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Abstract 

The meticulous selection and utilisation of image-guided radiotherapy treatment (IGRT) are essential 

for optimal radiotherapy treatment delivery when using highly conformal treatment techniques in 

pelvic radiotherapy. Pelvic IGRT has several general IGRT issues to consider (such as choice of match 

strategy, prioritisation between multiple treatment targets, and margin estimates) as well as issues 

specific to pelvic radiotherapy, in particular large interfraction organ variation. A range of 

interventions, including adaptive treatment strategies, have been developed to address these 

challenges. This review covers general considerations for clinical implementation of pelvic IGRT in 

routine practice and provides an overview of current knowledge regarding pelvic interfraction organ 

motion. Published IGRT evidence for each of the major tumour sites (gynaecological, prostate, 

bladder, rectal and anal cancer) is summarised, as are state-of-the-art adaptive approaches. General 

recommendations for implementation of an institutional pelvic IGRT strategy include 

• Ensuring consistency between treatment intent and IGRT approach utilised. 

• Ensuring minimum national and international IGRT guidance is followed whilst considering 

the benefit of daily volumetric IGRT. 

• Ensuring the appropriate Allied Health Professionals (namely Therapy Radiographers/RTTs) 

lead on undertaking IGRT. 

• Ensuring the IGRT workflow procedure is clear and includes an escalation process for difficult 

set-ups. 

• Ensuring a robust IGRT service is in place before implementing advanced adaptive 

approaches. 

 

Introduction 

With the routine implementation of advanced radiotherapy techniques, image guidance is 

increasingly important. For most pelvic tumour sites, delineation guidelines have been published and 

implemented in clinical practice [1–6]. The current standard of using intensity modulated 

radiotherapy (IMRT) to reduce toxicity ensures tight dose conformity to target volumes. To fully 

realise the normal tissue toxicity reduction benefit of these two developments, treatment delivery 

uncertainty must be optimised. Multiple sources of uncertainty exist, compensated for by treatment 

volume margins, but day-to-day changes in internal pelvic anatomy relative to the planning imaging 

are possibly the largest source of error. In particular, bladder and rectum filling vary dramatically 

throughout treatment and can impact pelvic target volume position. Bladder and bowel 

preparations aim to reduce the daily variation [7–9] but far from eliminates it.  

It is therefore essential in the era of modern targeted radiotherapy delivery that image-guided 

radiotherapy (IGRT) is incorporated into routine practice. IGRT should include the online and offline 

utilisation of all information acquired from imaging taken during radiotherapy. Volumetric imaging 

e.g. cone beam computed tomography (CBCT) should be considered. It allows for soft tissue 

visualisation; monitoring of bladder, bowel and rectum; and moreover a review of the target volume 

to ensure this remains within the high dose region. 

 

General considerations 

 



Match strategy 

Deciding how to match the treatment images to the radiotherapy plan to ensure target coverage is 

relatively straightforward when a single clinical target volume (CTV) exists. However, many pelvic 

radiotherapy plans have multiple CTVs. The tumour volumes may move independently, while most 

nodal volumes are relatively fixed to bone. The prescribed dose to these volumes may also vary, 

leading to multiple dose levels. These complexities increase the importance but also the difficulties 

of implementing IGRT. Areas of tumour should in general take priority over elective target volumes, 

and organs at risk (OARs) need to be considered where dose is close to tolerance. It is vital to clearly 

define a robust prioritisation or match strategy before treatment starts. This match priority will 

depend upon whether/where gross tumour is present, relative risk of subclinical disease in elective 

volumes, inclusion of boost treatments (concurrent or sequential, including other treatment 

modalities), overall treatment strategy (radical or adjuvant), the therapeutic window (minimal 

required target dose versus maximum acceptable OAR dose), and the availability of trained health 

care professionals (HCPs), such as Therapy Radiographers (RTTs). This predefined strategy will also 

determine the anatomical location and frequency (e.g. daily versus weekly) of the CBCT. Daily CBCT 

aims to improve the set-up of the patient on every fraction. However, there is limited data 

suggesting a benefit of daily imaging when registering to bony structures only, compared to less 

intensive imaging protocols (e.g. no-action-limit protocols) for pelvic cancers. Based on Hurkmans et 

al [10], the reductions in systematic and random translational errors with daily image registration to 

bone are probably around 1.5mm and 2.5mm, respectively. It is important to note that rotations are 

rarely corrected, and generally only if they are above 3-5˚ [11]. Consequently, residual errors in bony 

structure setup will remain, even with daily imaging. Further tumour site specific discussion 

regarding match strategy including soft tissue match is found later within this manuscript. 

Margins 

Margins are added to treatment volumes to ensure that the planned dose gets delivered to the 

target [12]. They consider and compensate for uncertainties throughout the radiotherapy process. 

Many uncertainties stem from setup variation, and consequently margins are closely tied to the IGRT 

technique used. Treatment margins are tumour site and centre specific, and dependent on both the 

clinical scenario and local imaging match strategy. However, multiple aspects of the treatment 

process contribute to the overall treatment delivery uncertainty, including outlining, mechanical 

issues (e.g. kV / MV isocentre match), intra- and inter-observer image registration, and intrafraction 

patient movement. Therefore, the ability of IGRT and adaptive treatment strategies to reduce 

margins has inherent limitations. Each centre should optimally estimate their own treatment 

margins, using established approaches [12]. If this is not feasible, centres must carefully assess 

national, international or trial protocols, to ensure that the assumptions underlying any margin 

recommendations are appropriate for their local treatment and imaging process. 

Clinical Implementation of IGRT 

Centres should review national and international guidance on imaging modalities and frequencies 

for relevant tumour sites, prior to clinical implementation. IGRT protocols should be developed for 

each tumour site; defining the match-strategy, workflow procedure (including an escalation process 

for difficult set-ups), and documentation to be completed [13] (see Figure 1). RTTs should be at the 

core of undertaking the IGRT process, including online and offline reviews. RTTs (or similar staff 

groups) should have the relevant technical training, knowledge and are experienced in delivering 

radiotherapy treatment. Oncologist or Medical Physicist-led IGRT is resource intensive and not 

feasible or suitable for most clinics. Implementation of advanced IGRT requires clear guidance and 

training with defined learning outcomes [13] and with this appropriate training RTTs can safely and 



effectively introduce such techniques [14–18].  Mixed methods and blended learning approaches 

have been successful at upskilling RTTs to be the HCPs leading the IGRT pathway [15,18,19].  Finally, 

IGRT must be closely aligned with the rest of the treatment process. Therefore, engagement, 

support, collaboration and feedback from the MDT is essential when implementing IGRT techniques 

[13,14], as is published evidence from IGRT implementation studies [14–18]. 

Adaptive treatment strategies 

Following the introduction of volumetric IGRT, a range of differing complexity approaches for 

mitigating the impact of pelvic organ motion are currently in practice or under investigation [20,21]. 

The most straightforward and common strategies involve online repositioning based on 3D soft 

tissue imaging, rather than just bone imaging (as in 2D imaging). These common strategies will be 

the main focus of the current review, but may not fully account for the complex multifactorial 

variation seen. More involved adaptive strategies include (see Table 1): 

• Individualised margins e.g. patient specific PTV or internal target volume (ITV): Combination 

of target contours from multiple scans including diagnostic imaging and/or pre-treatment 

planning scan and/or CBCTs acquired during the treatment course. This subsequent volume 

aims to cover all excursions of the target, over the chosen imaging time frames.  

• ‘Plan library’ or ‘Plan of the day’ (POTD): Creation of multiple potential treatment plans for 
each patient, representing different ‘likely anatomies’ (e.g. different degrees of bladder 
filling) with the most appropriate plan selected daily based on on-treatment volumetric 

imaging. 

• ‘Planned adaptation’ strategies, e.g. with re-scan and re-plan at one or more set timepoints 

throughout treatment: More beneficial in cases with significant primary tumour shrinkage.  

• Daily re-optimisation or real time planning, with completely new treatment plans created 

online while the patient is on the treatment couch.  

• Live tracking: Utilisation of fiducial markers/transponders for real time tumour tracking to 

account for intra-fraction target motion. 

Ideally, unscheduled decisions to rescan and replan in case of systematic changes in anatomy should 

be unnecessary with implementation of these strategies, as they encompass assessment and 

interventions for day-to-day variations in internal anatomy (e.g. rectum and bladder filling). The 

most complex adaptive strategies (daily re-optimisation and live tracking) are currently only 

available in clinical practice on specialised, state-of-the art treatment delivery platforms. Very 

recently, platforms have been introduced which combine MV linear accelerators with on-line 

imaging and adaptive planning, based on MR as well as CT imaging. These may become more widely 

available over the coming years. As these complex technologies are not widely available on standard 

linear accelerators, they will not be covered by this review.  

 

Pelvic organ motion 

 

Inter-fraction variation is an issue in pelvic radiotherapy due to bladder, bowel and rectum filling, 
which can move the organ or surrounding pelvic structures in or out of the treatment field. Bladder, 
rectum and bowel filling varies greatly throughout the day, with impact from many factors including 
hydration and oral intake. 

Intra-fraction motion is also an important issue and interventions such as actioning the online 
imaging within a reasonable timeframe and using rotational IMRT to reduce treatment time can 



minimise this. However, addressing intra-fraction motion should not currently be the priority of IGRT 
implementation. Advanced techniques are utilised to mitigate intra-fraction motion, e.g. 
tracking/MR-linacs, but are not routine clinical practice.  

Bladder 

Bladder filling can vary considerably from day to day. Treatment with a full bladder can push bowel 

out of the pelvis (and thus out of the treatment fields), while an empty bladder may result in more 

bladder in the treatment field. There is evidence that bladder filling reduces throughout a course of 

radiotherapy [22] but this is not reported across all tumour sites. Drinking a set volume of water and 

waiting for a set time aims to achieve a similar bladder volume daily, but the actual impact of such a 

drinking strategy on bladder filling varies according to hydration status and other treatments (e.g.  

chemotherapy) [23]. Proposed methods of controlling this include regular bladder scanning with 

ultrasound [23], asking the patient to fill/void or compensating with adaptive methods (see Table 1). 

Rectum  

An empty rectum is most frequently preferred during radiotherapy. This can be simpler to reproduce 

and can reduce the volume overlapping with target if the rectum is an OAR. Variation in rectal filling 

is seen throughout the treatment course, with some evidence suggesting a trend towards a reduced 

volume [24,25]. To minimise variation, implementation of laxatives, enemas and dietary plans can be 

considered. Unplanned strategies also include removing the patient from the treatment couch and 

asking them to pass air or void. 

Bowel 

Small bowel may move several centimeters between fractions [26] and will often move in and out of 

the treatment fields, limiting the cumulative irradiation of any given bowel loop. However, 

interfraction movement is significantly reduced in the post-operative setting [27]. There are no 

known treatment interventions to reduce interfraction bowel motion or improve reproducibility. 

When planning, it is recommended to use a ‘potential bowel volume at risk’, (e.g. bowel bag or 

intestinal space structure) so that the plan is optimized to account for bowel motion [28]. For 

treatment regimens with very high boost doses delivered adjacent to small bowel structures daily 

monitoring of bowel loop position relative to the treatment target might be necessary. 

Pelvic nodal volumes 

Radiotherapy for many pelvic cancers includes irradiation of elective nodal volumes. The specific risk 

and pathway of nodal spread, and thus lymph node volumes to be treated, depend on the primary 

cancer. Relevant nodal volumes include inguinal, external iliac, internal iliac, obturator, pre-sacral, 

mesorectal, common iliac and para-aortic nodes. Movement observed relative to bony structures is 

highly dependent on specific anatomical sub-compartments, with high degree of anisotropy. Many 

of these volumes are partly fixed to bony anatomy and thus if the bony imaging indicates good 

positioning then CBCT provides little additional information. Margins in the region of 5-8 mm 

(depending on local setup and imaging policy) are typically adequate to ensure dose coverage in this 

case [29,30]. However, some volumes do exhibit more motion relative to pelvic bony structures, in 

particular rectal and mesorectal nodal volumes [31,32], and (to a smaller extent) inguinal nodes [33]. 

 

Evidence per tumour site 

 



Gynaecological cancer 

For gynaecological cancers, radiotherapy is most frequently used curatively in cervical and vaginal 

cancer and adjuvantly for endometrial and vulval cancer. Treatment is often 45-50.4Gy in 25-28# to 

a primary and nodal target. Simultaneous integrated boosts (SIBs) are applied to tumour or nodes as 

well as brachytherapy boosts at the end of the external treatment course. Primary tumour coverage 

usually takes priority over nodal regions but complexities such as gross nodal disease means case-by-

case consideration is essential. Gaining accurate planning information regarding target movement is 

key to guide monitoring throughout treatment. Intensity of monitoring depends upon the resource 

and skill set available and patient selection e.g. identifying ‘movers’ with bladder filling [34].  

Organ motion is most investigated in intact cervical cancer. A systematic review [22] reported 

patient-specific patterns which varied largely (5mm-40mm shifts). Consistent themes were non-

linear shape changes, tumour volume decrease through treatment, and bladder volume moves 

uterus whilst rectum moves vagina/cervix. Tumour regression increases OARs within the high dose 

region and could theoretically increase cervical motion and therefore under coverage, but no 

evidence currently supports this. These findings support the need for consistent reproducible 

bladder and bowel preparation, as per trial protocols, e.g. INTERLACE or EMBRACE2, but few 

published recommendations exist [23]. They also emphasise the need for IGRT and adaptive 

strategies. 

Adaptive strategies commonly applied include ‘internal target volume’ (ITV) and plan of the day 

(POTD); see Table 1. An ITV is created by combining CTVs from bladder full and empty imaging [35] 

or multiple pre-treatment imaging series (EMBRACE2, www.embracestudy.dk, NCT03617133) which 

may also account for rectal variation. This can result in large treatment volumes and increased OAR 

overlap. Therefore, POTD is preferred. POTD involves creation of individualised model-based ITVs to 

cover variable bladder filling [34,35]. This improves OAR sparing whilst ensuring CTV coverage, but 

backup 3D-conformal plans are necessary. Due to tumor shrinkage, scheduled replanning could be 

advantageous to further spare OARs, either at a preprogramed time, e.g. mid-treatment/ weekly, or 

dosimetrically triggered [36,37].  

For post-operative endometrial or cervical cancer, the primary CTV moves similarly to the cervix. 

Vaginal cuff fiducial markers are feasible. Movements are related to both bladder and rectal filling 

but are patient specific [38–40]. Soft tissue imaging is therefore again vital.  

Prostate cancer 

Prostate cancer patients can receive radiotherapy in the primary/definitive or adjuvant (prostate 

bed radiotherapy) setting. This may also include the seminal vesicles or nodal target. The treatment 

schedules vary from delivering short course (hypofractionated) (5-7#s) to longer course treatments 

(37-39#s)  

Throughout a course of radiotherapy, the prostate is prone to translational and rotational variation 

[41–43] and it may deform (mainly due to rectal volume variation) [44] or shrink (up to 24%)[45]. 

The seminal vesicles also move independently of the prostate itself [46]. Based on these variations, 

daily imaging should be implemented for all prostate radiotherapy schedules, as supported by 

multiple studies demonstrating IGRT benefit [47–54]. Registration to bony anatomy does not reflect 

the soft-tissue variation in the prostate and therefore fiducial markers should be considered as a 

minimum, but ideally volumetric imaging should be utilised. Fiducial markers can be surrogates for 

prostate position [55] when volumetric imaging is unavailable; however, the image registration to 

fiducials can differ from a volumetric prostate registration [56,57], and they do not represent the 

seminal vesicles [58].  

http://www.embracestudy.dk/


In contrast to the multiple studies on primary prostate IGRT, the literature is more limited for 

prostate bed radiotherapy. There is no visible target to match to, but rectum and bladder filling can 

impact the target position [59,60] and there is inter-fraction variation [61,62]. The appropriateness 

of volumetric imaging should be considered, especially in the context of margin reduction [62]. 

The prostate will usually take priority over a nodal target. When correcting for prostate variation the 

nodal volume position may be compromised, but with bone registration, for nodal volumes, larger 

prostate margins may be required [63,64]. Therefore, margins, technique and match strategy in 

these cases must be considered carefully to ensure the target(s) remain within their prescribed dose 

region and the OARs are not. 

Advanced techniques including real-time tracking [65–67] and adaptive radiotherapy [68,69] are 

being explored in prostate radiotherapy; however, these approaches are not currently utilised in 

routine radiotherapy practice [21]. 

Bladder cancer  

Radiotherapy for bladder cancer may be delivered as an adjuvant treatment in early-stage bladder 

cancers (e.g. after TURBT), or as the primary treatment in patients not for surgery (either inoperable 

or wishing to avoid cystectomy). Radiotherapy is routinely delivered to the whole bladder, but the 

tumour area may also be treated alone or boosted, and radiotherapy may include nodal volumes. 

The treatment varies from long-course radical treatments (typically 20-32#s) to short course weekly 

treatments (in the more palliative setting). Full and empty bladder approaches have been utilised; 

there is little difference in inter- and intra-fraction variation when using either approach [8]. An 

empty bladder may be more difficult to achieve toward the end of treatment, however, due to 

toxicity [70]. Movement of the bladder wall by more than 1.5cm, in more than one direction, has 

been documented in up to 40% of patients [71]. 

When delivering whole bladder radiotherapy large PTV margins (1.5-3cm) have been standard 

practice for years [70,72] with weekly imaging [73]. However, this approach does not minimise the 

toxicity to the surrounding OARs, and margins can be reduced with more frequent volumetric 

imaging [74].   

In recent times, tumour focused approaches - i.e. delivering a radical dose the bladder tumour and 

reducing/sparing the dose to the remaining uninvolved bladder - have been investigated. The 

complexity of delivering such an approach to a deformable organ has been investigated [75–77], and 

randomised controlled trials are ongoing (NCT02447549). Lipiodol may be utilised to visualise the 

tumour and assist matching [77]. 

To minimise OAR dose, while ensuring target coverage, adaptive radiotherapy has been studied. 

POTD is the most evidenced-based adaptive approach in bladder radiotherapy and has been 

assessed in single- and multi-centre studies, in the radical and palliative setting [78–82]. Usually a 

library of plans is generated based on PTVs of incremental increasing volumes. For whole bladder 

radiotherapy, the smallest plan may be the most desirable to limit OAR dose [83]. In contrast, for 

bladder sparing radiotherapy (using a tumour focused approach) larger plans may be more desirable 

[84]; limiting healthy bladder volume within the high dose region. Individualised margins using a 

patient-specific PTV covering all excursions of the bladder over a chosen timeframe [85–87] and 

daily re-optimisation [81,88,89] have also been explored but are not routine practice [21]. 



Rectal cancer 

Rectal cancer radiotherapy is typically pre-operative with a small proportion receiving post-operative 

or definitive radiotherapy. Schedules are either standard chemoradiotherapy (45-54 Gy in 25-30 

fractions) or hypofractionated short course radiotherapy (25 Gy in 5 fractions). The target volume 

includes the primary tumour, any pathologically enlarged nodes (usually mesorectal or pelvic 

sidewall), and mesorectal, presacral, internal iliac and obturator elective nodal compartments. 

Soft tissue systematic changes are seen during long course chemoradiotherapy. Nodal volumes 

exhibit systematic errors 1.5-5.5mm and random errors 1.5-4.0mm [24,31,32]. Most result from soft 

tissue deformation, and ‘simple’ IGRT with no adaptive strategies cannot reduce margins 
substantially. Nijkamp et al (2012) provide CTV to PTV margin estimates with daily imaging, for short 

and long course radiotherapy; for most nodal compartments these are 0.7-1.5cm [24]. 

Rectal tumours can be highly mobile, especially if small. Bladder and rectum filling contribute to this 

motion, which is consequently highly dependent on location within rectum and is anisotropic. 

Estimates from repeat MRI scans [90] provide systematic errors (relative to bony structures) of 2.3-

4.8mm and random errors of 1.5-3.3mm. Rectal tumours can be difficult to visualise on CBCT, and so 

primary tumour match is of limited use. Using the rectal wall as a surrogate does not improve match 

substantially relative to bony structures [91]. 

The plan library approach is the most evidence-based rectal cancer adaptive strategy. The most 

explored strategy uses multiple plans based on a single planning CT, with standardised CTV position 

variation towards the bladder, as most CTV motion is within the mesorectum and anteriorly [92–94]. 

This slightly increases target coverage, and significantly reduces bladder and rectum dose. The 

largest benefit is seen in long course radiotherapy [95]. Other adaptive strategies include 

individualised margins based on repeat imaging early in the treatment course [96] and planned 

treatment adaptation at set time points (particularly for boost strategies) [97–99]; but these have 

limited clinical evidence. 

Anal cancer 

Most anal cancers are treated with definitive chemoradiotherapy. IMRT using a SIB technique is 

considered standard-of-care, typically delivering 50-60Gy to primary tumour and involved nodes 

(nearly always inguinal nodes). There is very limited published data on IGRT in anal cancer. Two 

studies have examined setup errors for bony anatomy during tomotherapy and IMRT; they found 

systematic and random translational errors of 1-3mm and 3-4mm, respectively [100,101]. Brooks et 

al also studied primary tumour motion during IMRT, and found significant inter-fraction movement 

relatively to bony anatomy (>10 mm) [101]. The main cause of primary tumour movement appears 

to be a combination of bowel gas & filling variation (high tumours) and buttock displacement (low 

tumours). Finally, a single paper [33] reported on differential movement of primary tumour and 

involved (inguinal) node targets, and found considerable independent movement, highlighting the 

need for a target-specific match strategy in this patient group. There are no published studies on 

adaptive treatment strategies.  



Summary and recommendations 

IGRT is essential for the safe and appropriate implementation of highly conformal pelvic 

radiotherapy. Bladder, bowel and rectal variation can impact on target as well as OAR position 

within the high dose region. Thus, optimisation of IGRT requires a dedicated strategy. This strategy 

must take into account the entire treatment process, including pre-treatment imaging, planning and 

delivery. An overview of this workflow procedure is outlined in Figure 1. The available evidence for 

use of IGRT for pelvic radiotherapy vary considerably depending on tumour site, but some clear 

general recommendations can be made: 

• There must be consistency between treatment intent, the pre-defined IGRT approach, 

treatment margins, and match prioritisation and strategy. 

• Most patient groups will benefit from daily volumetric imaging. For minimum requirements, 

refer to national and international guidance on imaging modalities and frequencies (e.g. 

OnTarget in the UK). 

• All RTTs, with relevant training, should be able to review volumetric imaging (e.g. CBCT) for 

pelvic radiotherapy; including a general sense check of overall anatomy (and changes), bone 

registration, and soft tissue review. 

• Centres should ensure the workflow procedure is clear and moreover there is an 
identification process and escalation procedure for difficult set-ups, and ideally an available 
MDT for these cases. 

• A robust IGRT service fully utilising volumetric CBCT imaging for daily setup and evaluation of 
soft tissue changes must be in place before implementing more advanced adaptive 
approaches, as these are not currently standard of care. 
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Figure legends 

Figure 1: Overview of image-guided radiotherapy (IGRT) workflow procedure. OAR: Organ At Risk. 

MDT: Multi-Disciplinary Team. 
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