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Phase-randomized optical homodyne detection is a well-known technique for performing quantum state

tomography. So far, it has been mainly considered a sophisticated tool for laboratory experiments but unsuitable

for practical applications. In this work, we change the perspective and employ this technique to set up a

practical continuous-variable quantum random number generator. We exploit a phase-randomized local oscillator

realized with a gain-switched laser to bound the min-entropy and extract true randomness from a completely

uncharacterized input, potentially controlled by a malicious adversary. Our proof-of-principle implementation

achieves an equivalent rate of 270 Mbit/s. In contrast to other source-device-independent quantum random

number generators, the one presented herein does not require additional active optical components, thus

representing a viable solution for future compact, modulator-free, certified generators of randomness.

DOI: 10.1103/PhysRevA.99.062326

I. INTRODUCTION

Randomness is an essential resource in many areas of

science and information technology. The problem of access-

ing true randomness has recently led to the proposal of a

variety of random number generator designs [1]. So-called

“device-independent” (DI) quantum-random-number gener-

ators (QRNGs) minimize the assumptions underlying the

randomness generation process by associating it with the

violation of Bell inequalities [2–5]. However, the complexity

of the setups and small generation rates strongly limit their

practical use.

Trusted QRNGs exploit a trusted environment for the

preparation and the measurement of the quantum states from

which the random numbers are extracted. This makes it

possible to build compact and fast generators, suitable for

real-world applications. However, due to their very nature, any

hidden side channel in the trusted environment compromises

the unpredictability of the generated numbers.

Semi-device-independent QRNGs represent an intermedi-

ate solution to achieve a high level of practicality. They intro-

duce a minimal set of assumptions, either on the measurement

[6–9] or on the preparation [10–12] parts of the generator. The

latter, so-called source device-independent (SDI) QRNGs,

relieve the user (Alice) from the burden of a perfect quantum

state preparation. The most paranoid scenario is when an

evil party (Eve) replaces Alice’s input state with her own

state so that the generated numbers look random to Alice

but actually are not. In this framework, Alice can counteract

Eve’s attack by applying measurements that are out of Eve’s

reach.

In this work we introduce a continuous-variable (CV)

SDI QRNG with which we demonstrate generation rates of

270 Mbit/s. Typical CV-QRNGs feature optical homodyne

*Corresponding author: davide.marangon@crl.toshiba.co.uk

detection to measure a quadrature observable of an input

quantum state. The quadrature is selected by the phase of a

classical field, the so-called local oscillator (LO), which inter-

feres with the input field. The LO is typically a continuous-

wave laser. In our SDI protocol, the laser is pulsed and

gain switched such that each pulse features a random phase

[13–17]. This allows us to use the tomographic technique of

phase-randomized homodyne detection [18–20] for random

number generation, the security of which follows from ran-

domly changing the phase of the LO.

Unlike other recently introduced SDI CV-QRNGs [21–23],

ours features the same optical setup as a typical CV-QRNG.

No additional optical components are required. The phase

randomization of the LO, which is the key element of our

generator, is obtained without resorting to a phase modulator.

This lets us relax the security assumptions on the input state

without increasing the complexity of the setup. We refer to

Fig. 1 to illustrate the difference between our SDI CV-QRNG

and a typical one.

CV-QRNGs use balanced homodyne detection (BHD) to

measure a quadrature observable Q of an input state ρA.

This corresponds to Alice applying the quadrature operator

Q̂θ = 1√
2
(ei θ

2 â† + e−i θ
2 â) on ρA, where â† and â are the cre-

ation and annihilation operators such that [â, â†] = 1 holds

and θ is the phase of the LO, which is usually fixed. The

eigenvalue equation for Q̂θ is Q̂θ |qθ 〉 = qθ |qθ 〉, with qθ a

real number. Since the generator is characterized by a finite

resolution δ, the measurements of the quadratures return

the raw random numbers qθ,k , where k is the bin index of

the intervals Ik
δ = (k − δ

2
, k + δ

2
], with the central bin cor-

responding to k = 0 [24]. The discretized quadrature spec-

trum Qθ,δ defines the random variable associated with the

measurement outcomes: each result is obtained with proba-

bility p(qθ,k ) = tr [ρAQ̂k
θ,δ] =

∫

Ik
δ

dq〈qθ |ρA|qθ 〉, where Q̂k
θ,δ =

∫

Ik
δ

dq|qθ 〉〈qθ | are the elements of Alice’s positive operator-

valued measure (POVMs) applied on ρA.

2469-9926/2019/99(6)/062326(8) 062326-1 ©2019 American Physical Society
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FIG. 1. (a) Schematics of a typical CV-QRNG. The input state ρA is assumed to be prepared by Alice, so it is trusted and lies within the

security perimeter (red dashed line). The LO has a fixed phase, letting Alice measure one specific quadrature of the input field. (b) Schematics

of SDI CV-QRNG. The input state is untrusted and can even be prepared by Eve, so it lies outside the security perimeter (green dashed line).

The LO is phase randomized by using a gain-switched laser, which allows Alice to measure random quadratures of the input field. (c) Example

of attack to (d) a typical CV-QRNG and (e) an SDI CV-QRNG, if Eve controls the input state. In (d), the LO has a fixed phase. Eve forges

ρA using Q-displaced squeezed states and guesses the raw numbers with high probability. However, Alice thinks she is measuring the vacuum

state because the decomposition chosen by Eve mimics the Q distribution of the vacuum. This compromises the security of the system. In (e),

Alice does not trust the input state as she is in the SDI setting. She uses a phase-randomized LO so that Eve’s guessing probability depends on

the random angle of the quadrature selected by the LO. Alice can then spot the attack because the measurement distribution is wider than the

one she expected from the vacuum input state.

If the input state can be trusted to be pure, the

maximal number of independent and identically dis-

tributed (iid) bits extractable per measurement is given

by the min-entropy Hmin(Qθ,δ ) = − log2 pguess(Qθ,δ ), where

pguess(Qθ,δ ) = maxk p(qθ,k ) is the guessing probability [25].

Typically, CV-QRNGs trust the input state to be the vacuum

[26–33], ρA = |0〉〈0| [see Fig. 1(a)], for which the LO’s phase

is irrelevant due its to the rotational invariance in phase space.

The associated outcome distribution |〈0|q〉|2 is Gaussian with

zero mean and variance σ 2
|0〉 = 1/2, such that the min-entropy

is given by

Hmin(Qδ )|0〉 = − log2 erf

(

δ

2

)

. (1)

However, in the SDI paradigm, the measurement is assumed

to be under Alice’s control, whereas the input state is un-

characterized and even assumed to be controlled by Eve [see

Fig. 1(b)].

An example attack [Fig. 1(c)] can clarify the difference

between the two cases [Figs. 1(d) and 1(e)]. Suppose that

Eve controls the input state. In the non-SDI case, Fig. 1(d),

she knows that Alice measures ρA along the Q quadrature

selected by the LO phase θ , which is fixed. Eve can then

input a displaced squeezed state such that she can predict qθ,k

with high confidence. To conceal her attack, Eve displaces the

states so that the probabilities p(qθ,k ) measured by Alice are

the same as those she would expect from her trusted input

vacuum state. Clearly, Alice could never spot this attack and

she would overestimate the actual randomness of the samples.

In the limit of infinite squeezing, Eve could predict each

outcome with certainty and the actual min-entropy would be-

come zero. In the SDI case, on the contrary [Fig. 1(e)], Alice

measures the input field on a quadrature randomly selected by

the LO, which is assumed to be inaccessible to Eve. This foils

Eve’s strategy based on a squeezed input. Without knowing

Alice’s LO phase, Eve cannot determine the correct squeezing

direction for her attack. This makes the distribution measured

by Alice broader than the one corresponding to the vacuum,

σ 2
M > σ 2

|0〉, which unveils the attack.

II. BOUND FOR THE ENTROPY WITH

PHASE RANDOMIZATION

In the presence of an adversary controlling the source, the

maximal number of iid bits distillable with a randomness

extractor is given by the min-entropy Hmin(Qθ,δ|E ) condi-

tioned on the quantum side information available to Eve. This

quantity considers a purification ρAE of the input state ρA: the

system E , e.g., a quantum memory, is entangled with Alice’s

system A and held by Eve who measures it to predict Qθ,δ .

The quantum conditional min-entropy is then defined as

Hmin

(

Qθ,δ|E
)

= − log2 max
{Q̂θ,E }

∞
∑

k=−∞

p(qθ,k ) tr
[

Q̂k
θ,Eρk

E

]

, (2)

with ρk
E being the post-Alice-measurement state of E , on

which Eve applies the POVM {Q̂θ,E } [34,35]. In the following

we will lower bound Hmin(Qθ,δ|E ) by phase randomizing

Alice’s states, a procedure typically used to enhance the
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performance of quantum key distribution with weak coherent

states [36,37].

To show the efficacy of this procedure, consider

the following example. Eve shares with Alice

a two-mode squeezed-vacuum state ρAE = (1 −
γ 2)

∑∞
n,m=0 γ m+n|n〉E 〈n| ⊗ |m〉A〈m| , where γ = tanh r

and r the squeezing parameter. Although the quadrature

fluctuations look random to Alice, the numbers are not

private, as Eve can learn them from her part of the state.

However, if Alice’s input is phase randomized, ρAE becomes

ρ
pr
AE ,ϕav

= (1 − γ 2)
∑∞

n=0 γ 2n|n〉E 〈n| ⊗ |n〉A〈n| , which is a

separable state that guarantees the privacy of Alice’s numbers.

We generalize this example by considering the density

matrix of a pure bipartite state in the Fock basis

ρAE =
∑

k,l,n,m

ρk,l
n,m|k〉E 〈l| ⊗ |n〉A〈m|. (3)

Alice phase randomizes the input by applying the phase-shift

operator Ûϕ = e−iϕn̂ to her part of the system,

ρ
pr
AE =

∑

k,l,n,m

ρk,l
n,m|k〉E 〈l| ⊗ Ûϕ|n〉A〈m|Û †

ϕ

=
∑

k,l,n,m

ρk,l
n,m|k〉E 〈l| ⊗ |n〉A〈m|e−i(n−m)ϕ, (4)

with the phase uniformly distributed in the interval ϕ ∈
{0, 2π}. Since Eve does not know the ϕ values, the state ρ

pr
AE

is averaged to

ρ
pr
AE ,ϕav

=
∑

k,l,n

ρk,l
n,n|k〉E 〈l| ⊗ |n〉A〈n| . (5)

This relation shows that phase randomization returns the

same outcome as a quantum nondemolition measurement

of the photon number [38] that disentangles A from E . In

fact, Eq. (5) can be also rewritten in a manifestly separable

form [39].

Equation (5) also entails that Alice’s most generic input

state after phase randomization is a classical mixture of Fock

states, as is clear from trE ρ
pr
AE ,ϕav

=
∑

n pn|n〉A〈n|A with pn =
∑

k ρk,k
n,n . Therefore it is equally secure to consider that Eve

inputs such a mixture rather than preparing a general state

ρAE . The side information is now related to the ensembles

{pn, |n〉} and the conditional min-entropy becomes

Hmin(Qδ|E )pr = − log2 max
{pn,|n〉}

∑

n

pn max
k

tr
[

Q̂k
δ |n〉〈n|

]

, (6)

with the external maximization performed over all Eve’s

possible {pn, |n〉} compatible with ρ
pr
A,ϕav

[40].

Alice can now easily bound Eq. (6) by noticing that the

largest guessing probability is obtained when Eve inputs the

vacuum state |0〉〈0|. In fact, the argument of the external

maximization is a convex combination of probabilities; hence

it is automatically upper bounded by its maximum element,

that is, pguess(Qδ )|0〉 ≃ δ/
√

π . The vacuum is the Fock state

with the narrowest uncertainty in the phase space, which

implies

max
k

tr Q̂k
δ |n〉〈n| < max

k
tr Q̂k

δ |0〉〈0| = pguess(Q)|0〉 (7)

for n � 1. Hence, among all the possible {pn, |n〉}, the trivial

decomposition {p0 = 1, |0〉} is the best forging strategy for

Eve, which implies the following bound for the conditional

min-entropy:

Hmin(Qδ|E )pr � Hmin(Qδ )|0〉 . (8)

Consequently, when Alice performs phase randomization,

Eve’s best attack is to input the vacuum state.

III. SDI CV-QRNG WITH PHASE-RANDOMIZED LO

The scheme presented in the previous section is SDI if we

assume that a phase modulator randomizing the input state

is part of Alice’s measuring setup and Eve cannot access it.

This assumption is hardly justifiable in practice. For example,

this phase modulator could be probed by external bright pulses

[41]. Fortunately, there is no need for this phase randomizer

in our setup, as the phase randomization comes for free from

a LO generated by a gain-switched laser.

As we show in Appendix A, Eve’s density matrix after Al-

ice’s state phase randomization and quadrature measurement

with a fixed phase θ ,

ρI
E = trA

[

(

IdE ⊗ Q̂k
θ,δ

)†
∫ 2π

0

dϕ

2π
Û †

ϕ ρAEÛϕ

(

IdE ⊗ Q̂k
θ,δ

)

]

,

(9)

is equal to the phase averaged matrix obtained by Alice

after applying a randomly ϕ-phase shifted quadrature operator

Q̂
ps

θ,φ ,

ρII
E = trA

[∫ 2π

0

dϕ

2π

(

IdE ⊗ Q̂
ps

θ,φ

)

ρAE

(

IdE ⊗ Q̂
ps

θ,φ

)†

]

, (10)

where Q̂
ps

θ,φ = ÛϕQ̂k
θ,δÛ

†
ϕ . Therefore the two situations are

equivalent securitywise.

The feasibility of the SDI protocol is greatly simplified by

having ρI
E = ρII

E in Eqs. (9) and (10). First, because apply-

ing Ûϕ = e−iϕn̂ to Q̂k
θ,δ corresponds to shifting the LO by a

phase ϕ, we can replace the phase modulator with a phase-

randomized LO by exploiting the process of phase diffusion in

gain-switched lasers [14,42]. This has practical consequences

on security, as Eve cannot tamper with a phase modulator

placed on the input port. Moreover, if a real phase modulator

were used to randomize the LO phase, another RNG would be

necessary to properly drive it.

IV. EXPERIMENTAL REALIZATION

We now move on to show the phase-randomized SDI CV-

QRNG in operation. The setup is shown in Fig. 2. The LO is

a 1550-nm laser diode with an integrated optical isolator, gain

switched to produce phase-randomized pulses. Its output first

travels through a variable optical attenuator (VOA) and is then

split by a 99:1 fiber coupler. The 1% output is connected to a

power meter to monitor the power of the LO. The 99% output

is split by a 50:50 coupler. The other input of the 50:50 coupler

is left open such that any input state potentially controlled

by an adversary could enter. A microelectromechanical sys-

tems (MEMS) VOA on one output arm of the 50:50 coupler

balances the power incident on the two photodiodes of a

commercial wideband homodyne detector. An optical delay

062326-3
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FIG. 2. Schematics of the setup. The LO is pulsed at 50 MHz via

gain switching. PG: pattern generator; LO: local oscillator; VOA:

variable optical attenuator; PM: power meter; SP: signal port; DL:

delay line; BHD: balanced homodyne detector; Osc: oscilloscope.

line is used to match the arrival times of the pulses. The output

of the BHD is digitized using an oscilloscope with an analog-

to-digital converter (ADC) resolution of 8 bits and a sampling

frequency of 40 GSamples/s. The main advantage of this

protocol is that the setup required is identical to a typical

trusted CV-QRNG, despite offering SDI assurance. The phase

randomization of the LO is a vital part of the security of this

protocol. In practical future implementations, in addition to

the power meter for monitoring the intensity, Alice could add

an interferometer to monitor the phase randomization of the

LO. The LO could be further protected from potential external

phase seeding attacks by placing an additional optical isolator

in front of it.

To gain-switch the laser, the dc bias is set just below

threshold and the laser is driven above threshold by applying

an ac voltage from a pattern generator. When the laser cavity is

empty, the lasing action is triggered entirely by spontaneous

emission, which inherits its random phase from the vacuum

[14,15]. This condition holds for repetition frequencies up to

2.5 GHz [15]. However, we limit the clock rate to 50 MHz to

minimize the signal ringing due to the imperfect response of

the BHD circuit to higher frequency pulses.

An example of the ringing observed is shown in Fig. 3(a),

in which the region from which the raw random numbers were

sampled is highlighted. The chosen pulsing frequency also

FIG. 3. (a) Example of the ringing observed in the output of the

BHD when the LO is pulsed at 50 MHz with a duty cycle of 50%.

The ac driving signal applied to the LO is shown in green, showing

where the laser is on and off. The region from which samples were

taken to generate the raw random numbers is highlighted in blue.

The dashed lines show the ADC range used when acquiring data.

(b) Autocorrelation evaluated on 106 filtered raw data points with

95% confidence intervals for a white noise process (green), showing

that this data is uncorrelated.

FIG. 4. (a) Typical calibration line obtained during data acqui-

sition, where the average power incident on each photodiode has

been calculated from the power-meter measurements. (b) Probability

density function (PDF) of filtered raw data converted into vacuum

units (blue). Theoretical PDF for vacuum state input in the absence

of excess noise (orange).

allows us to minimize the correlations introduced by the finite

bandwidth of the detector [43].

Filtering and randomness extraction are performed offline.

We first apply a 1.6 GHz low-pass filter to remove the noise

above the bandwidth of the detector and then subsample

the resulting data, taking one point every laser pulse, giving

an equivalent sampling rate of 50 MSamples/s. The low-

frequency noise is removed by modulating at 25 MHz and

then applying a low-pass filter. The autocorrelation evaluated

on a set of 106 filtered points with 95% confidence intervals

for lags of 0–400 is reported in Fig. 3(b), showing the absence

of correlations due to low-frequency noise.

V. BOUNDING THE MIN-ENTROPY

To bound the conditional min-entropy, we estimate the

resolution δ in vacuum units. During our practical calibration,

the signal port is blocked to provide a reference vacuum state

input. We measure the variance of the filtered data at different

LO powers P and fit a calibration line. The intercept corre-

sponds to the contribution of the electronic noise to the overall

variance, whereas the gradient m can be used to estimate the

contribution of the quantum noise. A typical calibration line is

shown in Fig. 4(a). In the absence of electronic noise, the vari-

ance in ADC units would be given by mP and the measure-

ment resolution in vacuum units δ = δADC√
2mP

, where δADC is the

resolution of the oscilloscope ADC. The solid line in Fig. 4(b)

represents the theoretical vacuum distribution used to bound

the min-entropy of the raw numbers whose distribution is rep-

resented by the histogram. According to our framework, Alice

does not make any assumptions on the input state entering the

signal port and therefore on the raw distribution that she will

observe. However, since in our proof-of-principle experiment

there was no external source, it is reasonable to assume that

the vacuum was actually the main input state. The histogram

of the raw data is then Gaussian but wider than reference

vacuum distribution because it includes excess noise.

Using Eqs. (8) and (1), we obtain a typical conditional

min-entropy of Hmin(Qδ|E )pr � 5.53 bits. To extract iid bits

we implement a Toeplitz hashing using a seed from another

QRNG described in [44]. Given the length of the input string,

the length of the seed was chosen to obtain a probability

ǫ � 2−100 of distinguishing the output data distribution from
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a uniform one [45,46]. As a result, 5.4 random bits were dis-

tilled from each raw 8-bit sample. With the 50-MHz sampling

rate, this provides a secure generation rate of 270 Mbit/s.

To assess the implementation of the randomness extractor,

we applied two standard statistical tests, NIST [47,48] and

TestU01 [49]. The data gathered was split into blocks of 125

MB for the NIST tests. The Rabbit and Alphabit batteries from

the TestU01 suite were applied to all 900 MB of data at once.

The postprocessed data passed all of these tests. Detailed

results are reported in Appendix B.

VI. CONCLUSION

In this work we presented an experimental SDI CV-QRNG

based on phase-randomized balanced homodyne detection

capable of generating secure random numbers at an equivalent

rate of 270 Mbit/s. Due to the SDI nature of the generator, no

assumption on the input state was required.

The achieved generation rate was limited by the ringing

observed in the output of the balanced homodyne detector.

Any reduction of this impairment could significantly increase

the generation rate.

In contrast to earlier SDI CV-QRNGs, this implementa-

tion does not require active optical components or the use

of heterodyne detection. The gain-switched local oscillator

provides the necessary phase randomization for the QRNG

without adding components such as a phase randomizer and

a random number generator to drive it. This also makes the

setup robust against attacks probing the internal components.

These features and the overall compactness of the generator

are promising for a future integration on chip.
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APPENDIX A: EQUIVALENCE BETWEEN

PHASE-RANDOMIZED INPUT AND

PHASE-RANDOMIZED LOCAL OSCILLATOR

In the following, we will explicitly demonstrate ρI
E = ρII

E ,

where ρI
E and ρII

E are defined in Eqs. (9) and (10) in the

main text. We will argue that from a security perspective it

is equivalent to place a phase randomizer at the input of the

generator or to use a phase-randomized local oscillator. The

equivalence will be proven by showing that Eve’s reduced

density matrix is the same in the two cases.

The most general Alice-Eve density matrix written in the

Fock basis is

ρAE =
∑

k,l,n,m

ρk,l
n,m|k〉E 〈l| ⊗ |n〉A〈m|, (A1)

where {kE }k=0...∞ and {lE }l=0...∞ are Eve’s basis states, and

{nA}n=0...∞ and {mA}m=0...∞ are Alice’s basis states.

We define the phase-shift operator Ûϕ = e−iϕn̂, where n̂ is

the photon number operator, and rewrite Eq. (4) of the main

text as

ρ
pr
AE =

∑

k,l,n,m

ρk,l
n,m|k〉E 〈l| ⊗

(

1

2π

∫ 2π

0

dϕÛϕ |n〉A〈m|Û †
ϕ

)

=
∑

k,l,n,m

ρk,l
n,m|k〉E 〈l| ⊗

(

1

2π

∫ 2π

0

dϕe−i(n−m)ϕ|n〉A〈m|
)

=
∑

k,l,n

ρk,l
n,n|k〉E 〈l| ⊗ |n〉A〈n| . (A2)

We then consider the action of Alice’s quadrature operator.

For ease of notation, in the following we will use the quadra-

ture projector in the approximation of infinite resolution Q̂θ =
|qθ 〉〈qθ |, by dropping the reference to the interval δ and

outcome k.

We then have
(

IdE ⊗ Q̂θ

)

ρ
pr
AE

(

IdE ⊗ Q̂θ

)†
(A3)

and evaluate the reduced state of Eve referred to in the main

text by ρI
E by tracing out Alice’s degrees of freedom:

ρI
E = trA

[

(IdE ⊗ Q̂θ )ρ
pr
AE (IdE ⊗ Q̂θ )†

]

=
∑

r

〈r|

⎡

⎣

∑

k,l,n

ρk,l
n,n|k〉E 〈l|(Q̂θ |n〉A〈n|Q̂†

θ )

⎤

⎦|r〉

=
∑

k,l,n

ρk,l
n,n|k〉E 〈l|

∑

r

〈r|qθ 〉〈qθ |n〉A〈n|qθ 〉〈qθ |r〉

=
∑

k,l,n

ρk,l
n,n|k〉E 〈l| |〈qθ |n〉A|2

∑

r

〈qθ |r〉〈r|qθ 〉

=
∑

k,l,n

ρk,l
n,n|k〉E 〈l| |〈qθ |n〉A|2〈qθ |

∑

r

|r〉〈r|qθ 〉

=
∑

k,l,n

ρk,l
n,n|k〉E 〈l| |〈qθ |n〉A|2 (A4)

We now consider Alice applying a randomly phase-shifted

quadrature operator Q̂
ps

θ,φ = ÛϕQ̂θÛ †
ϕ on her part of the sys-

tem, such that now the overall phase averaged state is:

ρ
pr
AE =

∫ 2π

0

dϕ

2π

(

IdE ⊗ Q̂
ps

θ,φ

)

ρAE

(

IdE ⊗ Q̂
ps

θ,φ

)†

=
∑

k,l,n,m

ρk,l
n,m|k〉E 〈l| ⊗

1

2π

∫ 2π

0

dϕ(ÛϕQ̂θÛ †
ϕ )|n〉A〈m|(ÛϕQ̂θÛ †

ϕ )

=
∑

k,l,n,m

ρk,l
n,m|k〉E 〈l| ⊗

1

2π

∫ 2π

0

dϕe−i(m−n)ϕÛϕQ̂θ |n〉A〈m|Q̂θÛ †
ϕ (A5)
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By tracing out Alice’s degrees of freedom, we obtain Eve’s density matrix ρII
E :

ρII
E = trA

[

ρ
pr
AE

]

=
∑

r

〈r|

⎛

⎝

∑

k,l,n,m

ρk,l
n,m|k〉E 〈l| ⊗

1

2π

∫ 2π

0

dϕe−i(m−n)ϕÛϕ|qθ 〉〈qθ |n〉A〈m|qθ 〉〈qθ |Û †
ϕ

⎞

⎠|r〉

=
∑

k,l,n,m

ρk,l
n,m|k〉E 〈l| ⊗

1

2π

∫ 2π

0

dϕe−i(m−n)ϕ
∑

r

〈r|Ûϕ|qθ 〉〈qθ |n〉A〈m|qθ 〉〈qθ |Û †
ϕ |r〉

=
∑

k,l,n,m

ρk,l
n,m|k〉E 〈l| ⊗

1

2π

∫ 2π

0

dϕe−i(m−n)ϕ
∑

r,s

〈r|Ûϕ|s〉〈s|qθ 〉〈qθ |n〉A〈m|qθ 〉〈qθ |Û †
ϕ |r〉

=
∑

k,l,n,m

ρk,l
n,m|k〉E 〈l| ⊗

1

2π

∫ 2π

0

dϕe−i(m−n)ϕ
∑

r,s

e−i(s−r)ϕ〈r|s〉〈s|qθ 〉〈qθ |n〉A〈m|qθ 〉〈qθ |r〉

=
∑

k,l,n,m

ρk,l
n,m|k〉E 〈l| ⊗

1

2π

∫ 2π

0

dϕe−i(m−n)ϕ
∑

r

〈r|qθ 〉〈qθ |n〉A〈m|qθ 〉〈qθ |r〉

=
∑

k,l,n

ρk,l
n,n|k〉E 〈l| |〈qθ |n〉A|2, (A6)

which is equal to Eve’s density matrix in Eq. (A4), thus

completing the proof.

APPENDIX B: EXPERIMENTAL BOUND TO

THE MIN-ENTROPY

As explained in the main text, we calculate a bound on

the min-entropy based on the gradient of a calibration line

obtained by varying the power of the LO and measuring

the variance of the filtered output. We assume that this

FIG. 5. The blue points are the min-entropies corresponding to

each data set acquired. The dashed lines indicate separate sessions

in between which the setup was adjusted. For each session the

entropy was estimated multiple times by periodically acquiring a

calibration line approximately every 10 min. Hence, in a session

multiple data sets were acquired, each of them with its own min-

entropy bound. The minimum value of 5.53, circled in red, was used

as the experimental bound for the min-entropy. Given the length

of the input string, the length of the seed was chosen to obtain a

probability ǫ � 2−100 of distinguishing the output data distribution

from a uniform one. As indicated by the green horizontal line, we

then distill 5.4 random bits from each raw 8-bit sample.

relationship holds for the data gathered following this cali-

bration. The performance of the system and hence the min-

entropy is likely to change over time due to degradation of

the components and changing environmental conditions. Our

system therefore automatically obtains a new calibration line

periodically (approximately every 10 min), allowing the value

of the min-entropy used in the randomness extraction to be

updated if necessary.

By taking into account the error in the gradient m as-

sociated with the fit, we calculate conservative estimates of

the min-entropy from the calibration lines obtained when

gathering the data discussed in the main text.

TABLE I. Results of the NIST test battery applied on 103 strings,

each having a length of 106 bits.

Statistical test P value Proportion Result

Frequency 0.156 0.990 Success

Block frequency 0.567 0.990 Success

Cumulative sums 0.917 0.984 Success

Cumulative sums 0.038 0.991 Success

Runs 0.512 0.987 Success

Longest run 0.668 0.984 Success

Rank 0.660 0.994 Success

FFT 0.445 0.985 Success

Nonoverlapping template 0.483 0.990 Success

Overlapping template 0.777 0.989 Success

Universal 0.101 0.987 Success

Approximate entropy 0.145 0.992 Success

Random excursions 0.384 0.991 Success

Random excursions variant 0.335 0.992 Success

Serial 0.770 0.990 Success

Serial 0.724 0.991 Success

Linear complexity 0.714 0.989 Success
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The resulting values are plotted in Fig. 5. The vertical

dashed lines indicate when parts of the setup were adjusted,

changing the maximum LO power incident on the detector. As

expected, we see a corresponding change in the min-entropy.

This highlights our systems’ ability to respond to changes

in operating conditions and continue to extract iid bits. The

difference between the largest and smallest values of min-

entropy obtained over all of the acquisitions is less than 2%.

The corresponding difference over the longest uninterrupted

set of acquisitions is less than 1%, highlighting the stability of

our system. Furthermore, the number of iid bits extracted from

each 8-bit sample, shown in green, is far below the minimum

min-entropy bound obtained compared to the variation in

values seen.

APPENDIX C: RESULT OF THE NIST TESTS

In Table I, the results of a typical run of the NIST test are

reported. The test is applied on 103 strings after application

of the randomness extractor, and each string has a length of

106 bits.
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