◦ b
μ
j b

μ
i+N−1− j ◦◦

+
�

2

∑

j∈Z

(
j +

i + N − 1

2

)
◦◦ ψ

μ
− jψ

μ
i+N−1+ j ◦◦ +

�

16
δi,−N+1,

F2
i := �G

μ
i+N−1 =

∑

j∈Z

b
μ
i+N−1− jψ

μ
j ,

(4.127)

with commutation relations:

[H2
m, H2

n ] = (m − n)H2
m+n+N−1,

[H2
m, F2

n ] =
(

m − N + 1

2
− n

)
F2

m+n+N−1,

{F2
m, F2

n } = 2H2
m+n+N−1. (4.128)

To create appropriate linear terms, we shift the bosonic modes b
μ
N−1 �→ b

μ
N−1 + 1√

�
,

which creates linear terms H1
i =

√
�b

μ
i = � ∂

∂x i and F1
i =

√
�ψ

μ
i = � ∂

∂θ i . It also creates

a constant term H0
N−1 = 1

2
which we get rid of without changing the algebra. We also

add D-terms �Di , i = 0, . . . , N − 1 without changing the algebra. This creates a super
quantum airy structure with the extra fermionic variable θ0. Note that in (4.122), we

absorbed the term �

16
δi,−N+1, which only appears for N = 1, into the arbitrary constant

D0.
For our second class, we consider the larger subalgebra {Lm, Gn} with m, n ≥ N ,

for any N ≥ 0. As in Proposition 4.10, to get rid of the central term in the algebra we
redefine L

μ
0 �→ L

μ
0 − 1

16
. We shift indices as in (4.127), but now we consider Hi and Fi

with i = 1, 2, 3, . . .. We shift the bosonic modes b
μ
N−1 �→ b

μ
N−1 + 1√

�
as before, which

creates the right linear terms. We can add D-terms �Di , i = 1, . . . , N without changing
the algebra.

This is not however a super quantum Airy structure, since x0 does not appear in the
linear terms (H0 is not include in the algebra). But, as in Proposition 4.2, we notice that

the Hm and Fm only depend on x0 through the bosonic zero mode, i.e. through ∂
∂x0 .

Thus we can introduce an auxiliary bosonic operator

H0 = �
∂

∂x0
+

�2

2
C0

∂2

∂(x0)2
+ �D0, (4.129)

which commutes with all Hm , Fm , m ≥ 1. The result is a super quantum Airy structure
with an extra fermionic variable θ0.

We could consider a third class, where we set the bosonic zero mode b
μ
0 = 0. But

this will end up being equivalent to the second class with C0 = D0 = 0, and hence we
do not consider it separately. ⊓⊔
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4.2.6. Super Quantum Airy Structures fromρ-Twisted Representations of the Free Boson–

Fermion VOSA We finally consider the ρ-twisted representation of the free boson–
fermion VOA. We get:

Proposition 4.14. Let N be any integer N ≥ −1. We represent the super Heisenberg

algebra for the twisted bosonic and fermionic modes as:

∀r ∈ Z≥0 +
1

2
, bρ

r =
√

�
∂

∂xr+ 1
2

, b
ρ
−r =

r
√

�
xr+ 1

2 ,

∀m ∈ Z≥1, ψρ
m =

√
�

∂

∂θm
, ψ

ρ
−m =

1
√

�
θm, ψ

ρ
0 =

1
√

2�

(
θ0 + �

∂

∂θ0

)
.

(4.130)

Let {x1, x2, . . .} (even) and {θ1, θ2, . . .} (odd) be a basis for the super vector space V ,

with dual sets {y1, y2, . . .} and {η1, η2, . . .}. Let Ṽ = V ⊕K0|1, with {θ0} a basis for K0|1.

The linear operator H : V ∗ → Ŵ�(Ṽ ) defined by, for all i ∈ Z≥1 and r ∈ Z≥0 + 1
2

:

Hi := H(yi ) = �
∂

∂x i
+

�

2

∑

r∈Z+ 1
2

◦◦ bρ
r b

ρ
i+N−1−r ◦◦

+
�

2

∑

j∈Z

(
j +

i + N − 1

2

)
◦◦ ψ

ρ
− jψ

ρ
i+N−1+ j ◦◦

+
�

8
δi,1−N + �Diδi≤N+1,

(4.131a)

Fr := H(ηr+ 1
2
) = �

∂

∂θr+ 1
2

+
∑

s∈Z+ 1
2

bρ
s ψ

ρ
r+N−s, (4.131b)

with arbitrary constants Di , i = 1, . . . , N + 1, forms a super quantum Airy structure as

a representation of the subalgebra of the super Virasoro algebra in the NS sector:

[Hm, Hn] = (m − n)Hm+n+N−1,

[Hm, Fr ] =
(

m − N − 1

2
− r

)
Fm+r+N−1,

{Fr , Fs} = 2Hr+s+N+1. (4.132)

Note that this is a super quantum Airy structure with an extra fermionic variable θ0.

Proof. We start with the ρ-twisted representation, see Lemma 4.8. We represent the
twisted bosonic modes and twisted fermionic modes as:

∀r ∈ Z≥0 +
1

2
, bρ

r =
√

�
∂

∂xr+ 1
2

, b
ρ
−r =

r
√

�
xr+ 1

2 ,

∀m ∈ Z≥1, ψρ
m =

√
�

∂

∂θm
, ψ

ρ
−m =

1
√

�
θm, ψ

ρ
0 =

1
√

2�

(
θ0 + �

∂

∂θ0

)
.

(4.133)
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There is no bosonic zero mode here, but there is a fermionic one. Hence we expect to
get only super quantum Airy structures with an extra fermionic coordinate, namely θ0.

From Lemma 4.8, the super Virasoro generators (in the NS sector) take the form:

Lρ
m =

1

2

∑

r∈Z+ 1
2

◦◦ bρ
r b

ρ
m−r ◦◦ +

1

2

∑

i∈Z

(
i +

m

2

)
◦◦ ψ

ρ
−iψ

ρ
m+i ◦◦ +

1

8
δm,0, (4.134a)

Gρ
r =

∑

s∈Z+ 1
2

bρ
s ψ

ρ
r−s . (4.134b)

We consider the closed subalgebras {L
ρ
m, G

ρ
r } with m ≥ N and r ≥ N + 1

2
, for any

N ≥ −1, which have no central term. We shift indices to index the bosonic generators
with 1, 2, . . . and the fermionic ones with 1

2
, 3

2
, . . .. We define the quadratic hamiltonians,

for i ∈ Z≥1 and r ∈ Z≥0 + 1
2

:

H2
i := �L

ρ
i+N−1 =

�

2

∑

r∈Z+ 1
2

◦◦ bρ
r b

ρ
i+N−1−r ◦◦

+
�

2

∑

j∈Z

(
j +

i + N − 1

2

)
◦◦ ψ

ρ
− jψ

ρ
i+N−1+ j ◦◦ +

�

8
δi,1−N ,

F2
r := �G

ρ
r+N =

∑

s∈Z+ 1
2

bρ
s ψ

ρ
r+N−s,

(4.135)

which satisfy the commutation relations:

[H2
m, H2

n ] = (m − n)H2
m+n+N−1,

[H2
m, F2

r ] =
(

m − N − 1

2
− r

)
F2

m+r+N−1,

{F2
r , F2

s } = 2H2
r+s+N+1. (4.136)

To create the appropriate linear terms, we shift the bosonic modes b
ρ

N− 1
2

�→ b
ρ

N− 1
2

+ 1√
�

,

which creates terms H1
i =

√
�b

ρ

i− 1
2

= � ∂

∂x i and F1
r =

√
�ψ

ρ

r+ 1
2

= � ∂

∂θ
r+ 1

2

. It also creates

a constant term H0
N = 1

2
which we get rid of as usual without changing the algebra. We

can add D-terms �Di to Hi for i = 1, . . . , N + 1, and we get our class of super quantum
Airy structures. Note that for all of those, θ0 appears as an extra fermionic variable. ⊓⊔

Remark 4.15. The cases with N = −1 and N = 0 of Proposition 4.14 are interesting. In
the case N = −1, the bosonic part of the Virasoro generators L i is almost the same as
the N = −1 case of Proposition 4.6, which reproduces the Virasoro constraints satisfied

by the Kontsevich–Witten tau function of KdV. The only difference is in the term �

8
,

which is twice that of the bosonic case.

For N = 0 and D1 = 0, the bosonic part of L i also recovers almost exactly the
N = 0 case of Proposition 4.6, which gives the Virasoro constraints satisfied by the

BGW tau function of KdV. Again, the only difference is in the term �

8
which is twice its
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bosonic counterpart, but given that there is an arbitrary constant D1 it could be adjusted
accordingly.

Thus both cases may be thought of as supersymmetric generalizations of Kontsevich–
Witten and BGW, which deserves further investigation.

5. Conclusion and Open Questions

In this paper we have defined super quantum Airy structures, as a natural supersymmetric
generalization of quantum Airy structures. We showed existence and uniqueness of
the associated free energy, which is computed by a topological recursion that can be
understood as a supersymmetric generalization of the Chekhov–Eynard–Orantin (CEO)
topological recursion. We constructed a number of examples of finite-dimensional and
infinite-dimensional quadratic super quantum Airy structures.

There are many open questions that deserve further investigation. Here we propose
a few, in random order:

• For quantum Airy structures that come from the CEO topological recursion, it is well
known that the free energies are related to intersection numbers over the moduli space
of curves [34,35]. Is there an analogous statement for some classes of super quantum
Airy structures? Do they provide invariants of moduli spaces of supersymmetric
algebraic curves or super-Riemann surfaces?

• Super-Virasoro constraints have appeared in enumerative geometry in the context
of invariants that involve odd cohomology classes, such as Gromov–Witten invari-
ants for higher genus target curves [60]. Perhaps the appearance of odd cohomology
classes is key to uncovering the enumerative meaning of super quantum Airy struc-
tures?

• Stanford and Witten very recently proposed a supersymmetric generalization of
Mirzakhani’s recursion relation, in the context of JT gravity [64]. Since Mirzakhani’s
recursion relation can be formulated as an example of a quantum Airy structure [39],
are super quantum Airy structures related to the work of Stanford and Witten?

• The CEO topological recursion was originally discovered as a solution of the loop
equations for matrix models [24,37,38]. Is the supersymmetric generalization that
we propose in this paper related to supereigenvalue models?

• In the case of the Airy and Bessel spectral curves, the partition functions calcu-
lated by the associated quantum Airy structures construct the Kontsevich–Witten
and Brézin–Gross–Witten tau functions for the KdV hierarchy [33]. Can an analo-
gous statement be made for some of the examples of Section 4, perhaps with respect
to the super KdV hierarchy?

• Super quantum Airy structures are Z2-graded quantum Airy structures. Can G-
graded quantum Airy structures be defined for more general finite groups G?

• While the CEO topological recursion can be understood as an example of a quan-
tum Airy structure, it was originally formulated in terms of complex analysis of a
spectral curve. Is there a similar class of super quantum Airy structures that can be
understood as coming from “super spectral curves”? If so, what is the formulation of
the corresponding topological recursion in terms of the geometry of super spectral
curves?

• In this spirit, for a large class of spectral curves, the CEO topological recursion can
be used to reconstruct the quantum curve and its associated wave-function [15,46].
Can our supersymmetric generalization of topological recursion be used to study
super quantum curves [26–28] ?
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• Can examples of infinite-dimensional super quantum Airy structures be constructed
as representations of N = 2 vertex operators super algebras? Or as representations
of VOSAs more generally?

• In this paper we focused on constructing examples of quadratic super quantum Airy
structures. Are there interesting examples of higher order, finite-dimensional, super
quantum Airy structures? In the infinite-dimensional case, it would certainly be inter-
esting to generalize the higher order construction of [11] in terms of representations
of W -algebras to the supersymmetric realm.

• In Section 3.2 we proposed a classification scheme for quadratic, finite-dimensional
super quantum Airy structures. Can this classification be carried out?

This list is certainly not exhaustive. But what is clear is that super quantum Airy
structures are interesting conceptually, and that many questions remain. The time is ripe
to understand their properties and applications.15
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Appendix A: Computational Proof of Existence

To prove existence of the free energy associated to a super quantum Airy structure, we
need to show that the recursive formulae (2.30) and (2.31) produce Fg,n[a1, ..., an] that
are Z2-symmetric under permutations of indices.

Since Z2-symmetry for permutations among indices in � for Fg,n+1[i,�] is obvious
from (2.30), the only nontrivial symmetry is for the permutation of i and any other index
in �. We thus have to show that

Fg,n+2(i, j,�) = (−1)|i || j |Fg,n+2( j, i,�). (A.1)

15 During the review process of this manuscript, (parts of) the third, fourth, fifth, and seventh open questions
in the list above were subsequently addressed in [21]. In particular, it was realized that (suitably polarized)
super quantum Airy structures could be used to compute (parts of the) correlation functions for a variety of
examples related to 2d supergravity. [21] also showed a relation between certain families of super quantum Airy
structures and non-super quantum Airy structures, which provides an interpretation of the work of Stanford
and Witten [64] in terms of super quantum Airy structures. We are hoping to solve other open questions in the
near future.

http://creativecommons.org/licenses/by/4.0/
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Let us prove (A.1) by induction on 2g+n ≥ 1. For 2g+n = 1, we have F0,3(i, j, a) =
Ai ja , hence (A.1) holds thanks to (2.27a). For 2g+n = 2 there are two cases: F0,4(i, j, a1, a2)

and F1,2(i, j). It follows from (2.30) that F0,4(i, j, a1, a2) becomes

F0,4(i, j, a1, a2)

= B0
i j F0,3(0, a1, a2) + (−1)|i || j |

(
(−1)|i || j | Bk

i j Aka1a2 + Bb
ia1

A jba2 + (−1)|a1||a2| Bb
ia2

A jba1

)

= (−1)|i || j |B0
j i F0,3(0, a1, a2)

+
(
(−1)|i || j |Bk

ji Aka1a2 + Bb
ja1

Aiba2 + (−1)|a1||a2| Bb
ja2

Aiba1

)

= (−1)|i || j |F0,4( j, i, a1, a2), (A.2)

where we used (2.27c) and (2.28a) for the third equality. Similarly, for F1,2(i, j) we
have:

F1,2(i, j) = (−1)|i || j |
(

1

2
Cbc

i A jcb + (−1)|i || j | Bc
i j Dc

)

= (−1)|i || j |(−1)|i || j |
(

1

2
Cbc

j Aicb + (−1)|i || j |Bc
ji Dc

)

= (−1)|i || j |F1,2( j, i), (A.3)

where we used F1,1(0) = 0 and (2.27c) for the second equality and (2.28d) for the fourth
equality. Therefore, the Fg,n+2(i, j,�) are Z2-symmetric for 2g + n = 2 as well.

Now let us assume Z2-symmetry for Fh,m+2(i, j,�) up to 1 ≤ 2h + m < 2g + n.
(2.30) can be rewritten as:

Fg,n+2(i, j,�) =
∑

c≥0

Bc
i j Fg,n+1(c,�) +

n∑

k=1

σak⊂{ j,�}
∑

c≥0

Bc
iak

Fg,n+1(c, j,�\ak)

+
1

2

∑

b,c≥0

Cbc
i Fg−1,n+3(c, b, j,�)

+
∑

b,c≥0

Cbc
i

∑

g1+g2=g

∑

�1∪�2=�

σ�1⊂�Fg1,n1+1(b, j,�1)Fg2,n2+1(c,�2)

= B0
i j Fg,n+1(0,�) +

d∑

q=1

B
q
i j Fg,n+1(q,�) +

n∑

k=1

(−1)|i || j |σak⊂�

∑

c≥0

Bc
iak

Fg,n+1( j, c,�\ak)

+
1

2
(−1)|i || j |

∑

b,c≥0

Cbc
i Fg−1,n+3( j, c, b,�)

+
∑

b,c≥0

Cbc
i (−1)| j ||b|

∑

g1+g2=g

∑

�1∪�2=�

σ�1⊂�Fg1,n1+1( j, b,�1)Fg2,n2+1(c,�2). (A.4)
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The first term in (A.4) is Z2-symmetric in (i, j) thanks to (2.27c). For the second term, we
apply (2.30) to Fg,n+1(q,�). For the other terms, we substitute (2.30) into Fh,m′+1( j,�′)
for any h,�′ whenever j is the first index. The computation becomes rather tedious;
the final result after simplification is summarized below. The terms highlighted in red
are Z2-symmetric in (i, j) thanks to Lemma 2.19, while the other terms are manifestly
Z2-symmetric. Therefore, Z2-symmetry of the Fg,n[a1, ..., an] produced by (2.30) and
(2.31) is proved by induction, and hence the unique free energy associated to a super
quantum Airy structure exists.

Fg,n+2(i, j,�)

= B0
i j Fg,n+1(0,�) + (−1)|i || j |

(
Bb

ia1
A jba2 + (−1)|a1||a2| Bb

ia2
A jba1 + (−1)|i || j |Bl

i j Ala1a2

)
δn,2δg,0

+ (−1)|i || j |
(

1

2
Cbc

i A jcb + (−1)|i || j | Bl
i j Dl

)
δn,0δg,1

+ (−1)|i || j |
n∑

k=1

∑

c≥0

σak⊂�Fg,n(c,�\ak)

(
Bb

iak
Bc

jb + (−1)|c||ak |Ccb
i A jbak

+ (−1)|i || j |B p
i j Bc

pak

)

+
1

2
(−1)|i || j |

∑

d,c≥0

Fg−1,n+2(d, c,�)

(
Ccb

i Bd
jb + (−1)|c||d|Cdb

i Bc
jb + (−1)|i || j |B p

i j C
cd
p

)

+
1

2
(−1)|i || j |

∑

g1+g2=g

∑

�1∪�2=�

∑

c,d≥0

σ�1⊂�Fg1,n1+1(c,�1)Fg2,n2+1(d,�2)

×
(

Ccb
i Bd

jb + (−1)|c||d|Cdb
i Bc

jb + (−1)|i || j | B p

i j C
cd
p

)

+
1

2

n∑

k,l=1

∑

b,c≥0

σ{ak ,al }⊂�(−1)|b||al |Fg,n(c, b,�\{ak, al})

(
(−1)|i || j | Bb

iak
Bc

jal
+ Bb

jak
Bc

ial

)

+
1

2

n∑

k=1

∑

g1+g2=g

∑

�1∪�2=�\ak

∑

b,c,d≥0

σ{ak ,�1}⊂�Fg1,n1+2(c, b,�1)Fg2,n2+1(d,�2)

×
(

Bb
jak

Ccd
i + (−1)| j ||i | Bb

iak
Ccd

j

)

+
1

2

n∑

k=1

∑

b,c,d≥0

σak⊂�Fg−1,n+2(b, d, c,�\ak)

(
Ccd

i Bb
jak

(−1)|i ||b| + (−1)| j ||i |Bb
iak

Ccd
j (−1)| j ||b|

)

+
1

2

∑

g1+g2+g3=g

∑

�1∪�2∪�3=�

∑

b,c,d,e≥0

σ{�1,�2}⊂�

Fg1,n1+2(b, d,�1)Fg2,n2+1(c,�2)Fg3,n3+1(e,�3)
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×
(

Cde
i Cbc

j (−1)| j ||e| + (−1)|i || j |Cde
j Cbc

i (−1)|i ||e|
)

+
∑

b,c,d,e≥0

(
(−1)|i || j |Cde

i Cbc
j + Cde

j Cbc
i

)

×
(

1

8
Fg−2,n+4(c, b, e, d,�)

+
1

2

∑

g1+g2=g−1

∑

�1∪�2=�

σ�1⊂�Fg1,n1+3(b, e, d,�1)Fg2,n2+1(c,�2)

+
1

4

∑

g1+g2=g−1

∑

�1∪�2=�

(−1)|e||b|σ�1⊂�Fg1,n1+2(b, d,�1)Fg2,n2+2(c, e,�2)

)
.

(A.5)
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