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Abstract

The use of pressure-dependent plasticity models with a non-associated flow rule

causes a loss of the well-posedness for sufficiently low hardening rates. Apart

from a mesh dependence, this can result in poor convergence, or even diver-

gence of the iterative procedure employed to find an equilibrium configuration.

This can be aggravated when other nonlinear, dissipative mechanisms are intro-

duced, for instance the propagation of cracks. This is demonstrated rigorously, as

well as the regularizing effect of adding viscosity or employing aCosserat contin-

uum. In both cases the regularization is independent of the value of the internal

length scale for a fairly wide range of parameters. The spatial discretization has

been done using T-splines, and the fracture is modeled using interface elements

and propagated using mesh line insertions. The time integration has been done

by an implicit Newmark scheme. The use of proper regularization techniques

makes an implicit scheme feasible, resulting in a reduction in the number of

time steps by an order of magnitude.
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1 INTRODUCTION

Non-associated plasticity is a common framework for modeling inelasticity in geomaterials, such as soils, concrete, and

rocks.1 Different from most plasticity formats used to model the inelastic straining in metals, the flow rule is not defined

by the gradient of the yield function. Rather, a separate plastic potential is postulated and the plastic strain rate tensor

is derived by differentiating the plastic potential with respect to the stress tensor. The underlying physical reason is that

the plastic volume change which is predicted by an associated flow rule, that is, when the plastic strain rates are derived

from the yield function, vastly overpredicts themeasured plastic volume changes. Especially in kinematically constrained

situations this can lead to very different values of the normal stresses, and because of this, plastic yielding can be affected

significantly.

A consequence of using a non-associated flow rule is that the tangent operator used inNewton-Raphson procedures to

arrive at a global equilibrium state in nonlinear systems becomes non-symmetric.2While this nonsymmetry has regularly

been assumed to be the reason for slow convergence, or even failure to converge,3,4 it has recently been argued that the

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium,

provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
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convergence difficulties of plasticity models with a non-associated flow rule are actually rooted in the loss of ellipticity

which occurs at sufficiently low rates of hardening, including ideal plasticity.5 The local loss of ellipticity of plasticity

models with a non-associated flow rule, and the ensuing loss of well-posedness of associated boundary value problems has

been known for long,6 but has not been linked to issues like a severemesh dependence and failure to reach an equilibrium

state until recently.5,7While convergence difficulties can be observed clearly when using Newton-Raphson solvers, where

divergence is actually often seen, it also affects Picard-type solvers as the latter exhibit a lower rate of convergence than

is typically observed for well-posed initial/boundary value problems.

The convergence difficulties encountered in solving plasticity models with a non-associated flow rule are aggra-

vated when simultaneously considering other dissipative mechanisms. An example of geomechanical and geophysical

interest is the propagation of a shear fault, where off-fault plasticity is typically described using a Drucker-Prager or

Mohr-Coulomb yield criterion with a non-associated flow rule. Previous simulations, using finite element8,9 or finite

difference methods,10 have demonstrated the effect of including the plastic material behavior on the propagation veloc-

ity of the fault,8 and on the stresses required to initialize and maintain fracture propagation.11 While these simulations

have shown the importance of including plasticity, fine meshes were needed to obtain accurate results. Furthermore,

due to the use of explicit time-discretized methods, small time steps were required to obtain stable simulations. Even

then, the explicit character of the simulations does not guarantee that the solutions indeed satisfy the balance of

momentum.

As noted above, loss of well-posedness of the initial/boundary value problem also causes a severe discretization

dependence.12 One method to restore well-posedness, and thus to avoid an excessive mesh dependence, is the use of a

Cosserat continuum.13 Through the addition of rotational degrees of freedom, micro-curvatures are introduced in the

kinematics, which are related to microstructural couple-stresses via a bending modulus like material parameter.14 Since

the quotient of a bending modulus and the Young’s modulus has the dimension of length, an internal length scale is thus

effectively introduced in this enhanced continuum model, causing localization zones to have a finite width and there-

fore removing an excessive mesh dependence. Cosserat continua are often used in geomechanics, for instance to model

localized shear bands,15-17 to analyze failures due to deep excavations,18 and to simulate rock joints.19,20

While the Cosserat continuum has been used successfully to regularize problems that involve decohesion,12,21,22 it

has been shown more recently that it is also effective as a localization limiter for problems which involve non-associated

plasticity.5,7 As suggested above, another advantage of restoring well-posedness by using a Cosserat continuum is the

improvement in convergence characteristics of the iterative procedure which aims at satisfying the momentum balance

of the spatially discretized system.23

Another regularization method is the inclusion of viscosity in the plasticity model.24 A time scale, and hence a

length scale is introduced into the initial value problem,25-28 allowing plasticity to spread over a zone of finite dimen-

sions. However, under quasi-static loading conditions, the inclusion of viscosity only weakly regularizes the problem

and an ill-posed problem is retrieved in the rate-independent limit.29 In fully dynamic computations, the inclusion

of viscosity has also been shown to increase the stability and the maximum time step when an explicit time dis-

cretization scheme is used.30 In implicit schemes, using viscoplasticity prevents spurious oscillations for low-order

elements.31

As noted above, simulations of fault propagation with off-fault plasticity normally require extremely fine dis-

cretizations. Herein, we use spline-based discretization methods to allow coarser meshes compared to standard finite

elements.32,33 The use of splines also allows higher-order continuity to be achieved across element boundaries, resulting in

continuous, or even smooth stress fields. T-splines allow for local refinement to increase the accuracy where needed,34-36

and the propagation of discontinuities.37 Elasto-plastic simulations have shown the advantages of using this discretization

technology, resulting in an improved accuracy without being hindered by issues such asmesh locking.38 The higher-order

continuity has also been shown to be beneficial in the simulation of more complex problems, like gradient-dependent

plasticity,39 or three-dimensional domains.40

Our aim is to simulate fracture propagation in the presence of non-associated, off-fracture plasticity using an implicit

time-discretized method to analyze the efficacy of a Cosserat continuum and viscoplasticity to properly regularize the

boundary value problem for a range of values of the internal length scale, from smaller than the element size to the same

order of magnitude as the dimensions of the problem. In the presence of a propagating fracture, it is not possible to ensure

smooth stress changes. For this reason we have carefully analyzed the stabilizing effects of either using a Cosserat contin-

uum or using visco-plasticity when a sudden change in stress occurs due to stepwise crack propagation as a consequence

of finite time steps. Finally, we will analyze how the fracture propagation and plastic strains depend on the size of the

elements at the interface.
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2 GOVERNING EQUATIONS

Wewillmodel fracture propagation first using a standard continuumand subsequently using a Cosserat continuumunder

plane-strain conditions. While the equations detailed below are for a Cosserat continuum, they are presented in such a

manner that they can also directly be related to the governing equations for a standard continuum.

2.1 Continuum plasticity

The momentum balance for a continuum is given by:

𝝆ü − LT𝝈 = 0, (1)

where for a Cosserat continuum, the vector u = [ux,uy, 𝜔z]
T includes the linear displacements ux,uy, and the Cosserat

micro-rotational degree of freedom 𝜔z. With the stress vector 𝝈T = [𝜎xx, 𝜎yy, 𝜎zz, 𝜎xy, 𝜎yx,mxz∕𝓁c,myz∕𝓁c] with 𝜎xx etc. the

Cauchy stress tensor components,mxz,myz the couple-stress tensor components, and𝓁c the Cosserat internal length scale,

we have:

𝝆 =

⎡
⎢⎢⎢⎣

𝜌 0 0

0 𝜌 0

0 0 Θ

⎤
⎥⎥⎥⎦

LT =

⎡
⎢⎢⎢⎢⎣

𝜕

𝜕x
0 0 0 𝜕

𝜕y
0 0

0 𝜕

𝜕y
0 𝜕

𝜕x
0 0 0

0 0 0 −1 1 𝓁c
𝜕

𝜕x
𝓁c

𝜕

𝜕y

⎤
⎥⎥⎥⎥⎦
, (2)

where 𝜌 is the density and Θ = 2𝜌𝓁2c∕(1 + 𝜈) the rotational inertia.21

As usual the stress rate is linearly related to the strain rate by:

𝝈̇ = De(𝜺̇ − ̇𝜺p), (3)

with De the linear-elastic stiffness matrix for a Cosserat continuum. The total strain vector 𝜺 is defined as 𝜺 =

[𝜀xx, 𝜀yy, 𝜀zz, 𝜀xy, 𝜀yx,𝓁c𝜅xz,𝓁c𝜅yz], with the total strain related to the displacements by:

𝜺 = Lu. (4)

To keep matters as simple as possible we will use Drucker-Prager plasticity with a non-associated flow rule, defined

by the yield function:

f =
√
3J2 + 𝛼p − k, (5)

and the plastic potential function:

g =
√
3J2 + 𝛽p, (6)

with J2 the second invariant of the deviatoric stresses and p the pressure (positive for tension). For the Cosserat continuum

the extended definition for J2 has been used:13,21,41

J2 =
1

2
𝝈
TP𝝈 =

1

2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜎xx

𝜎yy

𝜎zz

𝜎xy

𝜎yx

mxz∕𝓁c

myz∕𝓁c

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2∕3 −1∕3 −1∕3 0 0 0 0

−1∕3 2∕3 −1∕3 0 0 0 0

−1∕3 −1∕3 2∕3 0 0 0 0

0 0 0 1∕2 1∕2 0 0

0 0 0 1∕2 1∕2 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜎xx

𝜎yy

𝜎zz

𝜎xy

𝜎yx

mxz∕𝓁c

myz∕𝓁c

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (7)
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The constants 𝛼, 𝛽, and k are related to the angle of internal friction 𝜙, the dilatancy angle 𝜓 , and the cohesion c by:

𝛼 =
6 sin𝜙

3 − sin𝜙
𝛽 =

6 sin𝜓

3 − sin𝜓
k = c

6 cos𝜙

3 − sin𝜙
.

For the cases in which viscoplasticity is included as a regularization mechanism, a linear version of the Perzyna model is

used, so that:2

𝜺̇
p =

f

𝜂𝜎0
m if f > 0, (8)

with 𝜂 the viscosity parameter, 𝜎0 the reference stress, andm the direction of plastic flow, given by:

m =
m∗

||m∗|| m∗ =

{
𝜕g

𝜕𝜎
if p ≤ k

(De)−1(𝝈trial − 𝝈
apex) if p > k

, (9)

using the trial stress 𝝈trial and the stress at the apex of the Drucker-Prager cone 𝝈apex.

The viscosity parameter sets the time scale over which the plastic strain spreads. The use of viscoplasticity introduces

a length scale, which can be approximated as:25,28

𝓁v =
2𝜂𝜎0√
𝜌E

. (10)

The width of the localization zone is of the same order as this length scale, and is weakly dependent on how the

loading is applied.25

When no viscosity is included, the yield function is bounded by f ≤ 0 and the plastic flow is determined from:

𝜺̂
p = 𝜆̂m, (11)

with □̂ indicating the path-dependent derivative of the variable, in contrast to the time-dependent derivatives indicated

by □̇ in, for instance, the acceleration in Equation (1). This distinction is made to differentiate between the physical

concept of time and an abstract concept used, for instance, in inviscid plasticity, where ”time” is merely used to order the

sequence of events.

2.2 Discrete fracture

The fracture is modeled using a slip model, which relates the tangential component of the traction 𝜏t on the faces of the

fracture to the slip to differences in tangential displacements, ⟦dx⟧ and the normal stress 𝜏nwhich compresses the fracture:

𝜏t = fr𝜏n + (fp − fr) 𝜏n exp(−2⟦dx⟧∕Dc), (12)

with f r and f p the residual and peak coefficients of friction. The maximum difference in tangential displacement ⟦dx⟧
is treated as a history variable, indicating the maximum tangential displacement difference between the top and bottom

walls that has occurred. Therefore, ⟦dx⟧ is equal to the tangential displacement ⟦ut⟧, or constant if the tangential dis-
placement is lower than themaximum tangential displacement that has occurred previously. Finally,Dc is the weakening

distance, given by Dc = 2c∕(fp𝜏n − fr𝜏n) with c the fracture energy. This exponential degradation function, shown in
Figure 1, was preferred to the more commonly used linear degradation model8,42 to retain a smooth function which does

not artificially disturb the convergence of the nonlinear iterative solver.

To prevent negative fracture opening heights, a dummy stiffness dn has been used:

𝜏n =

{
dn⟦un⟧ if ⟦un⟧ < 0

0 if ⟦un⟧ ≥ 0
, (13)
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F IGURE 1 Comparison of the used exponential slip model

with the more commonly used linear slip model8,42 [Color figure can

be viewed at wileyonlinelibrary.com]

with ⟦un⟧ the jump in the normal displacement at the interface. This allows the normal component of the traction to be
linearly related to the opening height, facilitating the evaluation of Equation (12). Finally, the Cosserat microrotation is

assumed to be continuous in the case of compressed fractures. This is enforced by using a dummy stiffness d𝜔 for the

couple-traction at the interface:

𝜏𝜔∕𝓁
2
c = d𝜔⟦𝜔⟧. (14)

It is noted that due to the inclusion of the discrete slip model, two dissipative mechanisms are present which can be

related to inelastic effects. The slip model can represent the small-scale yielding which is localized in an area near the

fracture, whereas the Drucker-Prager plasticity models the off-fracture large-scale plasticity in the interior of the domain.

3 DISCRETIZATION AND INTEGRATION

3.1 Spatial discretization

The spatial discretization has been done using T-splines.32,43 This allows accurate displacement and stress fields to be

obtained with a reduced number of degrees of freedom compared to the use of Lagrangian interpolants,44 and allows

refinement near the fracture in contrast to B-splines. Another advantage of using T-splines is the ability to insert interface

elements only for the fractured elements. The T-splines are used in a similar manner as Lagrangian finite elements by

using Bézier extraction, allowing the internal force vector to be constructed in an element-wise manner.34,45 While the

displacement and Cosserat rotation can use unequal order interpolation polynomials, it was chosen to use cubic T-splines

for both of these variables. The use of cubic T-splines results in a 2 inter-element continuity for the displacements and
rotations, and hence in continuous and smooth stress fields. The spatial integration is performed using a standard Gauss

integration scheme.

The fracture is modeled using interface elements and it is propagated using mesh line insertions.35,37 By inserting

mesh lines in the parametric domain at the same location as pre-existing mesh lines, the inter-element continuity can be

reduced locally. If the fracture had been propagated by locally reducing from a 2 to a −1 continuity, the control points

of the mesh would have changed location, necessitating a remap not only of the displacements, but also a recalculation

of the history variables at the new control points.46 To prevent this, and to eliminate a source of potential errors, we have

pre-inserted a 0 continuity along a predetermined fracture path. Mesh line insertion to reduce the continuity from 0
to −1 results in only a duplication of the control point at the interface, without altering the location of this or any other

control point. Therefore, the state and history variables associated with the duplicated control points can easily be moved

to the new control points.

The fracture is propagated if for all integration points in the element ahead of the fracture the shear stress 𝜎yx exceeds

the mode-II fracture strength. This fracture strength depends on the normal stresses through ft = fp𝜎yy, assuming a

horizontal fracture.8

3.2 Boundary conditions

On the boundaries of the domain, absorbing boundary conditions are imposed to prevent reflecting stress waves. Assum-

ing the effects of the Cosserat rotation are small on the overall wave propagation near the edges of the domain, these
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absorbing boundaries are defined in a local coordinate system by:

𝝉 = Cu̇, (15)

with the damping matrix, which depends on the pressure and shear wave speeds cp and cs, as follows:47-49

C = 𝜌

⎡
⎢⎢⎢⎣

cp 0 0

0 cs 0

0 0 0

⎤
⎥⎥⎥⎦

3.3 Integration of the stress rate-strain rate relation

At integration point level, the stresses are predicted assuming elastic deformations in the current time increment:

𝝈
trial = De(But+Δt − 𝜺

p
t ), (16)

with B=LN andN contains the cubic interpolants of the element at the integration point. The trial stress is subsequently

substituted in the yield function, Equation (5), to determine whether plastic deformations occur or not. In the case of

plastic deformations, the following two discrete conditions must be fulfilled:

0 = 𝝈 − (𝜎trial − Δ̂𝜆Dem), (17a)

0 = f −
𝜂𝜎0

Δt
Δ̂𝜆, (17b)

while the case without viscosity is retrieved by setting 𝜂 = 0. Δ̂𝜆 is related to the plastic strain increment through Δ̂𝜺p =

Δ̂𝜆m.

Equations (17) are solved in a local iteration loop:

[
𝝈

Δ̂𝜆

]

j+1

=

[
𝝈

Δ̂𝜆

]

j

− C−1
eff

[
𝝈 − (𝜎trial − Δ̂𝜆Dem)

f −
𝜂𝜎0
Δt
Δ̂𝜆

]

j

, (18)

with the effective compliance given by:

Ceff =

⎡
⎢⎢⎣

I + Δ̂𝜆jD
e 𝜕m

𝜕𝝈j
Dem

(
𝜕f

𝜕𝝈j

)T
−

𝜂𝜎0
Δt

⎤
⎥⎥⎦
, (19)

which is also used to obtain the consistent stiffnessmatrixDeff when plasticity occurs by selecting the 7× 7 submatrix after

inverting, starting from the top left corner of thematrix, andmultiplying withDe
(
I − Δ̂𝜆De 𝜕m

𝜕𝜎trial

)
. In the absence of plas-

ticity the effective stiffness equals the elastic stiffness, and if the pressure exceeds that at the apex of the Drucker-Prager

yield cone, the material stiffness matrix Deff = 0 is used in the absence of viscosity.2

3.4 Time discretization

The temporal discretization is done using aNewmark scheme, allowing the velocity and acceleration related to the control

points at the new time to be described in terms of the old velocity and acceleration, and the new displacements:

u̇t+Δt =
𝛾

𝛽Δt
(ut+Δt − ut) −

(
𝛾

𝛽
− 1

)
u̇t −

(
Δt𝛾

2𝛽
− Δt

)
üt, (20)
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üt+Δt =
1

𝛽Δt2
(ut+Δt − ut) −

1

𝛽Δt
u̇t −

(
1

2𝛽
− 1

)
üt, (21)

with 𝛽 and 𝛾 time integration parameters. This time discretization requires the velocity and acceleration at the old time

to be saved in the control points. The resulting discretized equations are given in Appendix A.

Since the resulting discretized equations are dependent on the displacements at the new time, an iterative

Newton-Raphson algorithm is used to obtain the new displacements. The convergence at the end of iteration j is evaluated

using an energy-based criterion:

errorj =
𝜖j

𝜖1
=
f
j

int
⋅ duj

f1int ⋅ du
1
, (22)

with f int the internal force vector obtained using the newdisplacements, and du the displacement increment added during

the iteration.

The fracture propagation criterion is checkedwhen the converged solution has been reached. Upon propagation of the

fracture, and completion of the accompanyingmesh line insertion, additional Newton-Raphson iterations are carried out

until convergence is reached for the new extension of the discontinuity. This results in a fully implicit time discretization,

where both the displacements at t + Δt and the fracture length at t + Δt are used to update the time step.

3.5 Implementation aspects

To check whether the fracture should propagate or not, stresses must be known in the extension of the fracture. Interpo-

lation between integration points is inconvenient and not necessarily accurate, thus additional zero-weight integration

points are introduced along the element boundaries. These zero-weight integration points are treated in the samemanner

as the normal integration points, and therefore keep track of the plastic strains at the element boundaries. This allows the

stresses required for fracture propagation to be determined in a straightforward manner, and facilitates postprocessing of

the plastic strains and the stresses near the discontinuity and the boundaries of the domain. Since T-splines have been

used, the displacement gradients can be determined uniquely at the edges of elements, and the stresses are continuous

between neighbouring elements.

To maintain quadratic convergence when using the Newton-Raphson method to achieve equilibrium at structural

level, the effective stiffness for the first iteration of the next time step was determined from the final state at the end of the

previous time step. This generally enhances convergence compared to startingwith a fully elastic stiffnessmatrix, or using

the current stress state at the first iteration. It also removes most oscillations due to integration points switching from

elastic unloading to plastic loading, and vice versa. This can also be achieved by including a small amount of viscosity,

resulting in the return-mapping being performed to states with f >0.

It is finally noted that three different sets of history-dependent variables are used. The first type of history variable

is the discontinuity length, and the accompanying discretization using the T-spline mesh. This is only updated if the

fracture propagates. The second type is the time-dependent velocity and acceleration at the old time step, u̇t and üt. These

values are updated once the complete time step, including possible fracture propagation, has converged fully. This ensures

that updating the velocity and accelerations only influences the results for the next time step. The final set of history

variables are the path-dependent variables, here the plastic strains at the old time, 𝜺
p
t , and the tangential displacement

at the interface, ⟦dx⟧t. These variables depend on the loading path, and therefore on the maximum value attained at

convergence in the time step. To properly include the loading and unloading that occurs around the fracture during

fracture propagation, these history variables are updated when the discontinuity is propagated and at the end of each

time step. This results in the variables 𝜺
p
t and ⟦dx⟧t either coming from the previous time step (at time t), or from the

current time step at the instant that the fracture has propagated. It allows the history variable to capture a loading-fracture

propagation-unloading behavior within the time step, avoiding spurious plastic strains resulting from too high stresses

before fracture propagation.

4 CASE STUDY: PLASTICITY WITHOUT FRACTURE PROPAGATION

We first show the effects of viscoplasticity and a Cosserat continuum on the convergence in the absence of propagating

fractures. The domain consists of a rectangle, 1 m× 2 m, with a central edge fracture of 0.25 m, which cannot propagate,
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(A) Geometry (B) Bézier extracted mesh

F IGURE 2 Geometry and mesh used for the case

without fracture propagation. (A) Geometry; (B) Bézier

extracted mesh

(A) Deformations (B) Plastic strain

F IGURE 3 Deformations and plastic

strain at t= 1.02 s for tt = 0.4 MPa [Color figure

can be viewed at wileyonlinelibrary.com]

see Figure 2(A). A normal traction tn = 1.0 MPa is applied to the boundaries, and two values for the shear tractions are

used, tt = 0.2 MPa with time step sizeΔt = 0.1 ms and tt = 0.4 MPa withΔt = 1 ms. The applied tractions result in plastic

strains near the fracture tip. To start from an initial configuration which is in equilibrium no plasticity is allowed for the

first 1.0 s of the simulation. Thereafter, plasticity is allowed and a sudden burst of plasticity occurs around the fracture

tip, as shown in Figure 3. Due to inertial effects, the plastic strain evolves over several time steps. This case was chosen as

being representative of the sudden changes in stress, and the accompanying plastic strain, which happen during fracture

propagation in more complex cases.

The material is assumed to be characterized by a value for Young’s modulus E= 10 GPa, Poisson ratio 𝜈 = 0.25,

Cosserat shear modulus Gc = 4 GPa, and density 𝜌 = 2500 kg∕m3. The non-associated Drucker-Prager plasticity model is

cohesionless (c= 0), has an angle of internal friction 𝜙 = 30◦, and is nondilatant (dilatancy angle 𝜓 = 0◦). For the viscos-

ity parameter, several values have been investigated: 𝜂𝜎0 = 0 Pa ⋅ s (no viscoplasticity), 𝜂𝜎0 = 103 Pa ⋅ s, 𝜂𝜎0 = 104 Pa ⋅ s,

𝜂𝜎0 = 105 Pa ⋅ s, and 𝜂𝜎0 = 106 Pa ⋅ s. Using Equation (10), these values for the viscosity parameter can be shown to cor-

respond to the length scales 𝓁v = 0.4, 4, 40 mm (comparable to the element size), and 400 mm (comparable to size of

the total domain), respectively. For the Cosserat continuum the following values of the internal length scale have been

used: 𝓁c = 0.1 mm, 𝓁c = 1.0 mm, 𝓁c = 10 mm, and 𝓁c = 100 mm. Since the width of the localization zone in a Cosserat



HAGEMAN et al. 9

F IGURE 4 Convergence behavior

for a standard continuum with and

without visco-plasticity, and using a

Cosserat continuum without

visco-plasticity for tt = 0.2 MPa,

Δt = 0.1 ms [Color figure can be viewed

at wileyonlinelibrary.com]
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continuum is approximately four to five times the internal length scale 𝓁c,21 the distance over which a sharp interface is

smoothened, is comparable for 𝓁c = 0.1 mm and 𝓁v = 0.4 mm, and so on.

The domain was discretized using cubic T-splines. Near the fracture 40 Bézier extracted elements were used in the

horizontal direction, while just 10 large elements were used away from the fracture, as shown in Figure 2(B). Twenty

elements were used in the vertical direction (six small, six medium, and eight large elements). The refinement near the

interfacewas chosen to accurately capture the stress and plasticity near the fracture tip, while using the increased accuracy

of T-splines to allow for larger elements away from the centre. The Newmark time discretization scheme was used with

𝛽 = 0.4 and 𝛾 = 0.75. The Newton-Raphson scheme was considered as converged when error<10−9.

The convergence during the first step in which plasticity occurs, is shown in Figure 4 for the case with tt = 0.2 MPa.

The simulation which uses a standard continuum without viscoplasticity does not converge. Adding viscosity reduces

the oscillations, and results in a quadratic convergence rate for all simulations. This convergence is fairly independent

of the value of the viscosity parameter. Only for very large values the convergence further improves, for example, for

𝜂𝜎0 = 106 Pa ⋅ s.

The results for a Cosserat continuum exhibit quadratic convergence without adding viscosity, as shown in Figure 5.

The quadratic convergence is independent of the value of the internal length scale and an increase of the internal length

scale only slightly improves the convergence.

The results for a twice as high shear stress and a time stepwhich is 10 times as big, are shown in Figure 6. Similar to the

first case, the use of viscosity or a Cosserat continuum result in a quadratic rate of convergence, independent of the value
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F IGURE 7 Geometry used for the combination of fracture

propagation and non-associated plasticity

of the internal length scale. Adding a small amount of viscoplasticity in the Cosserat continuum does not significantly

alter the convergence behavior, but using a large value for the viscosity results in an improved convergence, just like when

using a large value for the internal length scale in the Cosserat continuum.

The results show that both the Cosserat continuum and viscoplasticity regularize the ill-posed character of the bound-

ary value problem introduced by the use of a non-associated flow rule in plasticity. Comparing the convergence between

the standard continuum with viscoplasticity and the Cosserat continuum shows that both these methods obtain similar

convergence rates, and that an increase in the internal length scale does not significantly alter the convergence as long as

the problem is not dominated by it.

5 FRACTURE PROPAGATION

To show the ability of aCosserat continuum to simulate fracture propagation in combinationwith off-fault, non-associated

plasticity, a typical fracture propagation/plasticity problem has been simulated.8 A rectangular domain is considered of

500 m× 250 m with a 75 m fracture at the center, shown in Figure 7. Absorbing boundary conditions are applied, and

tractions txx = 8.55 MPa, tyy = 10 MPa, txy = tyx = 1.8 MPa have been imposed. Simulations have been carried out using a

Cosserat continuumwithout viscoplasticity, and a standard continuumusing viscoplasticity with 𝜂𝜎0 = 105 Pa ⋅ s (𝓁v = 40

mm). Drucker-Prager plasticity has been used with a cohesion c= 0, 𝜙 = 31◦, and 𝜓 = 0◦. A Cosserat length scale 𝓁c = 10

mm has been used. All other properties are identical to those in Section 4.

A mesh of (160/80/40)× 40 Bézier elements has been used in Section 5.1. Similar to the previous case, coarser ele-

ments are used away from the interface: 160 small elements in a horizontal sense close to the interface, 80 elements in
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F IGURE 8

Deformations at t= 1.15 s

[Color figure can be viewed at

wileyonlinelibrary.com]

F IGURE 9 Cosserat rotation

at t= 1.15 s [Color figure can be

viewed at wileyonlinelibrary.com]

a horizontal sense as medium sized elements, and 40 large elements away from the interface. To investigate the effect of

the element size, two more meshes are used in Section 5.2: A mesh using (320/160/80)× 50 elements with similar coars-

ening as the first mesh, and a mesh with an extra refinement layer near the interface resulting in (640/320/160/80)× 56

elements. The vertical element size was chosen such that all but the largest elements were square.

In Section 5.1 a time step sizeΔt = 1 ms is used. This step size corresponds to the fracture propagating approximately

every other time step. This is in contrast to explicit time integration schemes, which require several time steps per discrete

fracture propagation.9 In Section 5.2 a smaller time step will be used to eliminate the time step size as a possible source

of errors, with the time step size chosen such that approximately 10 time steps are needed for a pressure wave to pass

through the smallest element: Δt = 0.2 ms for the coarse mesh, Δt = 0.1 ms for the mediummesh, and Δt = 0.04 ms for

the finest mesh. All simulations first use a time step ofΔt = 10 ms to reach an initial equilibrium condition at t= 1 s, after

which plasticity and fracture propagation is allowed, and the smaller time step sizes are used.

The fracture is allowed to propagate along the predefined horizontal path, reaching the end of the domain after approx-

imately 0.25 s. The computed displacements are shown in Figure 8. Figure 9 shows theCosseratmicro-rotation being close

to zero in most of the domain. The rotation is highest near the fracture tip, which is the location where most plasticity

occurs and therefore requires a strong regularizing effect. Since the Cosserat rotation is close to zero at the domain bound-

aries, the assumption is validated that the Cosserat rotation does not need to be prescribed in the absorbing boundary

conditions.
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5.1 Convergence behavior

An example of the convergence behavior using a standard continuum equippedwith viscoplasticity is shown in Figure 10.

The peaks in the error are a result of the fracture propagating once convergence has been reached, thereby requiring the

error associated with the propagated fracture to be reduced again. Time steps in which no fracture propagation occurs,

converge in two to three iterations, and time steps with fracture propagation show a quadratic convergence rate after the

fracture has propagated (although with some oscillations during the first few iterations).

Figure 11 shows the convergence using a Cosserat continuum.No viscoplasticity was included as regularization in this

simulation. Similar to the standard continuumwith viscoplasticity, the steps inwhich no fracture propagation is observed,

show quadratic convergence, and converge within two to three iterations. When the fracture propagates, quadratic con-

vergence can be observed starting from the new position. As for viscoplasticity, all steps converge within 10 iterations,

also when the fracture propagates, but oscillations are now not observed.

These results confirm the results from Section 4 that a Cosserat continuum properly regularizes the ill-posedness

introduced by non-associated plasticity, and as a consequence, results in vastly improved convergence characteristics

compared to a standard continuum. Indeed, quadratic convergence is obtained even in the presence of abrupt changes

in the stress field due to fracture propagation. A standard continuum, however, requires the inclusion of viscoplasticity

to regularize the ill-posedness. For both cases, an implicit time discretization scheme can use large time steps without

becoming unstable and without convergence issues. The simulation with the 160× 40 mesh only requires 350 time steps

(including 100 to apply the initial conditions) which corresponds to a new interface element fracturing every few steps.

This is very different frommost explicit time integration schemes, which often require a number of time steps per discrete

fracture propagation step.
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F IGURE 12 Plastic strain after t= 1.2 s

around the right fracture tip using a Cosserat

continuum (𝓁c = 10 mm). (A) 160 × 140

(three refinement layers); (B) 320 × 50 (three

refinement layers); (C) 640 × 56 (four

refinement layers) [Color figure can be

viewed at wileyonlinelibrary.com] (A) 160×40 (3 re�nement layers)

(B) 320×50 (3 re�nement layers)

(C) 640×56 (4 re�nement  layers)

5.2 Element size dependence

Simulations using three meshes have been carried out to analyze the influence of the element size in a Cosserat contin-

uum with interface elements. For comparison, simulations have also been carried out using a standard continuum with

viscoplasticity, using the viscosity parameter from the previous section (𝜂𝜎0 = 105 Pa ⋅ s).

The results for the Cosserat continuum are shown in Figure 12. The plastic strain for the coarsest mesh shows a

clear effect of the interface elements. Due to the element-wise fracture propagation, stress concentrations occur near the

fracture tips, whereas lower stresses occur in the center of the interface elements. This results in more plastic strain near

the beginning and the end of the interface elements, while less plastic strain occurs in the centre of the interface elements.

When the mesh is refined, the influence of the interface element size becomes smaller. The results using the 320× 50

mesh still show a slight increase in plastic strain corresponding to the element size, but further refining the mesh reduces

this effect.

For the plastic strain away from the interface the effect of the interface element size becomes smaller. While the

coarsest mesh still shows a clear influence of the element size near the interface, the plastic strain is smoothened in the

interior. The other two meshes show similar results, with near to no difference in the plastic strains in the interior.

The same element size dependence is also seen when a standard continuum with viscoplastic regularization is used,

as shown in Figure 13. Similar to the Cosserat continuum, peaks in the plastic strain are observed near the fracture, and

these peaks reduce upon mesh refinement. The effect of the ”plasticity peaks” can also be seen in the shear stress near

the discontinuity, Figure 14. The uneven plastic strains result in oscillations in the shear stress along the fracture for the

coarsest mesh. Similar to the results for the plastic strains, the finer meshes show smaller oscillations, with the finest

mesh only showing a peak in the shear stress at the location of the original fracture tip.

Considering the fracture length, shown in Figure 15, the influence of the element size is also observed. Due to the

element-wise fracture propagation, steps in the fracture length occur for all meshes, with the steps most notable for the

coarsest mesh. While the coarsest mesh shows a difference in fracture length compared to the two other meshes, all three

meshes result in a fracture propagation velocity of approximately 80% of the shear wave velocity. Furthermore, while

small differences in plastic strain are observed between the finer meshes, these differences do not appear to significantly

influence the stress, and therefore the fracture propagation.

5.3 Influence of the internal length scale

In Section 4 it has been shown that increasing the internal length scale, either the Cosserat length scale or the viscosity

parameter, results in an improved convergence. However, when the original problem does not include viscoplasticity
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F IGURE 13 Plastic strain after

t= 1.2 s around the right fracture

tip using a standard continuum

with 𝜂𝜎0 = 105 Pa ⋅ s. (A) 160 × 40

(three refinement layers); (B) 320 × 50

(three refinement layers); (C) 640 × 56

(four refinement layers) [Color figure

can be viewed at wileyonlinelibrary.com]

(A) 160×40 (3 re�nement layers)

(B) 320×50 (3 re�nement layers)

(C) 640×56 (4 re�nement layers)

F IGURE 14 Shear stress at t= 1.2

s around the right fracture using a

Cosserat continuum. (A) 160 × 40 (three

refinement layers); (B) 320 × 50 (three

refinement layers); (C) 640 × 56 (four

refinement layers) [Color figure can be

viewed at wileyonlinelibrary.com]
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F IGURE 15 Fracture length using

the 160×40, 320×50, and 640×56 meshes

using the standard and Cosserat

continua [Color figure can be viewed at

wileyonlinelibrary.com]
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an increase of the viscosity parameter may more and more depart from the original problem. This is demonstrated in

Figure 16 through simulations (320× 50mesh) for high values of the viscosity: 𝜂𝜎0 = 106 Pa ⋅ s, 𝜂𝜎0 = 107 Pa ⋅ s and 𝜂𝜎0 =

5 ⋅ 107 Pa ⋅ s. Increasing the viscosity reduces the ”plasticity peaks,” but also limits the plastic strain that is obtained.

Furthermore, since the viscoplasticity model allows stresses to exceed the yield surface, higher stresses are present near

the fracture tip, resulting in a slightly faster fracture propagation.

Simulations using larger Cosserat length scales, Figure 17, show that increasing the Cosserat length scale does not

alter the fracture propagation as much as adding viscosity, until the Cosserat length scale becomes similar to the size

of the plastically deformed zone. While the simulations with the viscoplastic continuum preserve the triangular shape

of the zone in which plastic deformations occur, increasing the Cosserat length scale rounds this zone near the fracture

tip. An increase of the Cosserat length scale also smoothens the stresses, resulting in smaller plastic strains near the

discontinuity. The results for a large Cosserat length scale show that this length scale suppresses the plastic deformations

more compared to using a high amount of viscoplasticity. This is the opposite of the behavior for lower length scales,

where the Cosserat continuum allows for more plastic straining.
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F IGURE 17 Plastic strain after t= 1.2 s

around the right fracture tip using a Cosserat

continuum with the 320× 50 mesh.

(A)𝓁c = 0.1 m (B)𝓁c = 1 m (C)𝓁c = 5 m [Color

figure can be viewed at

wileyonlinelibrary.com]

6 CONCLUDING REMARKS

A Cosserat continuum as well as a standard continuum, each with and without viscosity, have been used to simulate

the combined problem of fracture propagation and non-associated, off-fault plasticity. Since non-associated plasticity

can render the boundary value problem ill-posed for low positive or zero hardening rates, enrichment using a Cosserat

continuum or a viscoplastic regularization is necessary to retrieve a well-posed problem. For the first time, the efficacy

of these two regularization strategies has been compared and quantified for non-associated plasticity, using a range of

values for the internal length scale. In particular, the effects on the convergence of the nonlinear solution strategy, in

this case Newton-Raphson, has been investigated. Moreover, the effects of two dissipative mechanisms—fracture and

plasticity—acting simultaneously, have been assessed.

The first series of simulations employ a stationary crack. The simulationswith a standard continuum show issueswith

convergence, which could only be resolved by adding viscosity and/or using a Cosserat continuum. Then, a quadratic

convergence for a Newton-Raphson solver results, indicating that for both enrichments a well-posed initial value problem

is obtained. An increase of the Cosserat length scale or viscosity parameter improves the convergence, but very large

values may alter the physics and result in solutions with limited plastic deformations. More complex simulations which

include a propagating fracture lead to the same conclusions.

Finally, simulations have been carried out to investigate the effect of the element size in the presence of fractures. They

show that in the interior of the domain a coarse mesh is sufficient to accurately represent the deformations, stresses, and

plastic strains.However, closer to the fracture small elements are needed to smoothen the plastic strain fields. Else, ”plastic

strain peaks” can be observed which are caused by the element-wise fracture propagation, and are therefore removed

only when using smaller elements at the interface. Increasing the value of the internal length scale shows that, while the

convergence is further improved, and ”plasticity peaks” are reduced, it may at some point start to alter the physics of the

problem, resulting in smaller plastic strains and changes in the region in which plastic deformations occur.
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APPENDIX . INTERNAL FORCE VECTOR AND TANGENTIAL STIFFNESS MATRICES

The governing equations have been discretized using a finite element method, combined with Bézier extracted

T-splines. The external force vector is defined in a standard manner as:

fext = ∫Γ

NTt dΓ, (A1)

with t the traction imposed on the boundary Γ (the effects of the absorbing boundary are included in the internal forces).

The internal forces are defined as:

ft+Δtint = ∫Ω

BT𝝈t+Δt +NT
𝝆Nüt+Δt dΩ + ∫Γd

NT
i R

TDiRNiut+Δt +NT
i R

T(𝝉czm)t+Δt dΓd + ∫Γ

NTRTCRNu̇t+Δt dΓ, (A2)

with R the rotation matrix for the interface and boundary elements, 𝝉czm the tractions in tangential direction resulting

from Equation (12), and the dummy stiffness matrix and interface jump matrix defined as:

Di =

⎡
⎢⎢⎢⎣

dn 0 0

0 0 0

0 0 d𝜔

⎤
⎥⎥⎥⎦

Ni =

⎡
⎢⎢⎢⎣

−Nx Nx 0 0 0 0

0 0 −Ny Ny 0 0

0 0 0 0 −𝓁cN𝜔 𝓁cN𝜔

⎤
⎥⎥⎥⎦
.



HAGEMAN et al. 19

The interface jumpmatrix is defined such that the jump is given in local coordinates by ⟦[un ut 𝓁c𝜔]T⟧ = RNiu. Since

interface elements are only inserted for fractured elements, the dummy stiffness matrix contains terms to enforce a con-

tinuous Cosserat rotation and to prevent negative opening heights, while the tangential traction is included through the

slip model. The term which contains the interface dummy stiffness Di is integrated using lumped integration, whereas

all other terms are integrated using a Gauss integration scheme. This lumped integration prevents traction oscillations

on the interface as a result of the dummy stiffness.

The tangential stiffness matrix required for the iterative Newton-Raphson algorithm reads:

(
𝜕fint
𝜕u

)

t+Δt

= ∫Ω

BTDeffB +
1

𝛽Δt2
NT

𝝆N dΩ + ∫Γd

NT
i R

TDiRNi +NT
i R

TDczmRNi dΓd + ∫Γ

𝛾

𝛽Δt
NTRTCRN dΓ, (A3)

with Deff depending on the plastic strain increment through Δ̂𝜆. The matrix Dczm depends on whether the tangential

displacement at the interface is higher than the maximum tangential displacement saved as history variable ⟦dx⟧. If the
history variable is higher, the nonzero component of Dczm is given by:

Dczm(t,n) = −frdn + (fp − fr) exp(−2⟦dx⟧∕Dc)(−dn + dn⟦un⟧ ⋅ 2⟦dx⟧∕D2
c ⋅ 2c∕((fp − fr)dn⟦un⟧2)),

whereas if the current tangential displacement is higher, the nonzero components are:

Dczm(t, t) = 2(fp − fr)dn⟦un⟧∕Dc exp(−2⟦ut⟧∕Dc)

Dczm(t,n) = −frdn + (fp − fr) exp(−2⟦ut⟧∕Dc)(−dn + dn⟦un⟧ ⋅ 2⟦ut⟧∕D2
c ⋅ 2c∕((fp − fr)dn⟦un⟧2)),

with ⟦un⟧ and ⟦ut⟧ the displacement jump in the normal and tangential directions in the integration point at time t + Δt.


