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Bioremediation of landfill leachate is an attractive alternative to conventional 

treatment and containment technologies. This study employs a microalgal-bacterial 

consortium for outdoor, pilot-scale treatment of landfill leachate and utilises the data 

for techno-economic and sensitivity analysis. Results highlight that capital 

expenditure and the treatment duration are key parameters to reduce overall 

treatment cost and make this process economic viable. 
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2

26 Abstract:

27 Waste production and landfilling are a growing problem due to population growth and more 

28 affluent societies following a ‘take-make-waste’ linear economy. All landfills generate leachate, 

29 which must be detoxified before release to the environment. Current leachate treatment 

30 technologies are often energy intensive, relatively expensive and ignore the potential 

31 resources which are contained within. The use of adapted microbial consortia for 

32 bioremediation of leachate offers not only treatment but an opportunity for reutilisation of lost 

33 resources, converting them to fuel, feed and chemical products. In this study, pilot scale 

34 experimental data for algal-bacterial leachate treatment in a 300 L photobioreactor is used to 

35 perform a techno-economic analysis. The analysis considers the process at larger scales and 

36 evaluate where optimisation and future research should be focused to reduce costs and make 

37 the treatment financially competitive with existing technologies. Reductions in capital 

38 expenditure and treatment time are key areas for cost reductions; potentially saving around 

39 90 % of the total treatment costs. 

40

41 Keywords: 

42 Leachate, bioremediation, techno-economic assessment, algal-bacterial consortia, pilot scale

43
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3

52 1. Introduction

53 Higher income and urbanisation seen across the globe means municipal waste production is 

54 expected to reach 2.2 billion tonnes annually by 2025 (1). Although the rate of recycling in the 

55 UK has been growing over the past decade, 14 Mtonnes of municipal waste was still produced 

56 and sent to landfill in 2017 (2). Landfilled waste is contained but not treated or eliminated, 

57 which can lead to potential environmental hazards and loss of valuable resources.

58

59 Percolation of rainwater through the solid waste and decomposition of components within the 

60 waste result in the production of a toxic liquid termed leachate. This liquid effluent is a major 

61 environmental concern due to its high chemical oxygen demand (COD), ammoniacal nitrogen 

62 (NH3-N) and heavy metal concentration (3,4). When released into the environment,  nutrients 

63 within the untreated liquid can cause eutrophication of nearby water sources (5). Furthermore, 

64 heavy metals within the effluent, such as arsenic and mercury, can bioaccumulate within the 

65 ecosystems, affecting flora, fauna and human health (3,6). 

66

67 Biological, chemical and physical methods can be used to treat leachate (7), although there 

68 is no ‘most appropriate treatment’ available (8). Current treatment methods come with both 

69 advantages and disadvantages (summarised in Table 1) meaning they are often used in 

70 combination. Problems with current technologies include relatively high expense, energetically 

71 demanding, environmentally unsustainable processes and efficiency issues as the 

72 characteristics of leachate change (6). For example, air stripping followed by reverse osmosis 

73 (8) produces a more concentrated toxic waste product (retentate). 

74

75

76

77
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4

78 Table 1: Advantages and disadvantages of different leachate treatment methods used (8).

Treatment Pros Cons

Combining effluent 

with domestic sewage

 Easy maintenance 

 Low operational cost

 Low efficiency due to 

inhibition by organics / HMs

Recycling back 

through the landfill

 Cheap to run

 Shortens the stabilisation 

time of the site

 Inhibition of methanotrophs 

 High volumes can saturate 

the landfill causing ponding

Advanced Oxidation 

Processes (AOP)

 Very high efficiency of 

COD removal

 Improves the 

biodegradability of 

recalcitrant organic 

pollutants

 Mainly used in conjunction 

with other treatments

 High energy demand and 

capital intensity

Air stripping
 High NH3-N removal  Requires very high pH

 Release of gaseous NH3

Filtration

 Eliminates all 

macromolecules to the 

filter size

 High expense from filter 

replacement and pump 

operation

Reverse osmosis

 High recovery rate of 

various pollutants

 Membrane fouling 

 Production of an unusable 

concentrate

Microalgal growth

 Can remove a wide range 

of pollutants at once

 Biomass produced can 

be sold on for future use 

 High expense

 Low productivity

 Requires pre-treatment - 

Dilution 

79
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5

80 A major issue with the treatment of leachate is the highly variable composition, which depends 

81 on the waste type, age and geographical location of the landfill site (9–11). It is very difficult 

82 to define a “typical” leachate as even samples from the same landfill site show different 

83 characteristics over time (12). A variety of leachates and wastewaters have been 

84 characterised within the literature and Table 2 highlights the different key components of each 

85 and the variation that can be seen.

86

87 The use of photosynthetic microalgae for nutrient and pollutant removal from leachate offers 

88 an alternative method of treatment where a useable by-product in the form of biomass is 

89 produced. The concept of simultaneous wastewater treatment and algal production was 

90 proposed by Oswald et al. in 1957 (13,14). Since then an increasing number of studies utilising 

91 a diverse collection of microalgal strains have demonstrated that microalgae can remove 

92 COD, NH3-N, orthophosphate and HMs, such as chromium, copper and iron, from these 

93 wastewaters with varying degrees of success. As each leachate has its own unique 

94 composition and each species or strain react differently to each component there is not one-

95 optimal strain using algal-based treatment of leachate. However, the ability to generate algal 

96 biomass through the treatment process is advantageous both from an environmental and 

97 economic standpoint. The resulting algal biomass can be converted to a variety of products, 

98 including plastics, fuels, fertiliser or animal feed (15–17), improving the economics of the 

99 process and producing a closed-loop of nutrient usage where the waste is reutilised rather 

100 than disposed of. Integrating bacteria into the process in the form of an algal-bacterial 

101 consortium can also aid the treatment process by targeting the bio-degradation of more 

102 recalcitrant compounds and hence reducing COD within the leachate (18). Moreover, the 

103 algae can capture CO2 generated by the biological oxidation of organic compounds. The 

104 symbiotic relationship has been shown to improve nutrient removal and can make the process 

105 more robust to changes in nutrient flux (18).

106
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6

107 There are currently several limitations to algal-bacterial leachate treatment including issues 

108 with the dark colour, sub-optimal phosphate levels, toxic organics and very high ammonia 

109 levels. The dark colour often associated with leachate affects the photosynthetic potential of 

110 algae, adversely impacting the biomass productivity (19). Similarly, the presence of toxic 

111 organics and HMs can adversely affect productivity. Algae require both a nitrogen and 

112 phosphorous source to grow and leachates can often offer too high concentration of NH3-N 

113 and too little phosphorous. Consequently, leachate is often diluted to 10 % (v/v) to increase 

114 transparency and reduce the NH3-N concentration, together with supplementation with a 

115 phosphorous source if necessary (5,19,20). 

116

117 Another major limitation of algal leachate bioremediation currently is the economic viability of 

118 the process. Without any comprehensive techno-economic analyses there is little insight into 

119 the economic competitiveness with conventional treatments. Most studies to date state that 

120 the use of “wastewater” as a nutrient source will benefit the economics of microalgal 

121 production (21–23) but predominantly from the viewpoint of generating lipids for conversion to 

122 fuels. Furthermore, where economics are considered, biomass production is the sole focus, 

123 not the treatment of wastewater and potential for nutrient recovery.

124
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7

125 Table 2: Comparison of the different leachate and wastewaters documented within the literature where microalgal-based treatment was 

126 investigated. Other than pH, all components are in mg L-1 concentrations. *Junk Bay, °Gin Drinkers Bay, LF = landfill leachate, WW = 

127 Wastewater, M = municipal, TP = treatment plant, CGW = contaminated ground water, R = raw, RC = recirculated. For [8] the leachates differ 

128 by age (a < 5 years old, b 5-10 years old and c is stabilised at more than 10 years old).
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11

130 This study aims to evaluate the economic potential of a microalgal-bacterial consortia for 

131 treatment of landfill leachate based on pilot scale experimental data. The experimental data 

132 is used as a basis to assess the potential treatment cost and biomass productivity in a 1-ha 

133 facility in the UK. A cost-breakdown for both leachate treatment and biomass production are 

134 completed for the original data and then five different scenarios. These scenarios are based 

135 on potential and realistic changes to either or both financial and operational parameters. 

136 Finally, the key parameters (including capital input, operational cost, batch production time 

137 and labour costs) are deviated by ± 20 % to explore parameter sensitivity of the overall cost. 

138 This analysis is performed to highlight areas of the process for further optimisation and where 

139 research and development activities should be focused to make the process economically 

140 viable against current commercial techniques.

141 2. Materials and Methods

142 2.1. Leachate sampling and algal-bacterial consortia adaption

143 The leachate utilised for the pilot scale experiment was collected from a leachate pond at the 

144 Erin Landfill site in Chesterfield, UK. Samples were taken on the 27th January 2016 and stored 

145 in sterile glass containers at 4°C. Analysis of the leachate was conducted and the composition 

146 is shown in the supplementary data.

147

148 A consortium of algae and bacteria was isolated from the leachate pond by dilution of leachate 

149 to 10 % in BBM (Bold Basal Medium) algal media and incubation for 42 days at 25 °C, 150 

150 rpm and 40 µmol m-2 s-1 light intensity. The consortium was adapted to growth utilising leachate 

151 over a period of 24 months through a series of sub-cultures. The ‘adapted consortium’ consists 

152 of predominantly Chlorella vulgaris microalgae and Pseudomonas sp. bacteria.

153

154
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155 2.2. PhycoFlow® pilot scale experiment for leachate treatment

156 The 300 L PhycoFlow® PBR from VariconAqua (Worcester, UK) was used for the pilot scale 

157 treatment of leachate by the adapted algal-bacterial consortia. The PBR is made of Duran 

158 borosilicate tubes (5 cm diameter) arranged horizontally in a serpentine formation and 

159 connected to a plastic, non-transparent tank. To protect the consortia from extreme 

160 temperatures, the PhycoFlow® was encased in a Sunlite Multiwall polycarbonate unit with 83 

161 % light transmission; the setup is shown in Figure 1. 

162 The experiment was conducted between September and November 2017 in Sheffield, UK. 

163 The PBR was located outside and utilised natural sunlight as the light source for algal 

164 photosynthesis. 

165

166

167 Figure 1: 300L Phyco-Flow® set up with and without the polycarbonate casing. 

168

169 2.2.1. Inoculum preparation

170 The PhycoFlow® operation was conducted in batch mode and was initiated with a 20 L 

171 inoculum of dense consortia. The inoculum was prepared in BBM containing 10 % (v/v) 

172 leachate in a sterile carboy. Initially, 500 mL of consortium was added to 10 L of media and 

173 allowed to grow for a week. After this, 2 L of media was added to the carboy each week until 
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174 a final volume of 20 L was achieved. The carboy was continuously aerated at 2 L min-1 with 

175 ambient air using an ACRO-9630 aquarium pump (Aqualine, UK). The culture was illuminated 

176 using artificial lighting (Lumilux cool white fluorescent bulbs) and a regime of 8 hours light:16 

177 hours dark with a light intensity of 70 µmol m-2 sec-1. The temperature was maintained at 22 

178 °C throughout the cultivation. The inoculum was grown until an Optical Density at 680nm of 3 

179 was achieved (0.5 g L-1 biomass concentration).

180

181 2.2.2. PhycoFlow® operation

182 Before operation, the PBR was chemically sterilised by the addition of 2 % sodium hypochlorite 

183 (Alfa Aesar, UK) for 12 hours followed by the addition of 5 % sodium thiosulfate (Fisher 

184 Scientific, UK), for neutralisation of the chlorine. The PBR was then drained and filled with 

185 fresh, non-sterile tap water. For the experiment, the PBR was filled with 250 L of non-sterile 

186 tap water, 30 L of leachate and the 20 L of inoculum, giving a total working volume of 300 L 

187 and a working leachate concentration of 10 % (v/v). Additional nutrients in the form of sodium 

188 nitrate (0.25 g L-1), dipotassium phosphate (0.075 g L-1) and potassium di-hydrogen phosphate 

189 (0.26 g L-1) were added to the PBR to aid the initial growth of the consortia. 

190 During operation, the culture was circulated by a CO4-350/02K 3 phase SS pump (ITT Lowara, 

191 UK). The culture was aerated with non-sterile air, daily for four hours using an ACQ-007 air 

192 compressor (Boyu, Beijing, China) at a rate of 100 L min-1. The light intensity inside the 

193 polycarbonate unit varied between 40 µmol m-2 sec-1 on cloudy days to 120 µmol m-2 sec-1 on 

194 sunny days. Light intensity was measured using an LI-250A sensor (LI-COR Biosciences, New 

195 England, USA). The temperature was controlled inside the unit and maintained between 20 

196 and 25 °C to maintain optimal growth. The temperature was controlled using a 2 kW portable 

197 heater (Marko Electrical, UK) and a water-spray cooling system (VariconAqua, UK). The 

198 experiment lasted for a total of 42 days, at which point the biomass was harvested using 

199 chemical flocculation (chitosan) and microbubble floatation (32).

200
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201 2.2.3. Sampling and analysis 

202 The PBR was sampled daily during the initial 7 days of cultivation and then once a week for 

203 the remaining 5 weeks. A total of 80 mL was withdrawn for each sample, 5 mL of this was 

204 utilised for OD and pH analysis immediately, the remaining was then passed through a 0.22 

205 µm syringe filter (Millex, UK) and then stored at -20 °C until compositional analysis was 

206 completed. 

207 The growth of the consortia was followed by OD at 680 nm against a blank of consisting of 

208 BBM and 10 % leachate. A standard curve of OD against dry weight was established (data 

209 not shown) so that biomass concentration could be determined by the following equation:

𝐷𝑟𝑦 𝑊𝑒𝑖𝑔ℎ𝑡 (𝑔 𝐿―1) =  0.1728 ×  𝑂𝐷680 R2 = 0.942 (1)

210

211 The pH was measured using a LAQUA B-712 (Horiba, Moulton Park, UK) portable pH probe.

212 Ammoniacal-Nitrogen concentration was measured in triplicate using the Modified Nessler 

213 Method as proposed by Jeong et al. (33). Dissolved inorganic phosphate (DIP) was measured 

214 using the ascorbic acid method as described by Chian and Dewalle (34). Nitrite and nitrate 

215 were measured simultaneously using a colorimetric assay which utilises vanadium (III) for 

216 nitrate reduction and detection by the acidic Griess reaction (35). 

217 Removal efficiency (RE, %) and average removal rate (RR, mg L-1 d-1) of ammoniacal-nitrogen 

218 and DIP were calculated using the following equations:

𝑅𝐸 =
𝑋0 ― 𝑋𝑡𝑋0

× 100 (2)

𝑅𝑅 =
𝑋0 ― 𝑋𝑓𝑡𝑓 (3)

219
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220 Where X0, Xt and Xf are the concentrations at the beginning, time = t and end of the 

221 experiment, respectively, and tf is the total time (in days) of the experiment. 

222 2.3. TEA basic set up

223 This analysis assumes the production is scaled up to 1 ha, similar to that seen within the 

224 literature for small scale algal cultivation (36,37). Each modular PBR unit requires 6 m2 of floor 

225 space. With the allocation of room for a laboratory/office for sampling and inoculum 

226 preparation (36) and space between each unit for maintenance access, it is assumed 738 

227 units (230 m3 culture volume) can be achieved. 

228 As the experimental data comes from the UK during autumn, it is assumed that growth and 

229 treatment can be achieved all year round and therefore the facility is operational 360 days of 

230 the year. To maintain coherence with the experimental data the same operational procedure 

231 of batch culture was chosen. With the 42-day growth time used in the experiment this equates 

232 to a full 8 batches being produced annually, with additional time being used for cleaning and 

233 maintenance of the facility. 

234 The biomass productivity and nutrient / HM removal results from the experiment are used to 

235 determine the outputs from the system in the form of: a) wet  biomass which can be sold on 

236 for further downstream modification and b) the remediation of leachate, allowing water to be 

237 discharged. No downstream processes are included within the scope of this assessment, as 

238 shown in Figure 2. 
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239

240 Figure 2: Flow diagram of the processes and inputs used in the economic analysis. All stages 

241 from inoculum preparation to the production of a thick algal paste are included. To highlight 

242 the cost of leachate treatment rather than production of algal products downstream processes 

243 such as hydrothermal liquefaction, heavy metal removal, carotenoid extraction and drying 

244 have purposefully been removed from the system boundaries, assuming the biomass will be 

245 sold on for further processing. 

246

247 2.4. Financial assumptions and considerations 

248 For a theoretical facility such as this one, a number of key assumptions must be made in 

249 regards to the finances and set up (38–41). Parameters such as contingency, maintenance 

250 budget, depreciation schedule, discount rate and construction period were all taken as the 

251 average values used within the literature, as shown in Table 3. The cost of industrial land (£ 
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252 ha-1) and electricity (£ kWh-1) were calculated as the average values for these in the UK 

253 (42,43). The price of water and sewerage were taken as the standard rates of Yorkshire, UK 

254 (44). Salaries for labour expenses were calculated based on the UK average for each job role 

255 and the overheads as 60 % based on the literature (45–47). Financing and tax deductions are 

256 not included in this assessment (48).

257

258 Table 3: Financial assumptions made for the TEA.

Item Value Reference

Project lifetime 20 years (46,47,49–54)

Depreciation of assets Straight line, no salvage value (36,49,55)

Maintenance budget 5 % of direct capital cost (36,46,47,49,56,57)

Contingency allowance 15 % of direct capital cost (58,59)

Labour overheads 60 % of labour cost (45–47)

Inflation 2.7 %
UK average 2014-2017 

(60)

259

260

261 2.5. Capital Expenditure (CapEx)

262 The CapEx constitutes direct and indirect costs as well as the residual value of depreciable 

263 assets owned:

264 𝐶𝑎𝑝𝐸𝑥 = 𝑇𝐷𝐶 + 𝑇𝐼𝐶 ― 𝐷𝑒𝑝𝑉𝑎𝑙𝑢𝑒 (4)

265

266 Where TDC and TIC are total direct and indirect costs, respectively and DepValue is the 

267 current value of depreciable assets owned.

268 The direct costs include land, buildings, and major equipment cost (MEC):
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269 𝑇𝑜𝑡𝑎𝑙 𝐷𝑖𝑟𝑒𝑐𝑡 𝐶𝑎𝑝𝐸𝑥 (𝑇𝐷𝐶) = 𝐿𝑎𝑛𝑑 + 𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠 + 𝑀𝐸𝐶 (5)

270

271 For costs relating to MEC, the prices obtained from industry for the products used in the 

272 experimental work are scaled up to the facility size. Due to the modular design of these PBRs, 

273 economies-of-scale are not considered for the baseline scaled-up application (46,55,61,62), 

274 and therefore the costs for more PBRs can be simply calculated if required. The cost of land, 

275 as previously mentioned, is based on UK average prices for industrial land and the building 

276 costs are taken from Tredici et al. (2016) and converted from Euros to Sterling and then scaled 

277 to 2019 equivalent values (36).

278

279 The indirect component of CapEx includes monies set aside for contingency planning, 

280 assumed to be 15 % of direct costs here to match the novelty of this process, and a 

281 maintenance budget set at 5 % of the direct costs:

282 𝑇𝑜𝑡𝑎𝑙 𝐼𝑛𝑑𝑖𝑟𝑒𝑐𝑡 𝐶𝑎𝑝𝐸𝑥 (𝑇𝐼𝐶) = 𝐶𝑜𝑛𝑡𝑖𝑛𝑔𝑒𝑛𝑐𝑦 + 𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 (6)

283

284 Depreciation of assets and any residual value in those with longer lifespans than the project 

285 time are considered within the CapEx calculations. All physical property was given a lifespan 

286 based on manufacturer information and it is assumed the value of each item depreciates 

287 linearly over this time. It was also assumed that the salvage value, the value of the item at the 

288 end of its lifespan, was zero. The only exception to depreciation was the land purchased for 

289 the facility. The land value is assumed not to depreciate or appreciate over the course of the 

290 project lifetime. 

291

Page 19 of 45 Environmental Science: Water Research & Technology

En
vi
ro
nm

en
ta
lS

ci
en
ce
:W

at
er

R
es
ea
rc
h
&
Te
ch
no

lo
gy

A
cc
ep
te
d
M
an
us
cr
ip
t

P
u
b
li

sh
ed

 o
n
 2

7
 O

ct
o
b
er

 2
0
2
0
. 
D

o
w

n
lo

ad
ed

 b
y
 U

n
iv

er
si

ty
 o

f 
S

h
ef

fi
el

d
 o

n
 1

0
/2

7
/2

0
2
0
 1

2
:3

1
:0

5
 P

M
. 

View Article Online

DOI: 10.1039/D0EW00700E



19

292 2.6. Operational Expenditure (OpEx)

293 The total annual OpEx is calculated to include three major items: direct cultivation OpEx 

294 (DCO), annual labour OpEx and indirect OpEx:

295 𝑇𝑜𝑡𝑎𝑙 𝑂𝑝𝐸𝑥 =  𝐷𝐶𝑂 + 𝐿𝑎𝑏𝑜𝑢𝑟 + 𝐼𝑛𝑑𝑖𝑟𝑒𝑐𝑡 𝑂𝑝𝐸𝑥 (7)

296

297

298 The OpEx is only applicable to operational years of the facility meaning that, assuming a 1.5-

299 year construction and installation period, for 18.5-years of the total project lifetime there is 

300 100% facility operation. In the half year of operation, the DCO and indirect OpEx are scaled 

301 accordingly, however labour costs are not and are assumed to be of full value due to the 

302 requirement of staff for installation, commissioning, and training prior to production.

303

304 The DCO is calculated using the experimental operational data for the single PBR and then 

305 scaled accordingly (as seen for CapEx). This element includes all the nutritional, water, heat, 

306 and energy inputs required for the cultivation and harvesting of the biomass.

307

308 As the facility contains 738 PBR units, labour costs are included in this TEA. Within the 

309 literature there is no consistent method for labour cost inclusion and the assumptions made 

310 differ dramatically between publications (45–47,63–66). Here, the UK average salary for 

311 scientific technicians (£22,000 per annum (67)) and laboratory supervisors (£30,000 per 

312 annum (68)) are used with a 60 % overhead for additional services (45,46). The TEA takes 

313 four technical staff and one supervisor into account when calculating labour costs. The base 

314 cost for labour is £188,000 per annum although this increases with inflation over the project 

315 lifetime. 

316
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317 The indirect OpEx is included to cover the cost of maintenance and insurance which will be 

318 charged annually. Both the consumables and insurance costs are assumed to be percentages 

319 (10 % each) of the combined total of DCO for all units and annual labour OpEx:

320 𝐼𝑛𝑑𝑖𝑟𝑒𝑐𝑡 𝑂𝑝𝐸𝑥 = 20% × (𝐷𝐶𝑂 + 𝐿𝑎𝑏𝑜𝑢𝑟) (8)

321 2.7. Outputs 

322 There are assumed to be two main outputs for this process: 1) wet biomass paste (which can 

323 be sold on for further downstream processing) and 2) the treatment of the leachate and release 

324 of clean water to the environment.

325 An overall project wide cost-breakdown was created to highlight how cost intensive each 

326 process is. Alongside this, a minimum selling price (MSP), the lowest price at which the 

327 biomass paste can be sold and the project break even (£ kg-1), was determined using Eq. 9:

𝑀𝑆𝑃 (£ 𝑘𝑔―1) =
𝐶𝑎𝑝𝐸𝑥 + 𝑂𝑝𝑒𝑋 ― 𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝐵𝑖𝑜𝑚𝑎𝑠𝑠 𝑌𝑖𝑒𝑙𝑑 (9)

328

329 A treatment cost (TC) for the leachate treatment was also calculated, based on the same 

330 principle as the MSP but for a m3 volume of leachate:

𝑇𝐶 (£ 𝑚―3) =
𝐶𝑎𝑝𝐸𝑥 + 𝑂𝑝𝑒𝑋 ― 𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑙𝑒𝑎𝑐ℎ𝑎𝑡𝑒 𝑡𝑟𝑒𝑎𝑡𝑒𝑑 (10)

331

332 Furthermore, the operational cost and capital investment requirements for each batch 

333 cultivation was analysed.

334 2.8. Scenarios 

335 Once the baseline results were obtained, five different financial and operational scenarios 

336 were tested to ascertain if there was a positive change in MSP, TC or batch cost of treatment, 

337 and which parameters were most affected. This method of scenario-based analysis is seen 

338 throughout the literature for both algal bioremediation and biofuel production (40,46,73–
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339 76,47,49,55,61,69–72). It highlights how different financial, political, and technological 

340 situations can drastically effect whether an algal-based project is economically feasible. The 

341 scenarios chosen in this work posit reasonable improvements in algal productivity, operational 

342 management and/or investment requirements, all of which are reasonable near-term goals 

343 due to the pilot scale nature of the work.

344

345 In the first scenario the capital expense of the facility is reduced. The price of MEC input into 

346 this assessment are accurate for the purchase of one PBR unit and fitting, not for a hectare 

347 facility full of them. Cost reduction to MEC components is done through economies of scale 

348 with the average exponent factor of 0.6 (77). Communication with industrial partners clarifies 

349 that this reduction is within reason. In Scenario 2 the operational expenditure is considered, 

350 particularly the cost of electricity. The leachate used in this experiment was stored at 4 °C 

351 prior to use but in reality leachate can have temperatures of around 35 °C (78); therefore in 

352 this scenario it is assumed that the heat from the leachate can be utilised for heating the 

353 culture, rather than using an external source and this is omitted. The additional nitrogen added 

354 to the PBR has also been removed as further lab scale experiments have shown the 

355 consortia’s ability to grow without this additional input (data not shown). Scenario 3 combines 

356 the impact from both the first and second scenarios, where costs can be cut in both capital 

357 and operational settings at once. Scenario 4 looks at how improving the efficiency of the 

358 biological processes can affect the cost. In this scenario, the batch time required is halved, 

359 theoretically based on further strain and consortia development in the lab. This doubles the 

360 annual production for the facility. While the operational costs (except labour) will inevitably 

361 increase in this case the capital investment should not.

362

363 Scenario 5, the final scenario combines the changes made in both Scenarios 3 and 4, an 

364 overall ‘best-case’ scenario. All five scenarios were input to the TEA model and the cost 

365 breakdown, MSP TC and NPV (where applicable) were calculated and compared.
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366 2.9. Sensitivity analysis

367 Further to the scenario testing, key parameters highlighted from the baseline analysis were 

368 analysed individually for their effect on the overall cost of leachate treatment. The MEC, 

369 operation cost, labour cost and batch production times were varied by ±20 % from their 

370 baseline values to show how they impact on the overall cost.

371 3. Results and Discussion

372 The TEA presented in this work is based on experimental, operational, and cost data obtained 

373 for the 300 L PhycoFlow® PBR unit. The aim of the process is the simultaneous treatment of 

374 landfill leachate and production of algal biomass for further downstream processing and 

375 utilisation.

376 3.1. PhycoFlow® experimental results

377 A pilot scale, batch experiment for the treatment of landfill leachate and simultaneous algal 

378 biomass production was conducted using the 300 L PhycoFlow® PBR. The growth rate and 

379 reduction of key nutrients was followed throughout the experiment. The key results are 

380 presented in Table 4 and Figure 3.

381 Table 4: Experimental results used in this TEA

Parameter Value Units

Time of the batch run 42 Days

Culture productivity (average) 0.124 g L-1 day-1

Final biomass concentration 2.4 g L-1

Wet biomass harvested 0.7215 kg PBR-1

Harvesting efficiency 95% % removal

Moisture content of harvested biomass 80% %

Leachate ammonia removal efficiency 86% %

Leachate DIP removal efficiency 100% %
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382

383 Figure 3: PhycoFlow PBR batch experiment results

384

385 3.1.1. Growth of algae and bacteria and pH variation

386 The microalgal cell numbers increased steadily over the course of the experiment, although 

387 there were fluctuations in the rate of growth, particularly noticeable through an acceleration 

388 between days 13 and 21 and between days 34 and 42 (Figure 3.B). There were periods where 

389 OD680 increased, but not at the same time points as microalgal cells (Figure 3.A and 3.B). This 
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390 is not entirely unexpected as peaks in heterotrophic bacterial activity have previously been 

391 shown to follow peaks in primary production in algal-bacterial cultures (79), a phenomenon 

392 potentially occurring within the PBR in three different stages. The temperature fluctuated in 

393 the reactor from 19 °C to 26 °C. The warmest period was between days 13 and 21 which 

394 coincides with an increase in growth rates (based on cell counts and OD680). 

395

396 Although phototrophic microalgal growth and/or excretion of basic metabolites from 

397 biodegradation of organic matter often increases the pH of the media (80), there was an overall 

398 decrease in pH from 8.2 on Day 0 to 6.4 in the PBR  over the course of the experiment (Figure 

399 3.F). The complexity of the leachate composition as well as the microbial consortium within 

400 the PBR means there are many factors which could impact on pH changes, including microbial 

401 activity generating CO2 and volatile fatty acids. 

402

403 3.1.2. Nitrogen removal

404 The ammoniacal-nitrogen (NH3-N) concentration at Day 0 was 197 mg L-1. There was an initial 

405 increase in concentration to 237 mg L-1 in the first two days, before the concentration reduced 

406 steadily to below 20 mg L-1 at day 29 (Figure 3.C). The initial increase was likely due to 

407 bacterial ammonification of other nitrogen sources within the complex leachate. This is 

408 evidenced by an OD680 increase in this period, which was not followed by microalgal cell count, 

409 implying bacterial growth.

410

411 The dissociation constant, pKa, of the ammonia/ammonium reaction is approximately 9, 

412 depending on a reaction conditions (temperature, salinity etc.). This pKa value and the low pH 

413 of the diluted leachate (<8) mean that ammonium ions (NH4
+) were dominant over ammonia 

414 (NH3) within the PBR. Ammonium ions have lower toxicity and volatilisation rates in 

415 comparison with ammonia, allowing for greater overall removal by the microalgae. 86 % of the 

416 ammoniacal-nitrogen was removed from the PBR over the 42 day cultivation period, with a 
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417 relatively high average and maximum removal rate of 7.7 and 14.0 mg L-1 day-1, respectively. 

418 Current understanding of using microalgae for ammonia removal from leachate varies 

419 depending on the species, cultivation vessel design, aeration, mixing as well as the pH, 

420 temperature, and photoperiod (81–83). A previous study by Martins et al. reported 75 – 99 % 

421 removal of the ammonia from landfill leachate using stabilization ponds (83). Interestingly, a 

422 nitrogen balance revealed that under the conditions of the continuous treatment system 

423 tested, 64 – 79 % was contained within dead or inert settled algal cells, whereas 1 – 6 % was 

424 assimilated into live algae (Chlamydomonas genera), with 12 – 27 % of removal by 

425 volatilization. The ammonia volatilization rate was not measured during this experiment, 

426 however considering the design of the PBR (closed system), pH, reduced flow rate, short 

427 aeration period (4 hours per day) and temperature range (19 – 26 °C) during the experiment, 

428 the volatilization rate is expected to be lower than in an open pond (83). There was evidence 

429 that bacterial based nitrification had taken place during the first 10 days of cultivation as levels 

430 of nitrate and nitrite increased (Figure 3.D). 

431

432 3.1.3. Dissolved inorganic phosphate removal

433 Concentrations of bioavailable phosphate in landfill leachates are generally quite low, and as 

434 expected, the DIP concentration in the 10 % dilution of leachate was only 0.061 mg L-1. Like 

435 other landfill leachate treatment studies using microalgae (84), P-supplementation was 

436 undertaken to avoid P-limitation. After supplementation, 50.5 mg L-1 DIP was measured on 

437 day 0 of the experiment. Within 6 days, DIP was almost below detection limits in the leachate 

438 (Figure 3.E), with an average removal rate of 8.4 mg L-1 d-1. 

439

440 Although the majority was assumed to be consumed by microalgae, most of the growth took 

441 place after 12 days: implying the use of luxury-P or alternative sources of P after this time. It 

442 is known that phosphate can precipitate in microalgal cultures where the pH is higher than 8 

443 and it should be considered that some may have precipitated during the first few days of 
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444 cultivation when the pH was recorded above 8. Our results do indicate that although algal 

445 growth is possible when DIP levels are close to zero, additional provision of this essential 

446 element would likely increase biomass accumulation within the PBR.

447

448 3.2. Baseline Economic Scenario

449 The baseline scenario was conducted using the experimental results as the input. The cost 

450 breakdown of the process is shown in Figure 4. The MEC contributes the largest cost at 49 % 

451 of the overall cost. Within this (Figure 4B), the PBR unit contributes the largest proportion at 

452 91 % of the MEC. This highlights that the use of a modular, glass system may not be ideal for 

453 low value applications such as leachate remediation. To avoid the high-capital investment 

454 associated with such PBRs, alternatives made of plastic could be utilised (36). These units 

455 however have a much shorter lifespan to the glass counterparts which may reduce the cost-

456 reduction potential. Of course, this baseline assessment does not consider the potential for 

457 wholesale bulk trading discounts to the capital price of the PBR due to a large order of units, 

458 this is therefore addressed in future scenarios. 

459

460 The second largest cost was the DCO, contributing 23 %, followed by indirect CapEx at 13 %. 

461 Within the DCO value, electricity demand is the largest contributing factor. The requirement 

462 for heating the units over autumn and winter months, where average temperatures in Sheffield 

463 is 5.5 °C (85), is a major factor here (Figure 4C). The sourcing of process heat from elsewhere 

464 would be highly advisable to reduce these costs. The electricity requirements for the pump 

465 operations also contributes significantly to the DCO, which is typical of PBRs with similar 

466 designs (86).
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467

468 Figure 4: Cost breakdown for the algal leachate treatment facility. A. Overall cost-

469 breakdown of the facility. B. Further cost breakdown of the MEC component. C. Further 

470 breakdown of the DCO component. 

471 In this base case scenario, it is clear that optimisation of the energy demand and capital input 

472 are key for economic viability.

473 3.3. Scenario results

474 The five scenarios were input to the model used for the baseline estimations. A cost 

475 breakdown along with values for overall cost, capital expense and operational expense were 

476 produced for each scenario. The cost breakdown and change in MSP from the baseline for 

477 each scenario is shown in Figure 5. 
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480 Figure 5: Cost breakdown (Bars and Left y-axis) and percentage change of MSP against 

481 the baseline (X and Right y-axis) for each of the 5 financial and operational scenarios. 

482 In Scenario 1, the cost of major equipment such as the PBR and aeration equipment were 

483 reduced through economies of scale, based on communications with the manufacturer. This 

484 change reduced the overall costs so that the MSP dropped by approximately 53 %. The MEC 

485 contribution to the cost was reduced from 49 % to 8 % and as a result the DCO’s contribution 

486 to cost rose from 23 % to 53 %, becoming the largest contributing factor.

487

488 Scenario 2, where the cost of operational parameters such as nutrient input and electricity 

489 demand were reduced, shows MSP was reduced by approximately 18 %. The contribution to 

490 costs of the DCO was reduced by ~ 50 % from 23 % contribution to 11 %, also causing the 

491 indirect OpEx to be reduced and the capital proportion (MEC etc.) to increase.
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492

493 In Scenario 3 both the effects of reducing capital and operational costs were assessed 

494 together. This reduced the overall MSP by 70 %, with DCO being the primary contributor to 

495 the overall cost at 36% with labour expenses as the second largest cost at 33 %.

496

497 In Scenario 4, improvements in the consortia treatment and growth were considered, 

498 assuming the same biomass concentration and treatment quality can be achieved in half the 

499 time currently used in the base model. This resulted in the largest reduction to the MSP value 

500 thus far with a 51 % decrease from the baseline values. Due to the increased capacity seen 

501 in this scenario and therefore the larger requirement for reagents, the DCO increased by 9 %, 

502 while the MEC remained the largest contributing factor overall. 

503

504 In the final, best-case, Scenario 5, the contribution of all reductions / operational adjustments 

505 resulted in the MSP dropping to 15 % of the original baseline value. This was achieved with 

506 basic operational and capital modifications. Further research and development into both the 

507 experimental methodology and expenditure, both in capital and operational sense, could 

508 further reduce these values causing the process to become economically feasible.

509

510 To further understand the costs associated with algal leachate treatment, the cost of each 

511 scenario is broken down in to capital and operational expenditure and these values are shown 

512 in Table 5. As mentioned previously, the main proportion of costs (for all scenarios) is 

513 attributed to either the capital investment required or the DCO. When the capital investment 

514 is removed (as seen in the literature (22,71,87)) and the operational costs are presented, the 

515 cost of each batch culture is £170 for the baseline and £60 in the best case scenario. 
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516

517 Table 5: Split CapEx and OpEx results for the cost of producing biomass (COPB), a single batch operation and leachate treatment for each 

518 scenario

 Baseline Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

CapEx (% of cost) 63 % 13 % 74 % 21 % 61 % 19 %

OpEx (% of cost) 37 % 87 % 26 % 79 % 39 % 81 %

Total COPB (£ kg-1) 530 250 440 160 260 80

CapEx contribution to COPB (£ kg-1) 310 20 310 20 140 10

OpEx contribution to COPB (£ kg-1) 220 230 130 140 120 70

Total Cost per Batch Operation (£ batch-1) 410 190 340 120 210 70

CapEx per Batch Operation (£ batch-1) 240 20 240 20 110 10

OpEx per Batch Operation (£ batch-1) 170 170 100 100 100 60

Total Cost of Leachate treatment (£ m-3) 12,280 5,740 10,140 3,590 6,000 1,840

CapEx contribution to Leachate treatment (£ m-3) 7,090 540 7,090 540 3,340 260

OpEx contribution to Leachate treatment (£ m-3) 5,190 5,200 3,050 3,051 2,660 1,580
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520 3.4. Single parameter analysis 

521 Further to the scenario analysis, key parameters were taken individually and altered by ± 20 

522 % of their original value to highlight how sensitive the MSP is to each parameter. The results 

523 in Figure 6 show that the number of batch cultures/treatments which can be achieved annually 

524 has the most profound effect on the overall treatment price. Reducing the residence time 

525 required for nutrient removal and biomass growth will increase the number of batches each 

526 PBR can produce annually, ultimately reducing the cost of the leachate treatment significantly. 

527 In this example, the residence time has been reduced from 42 days to 33, allowing 10 batches 

528 to be completed annually by each unit rather than 8 (20% increase in the number of batches 

529 performed). This small increase in productivity allows the MSP for the biomass produced to 

530 be reduced to 80% of the cost in the original assessment. This suggests that improvements 

531 in treatment efficiency and/or changing to a semi-continuous method may be advantageous 

532 when trying to optimise against costs.

533

534 The MEC cost was the next parameter to cause the most significant change from the baseline. 

535 Reducing MEC by 20 % allowed the MSP to be reduced by 10 % to 90 % of the original 

536 baseline value. As previously mentioned, the usage of a lower capital-intensive reactor would 

537 help lower these costs further. The DCO and labour both affect the treatment cost in a similar 

538 manner to one another, with little change either side of the original value, ± 4.7 and 3.4 %, 

539 respectively. 
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540

541 Figure 6: Changes in MSP from the original baseline value when key parameters were 

542 altered by up to ± 20 % either side of the original value. 

543 4. Conclusions

544 Pilot scale experimental data for algal-bacterial leachate treatment was used to perform a TEA 

545 of the bioremediation process. The initial results show that operational costs for each batch 

546 culture/treatment is approximately £170 when no optimisation or cost reduction strategies are 

547 put in place. This would need to be reduced to improve economic viability of the process. 

548 However, the use of microalgae for leachate remediation can be advantageous if the resulting 

549 biomass can be utilised or metals recovered. Useful product(s) can be derived from algal 

550 biomass and intensive research is currently being undertaken to broaden this to different 

551 markets including: food, plastic alternatives, fertilisers, fish and aquaculture feed and biofuel 

552 (both biodiesel or direct burning), reutilising components which are otherwise lost in landfill. 
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553 Other treatment methods, such as reverse osmosis, do not currently offer this advantage and 

554 still lead to the production of a toxic retentate waste.

555

556 The scenario-based analysis highlighted that reductions in both CapEx and OpEx are key to 

557 make algal-bacterial leachate remediation feasible. Applying economies of scale to PBR 

558 purchases in line with manufacturer quotations and reducing the reliance on fresh water and 

559 bulk chemicals for supplementation can reduce the overall cost by 85 % against the baseline. 

560

561 The sensitivity analysis highlighted that increasing the number of batch treatments that can 

562 be achieved annually by either increasing algal-bacterial growth rates or moving to a 

563 continuous treatment method can reduce the retention times required and would yield the 

564 greatest reduction in overall costs. While this analysis is theoretical in nature it provides key 

565 insight to where research should be focused to achieve a more financially feasible algal 

566 bioremediation technology.
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A microalgal-bacterial consortium was used for pilot scale bioremediation of landfill leachate. A 

techno-economic analysis was conducted using experimental results to provide a pathway for 

economic viability.  
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