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DERIVATIVES OF NORMAL FUNCTIONS

IN REVERSE MATHEMATICS

ANTON FREUND AND MICHAEL RATHJEN

Abstract. Consider a normal function f on the ordinals (i. e. a function f

that is strictly increasing and continuous at limit stages). By enumerating
the fixed points of f we obtain a faster normal function f ′, called the deriv-
ative of f . The present paper investigates this important construction from
the viewpoint of reverse mathematics. Within this framework we must restrict
our attention to normal functions f : ℵ1 → ℵ1 that are represented by dilators
(i. e. particularly uniform endofunctors on the category of well-orders, as in-
troduced by J.-Y. Girard). Due to a categorical construction of P. Aczel, each

normal dilator T has a derivative ∂T . We will give a new construction of the
derivative, which shows that the existence and fundamental properties of ∂T
can already be established in the theory RCA0. The latter does not prove,
however, that ∂T preserves well-foundedness. Our main result shows that
the statement “for every normal dilator T , its derivative ∂T preserves well-
foundedness” is ACA0-provably equivalent to Π1

1
-bar induction (and hence to

Σ1

1
-dependent choice and to Π1

2
-reflection for ω-models).

1. Introduction

For the purpose of this paper, a normal function is a function f : ℵ1 → ℵ1 that
is strictly increasing and continuous at limit stages, i. e. we demand that

(i) α < β implies f(α) < f(β) and that
(ii) f(λ) = supα<λ f(α) holds for any limit ordinal λ.

Equivalently, f is the unique strictly increasing enumeration of a closed and un-
bounded (club) subset of ℵ1. It is easy to see that the fixed points of any normal
function f do again form an ℵ1-club. The normal function that enumerates these
fixed points is called the derivative of f and is denoted by f ′. Let us agree to
call a normal function g an upper derivative of f if f(g(α)) = g(α) holds for any
ordinal α < ℵ1. Note that such a function g must majorize the derivative f ′ of f .
As an example we consider the function f(α) = ωα from ordinal arithmetic. In
this case f ′(α) = εα is the α-th ε-number. The notion of normal function plays
an important role in proof theory (see e. g. [19, Chapter V]) and has interesting
computability-theoretic properties (due to [16]). More generally, one can consider
normal functions on the class of ordinals. A fundamental example from set theory
is the function f(α) = ℵα that enumerates the infinite cardinals. However, such
normal functions are beyond the scope of the present paper.

The above construction of derivatives via clubs uses the fact that ℵ1 is a regular
cardinal. One can also build derivatives by transfinite recursion, which relies on
collection or replacement. In the present paper we construct derivatives in a much
weaker setting. In very informal terms, we show that the following statements are
equivalent over a suitable base theory:
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2 ANTON FREUND AND MICHAEL RATHJEN

(10) Every normal function has a derivative.
(20) Every normal function has an upper derivative.
(30) Transfinite induction holds for any Π1

1-formula.

To establish this equivalence we will give precise sense to the following argument:
To see that (10) implies (20) it suffices to observe that any derivative is an upper
derivative. To prove the direction from (20) to (30) we must establish induction
for a Π1

1-formula ϕ(γ) up to an arbitrary ordinal α. Using the Kleene normal form
theorem one obtains countable trees Tγ with

ϕ(γ) ↔ “Tγ is well-founded”.

The assumption that ϕ is progressive along the ordinals can then be expressed as

∀β<γ“Tβ is well-founded” → “Tγ is well-founded”.

Assume that this statement is witnessed by a binary function h on the ordinals, in
the sense that we have

∀β<γ otp(Tβ) ≤ δ → otp(Tγ) ≤ h(γ, δ)

for any ordinals γ and δ, where otp(T ) denotes the order type of T . To avoid
the dependency on γ we set h0(δ) = supγ<α h(γ, δ) (alternatively one could set
h0(δ) = supγ≤δ h(γ, δ), avoiding the reference to the fixed bound α). Now form a
normal function f with h0(δ) ≤ f(δ + 1), e. g. by setting f(δ) =

∑

γ<δ 1 + h0(γ).

Then statement (20) allows us to consider an upper derivative g of f . Let us show
that we have

otp(Tγ) ≤ g(γ + 1)

for all γ < α. For β < γ we may inductively assume otp(Tβ) ≤ g(β + 1) ≤ g(γ).
By the above we obtain

otp(Tγ) ≤ h(γ, g(γ)) ≤ h0(g(γ)) ≤ f(g(γ) + 1) ≤ f(g(γ + 1)) = g(γ + 1).

So g witnesses that Tγ is well-founded for any γ < α. This yields ∀γ<αϕ(γ),
which is the conclusion of transfinite induction. To see that (30) implies (10) we
will construct notation systems for the values f ′(α), relative to a given normal
function f . The crucial fact that the notation system for f ′(α) is well-founded
(and hence represents an ordinal) will be established by transfinite induction on α.

In order to make the result from the previous paragraph precise we will use the
framework of reverse mathematics. This research program uncovers equivalences
between different mathematical and foundational statements in the language of
second order arithmetic (see [21] for an introduction). As the base theory for our
investigation we take ACA0. In second order arithmetic the above statement (30)
corresponds to the following assertion:

(3) Induction for Π1
1-formulas is available along any countable well-order.

We will refer to this assertion as Π1
1-bar induction, in order to distinguish it from

the principle of transfinite induction along a specific (class- or set-sized) well-order.
Let us recall that Π1

1-bar induction is well-established in reverse mathematics:
Simpson [20] has shown that it is equivalent to Σ1

1-dependent choice and to Π1
2-

reflection for ω-models, also over ACA0.
To formalize statements (10) and (20) in second-order arithmetic we will rely on

J.-Y. Girard’s notion of dilator [12, 13]. For the purpose of the present paper, a
(coded) prae-dilator is a particularly uniform functor n 7→ Tn from natural numbers
to linear orders (full details can be found in Section 2 below). Girard has observed
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that the uniformity allows to extend T beyond the natural numbers. In [6, 9] the
first author has given a detailed description of linearly ordered notation systems
DT

X that are computable in T and the linear order X. This yields an endofunctor
X 7→ DT

X of linear orders, which one may call a class-sized prae-dilator. If DT
X

is well-founded for every well-order X, then T is called a (coded) dilator. In this
case α 7→ otp(DT

α ) defines a function on the ordinals. A condition under which this
function is normal has been identified by P. Aczel [1, 2] (even before Girard had
introduced dilators in the full sense). This leads to a notion of normal prae-dilator,
which will be defined in Section 2. In the same section we will characterize (upper)
derivatives on the level of normal prae-dilators. Once all this is made precise, we can
take the following as our formalization of statement (20) in second order arithmetic:

(2) Any normal dilator T has an upper derivative S such that X 7→ DS
X pre-

serves well-foundedness (so that S is again a normal dilator).

The advantage of this principle is that it is relatively easy to state and does not
depend on a specific construction of derivatives. Its disadvantage is that it con-
founds the following two questions: How strong is the assertion that any normal
dilator has an upper derivative? And how much strength is added by the demand
that the upper derivative preserves well-foundedness? We want to disentangle these
questions in our formalization of statement (10). To see how this works, let us recall
that Aczel [1, 2] has explicitly constructed a derivative ∂T of a given normal prae-
dilator T . In Section 4 we will show that ∂Tn can be represented by a term system.
In view of this representation RCA0 proves that ∂T exists and is a derivative of T .
What RCA0 cannot show is that D∂T preserves well-foundedness whenever DT

does. This suggests to formalize statement (10) as the following assertion:

(1) If T is a normal dilator, then D∂T
X is well-founded for any well-order X.

As RCA0 proves that any derivative is an upper derivative it will be immediate
that (1) implies (2). This means that the entire strength of these two principles is
concentrated in the preservation of well-foundedness, which answers the questions
that we have raised after the formulation of principle (2).

Let us summarize the content of the following sections: As explained above,
Section 2 introduces (upper) derivatives on the level of normal prae-dilators and
gives a precise formalization of statement (2). In Section 3 we prove that (2)
implies (3), by giving precise meaning to the argument from the beginning of this
introduction. Section 4 contains the construction of ∂T in RCA0, which yields
the implication from (1) to (2). In Section 5 we prove that (3) implies (1), using
Π1

1-induction along X to establish that D∂T
X is well-founded. At the end of the

paper we will thus have shown that (1), (2) and (3) are equivalent over ACA0 (see
Theorem 5.9 for the official statement of this result). In a separate paper by the
first author [11] it is shown that the base theory can be lowered to RCA0, since the
existence of derivatives implies arithmetical comprehension. The first author has
also shown that Π1

1-induction along the natural numbers is equivalent to the weaker
principle that every normal dilator has at least one well-founded fixed point [10].

The length of our paper is due to the fact that we wanted to be precise about
the formalization of dilators in second order arithmetic. The text includes several
informal summaries, so that the reader can follow the main lines of the argument
without reading all technical verifications. To get a good first idea, we recommend
to read Section 2 up to (and including) Summary 2.1, skip the rest of Section 2,
and then read Section 3 up to Summary 3.5.
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In the rest of this introduction we put our result into context. Let us first discuss
implications for the predicative foundation of mathematics: The predicative stance
originated with H. Weyl’s Das Kontinuum [23] from 1908, and may be character-
ized by the imposition of a constraint on set formation that countenances only that
which is implicit in accepting the natural number structure as a completed totality.
Based on a proposal due to G. Kreisel, the modern logical analysis of predicativity
(given the natural numbers) was carried out by S. Feferman [5] and K. Schütte [18]
in 1964. It is couched in terms of provability in an autonomous transfinite progres-
sion of ramified theories of sets which are based on classical logic and assume the
existence of the set of natural numbers. The existence of further sets is regimented
by a hierarchy of levels to be generated in an autonomous way. At each level, sets
are asserted to exist only via definitions in which quantification over sets must be
restricted to lower levels. The further condition of autonomy requires that one may
ascend to a level α only if the existence of a well-ordering of order type α has been
established at some level β < α. Feferman and Schütte independently showed that
the least non-autonomous ordinal for this progression of theories is the recursive or-
dinal Γ0. Set-theoretically, the constructible sets up to Γ0 form the minimal model
of the aforementioned progression. A connection with our result arises because
derivatives of normal functions (and transfinite hierarchies of derivatives) provide
the intuition behind the usual notation system for Γ0 (see e. g. [19]). This does
not imply, however, that the abstract notion of derivative (relative to an arbitrary
normal function) is predicatively acceptable. Indeed our result shows that it is
not: We prove that the existence of normal functions is equivalent to Π1

1-bar induc-
tion and hence to Σ1

1-dependent choice (all over ACA0). Now the least ordinal τ
such that the constructible sets up to τ form a model of Σ1

1-dependent choice is
the first non-recursive ordinal ωCK

1 (see [15]), which is much larger than Γ0. As a
consequence, the principle of Σ1

1-dependent choice does not possess a prima facie
predicative justification. By the result of our paper the same applies to the prin-
ciple that the derivative of every dilator preserves well-foundedness. On the other
hand, all sufficiently concrete consequences of these principles hold in predicative
mathematics: The extension of ACA0 by Σ1

1-dependent choice is Π1
2-conservative

over the theory (Π1

0
-CA)ωω , which allows for ωω iterations of arithmetical com-

prehension (due to A. Cantini [4]). The latter is a predicative theory in its entirety.
Let us also compare our result to a theorem of T. Arai [3]. Roughly speaking,

this theorem states that the following are equivalent over ACA0:

• The order D∂T
X is well-founded for every well-order X.

• Any set is contained in a countable coded ω-model of the statement that
“DT

X is well-founded for every well-order X”.

This formulation of Arai’s result should be read with quite some reservation: Arai
does not represent normal functions by dilators. Instead his result relies on the
assumption that we are given formulas that define term systems for DT

X and D∂T
X ,

which must satisfy certain conditions. In particular this approach does not allow
to quantify over dilators, as required for our result. On an informal level Arai’s
result can be read as a pointwise version of ours: Recall that Π1

1-bar induction is
equivalent to ω-model reflection for Π1

2-formulas. Assume that we want to establish
this reflection principle for a formula ϕ. Girard has shown that the notion of dilator
is Π1

2-complete (see D. Norman’s proof in [14, Annex 8.E], which will also play an
important role in Section 4 below). Thus one may hope to construct a normal
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prae-dilator T such that ϕ is equivalent to the statement that “DT
X is well-founded

for every well-order X”. Using our principle (1) one could conclude that “D∂T
X is

well-founded for every well-order X”. By Arai’s result this would yield the desired
ω-models of ϕ. When we started working on the present paper we planned to derive
the equivalence between (1), (2) and (3) from Arai’s result, by making the given
argument precise. However, this has met with so many technical obstacles that it
turned out easier to give a completely new proof.

To conclude this introduction we compare our result to a theorem of the first
author [6, 7, 8, 9], which says that the following are equivalent over RCA0:

• Every dilator has a well-founded Bachmann-Howard fixed point.
• The principle of Π1

1-comprehension holds.

To explain what this means we point out that the first principle quantifies over
arbitrary dilators T , rather than just over normal ones. This includes cases where
we have otp(DT

α ) > α for any ordinal α, so that DT cannot have a well-founded
fixed point. The best we can hope for is a function ϑ : DT

α → α that is “almost”
order-preserving (see [7] for a precise definition). If such a function exists, then α is
called a Bachmann-Howard fixed point of T . This name has been chosen since the
conditions on ϑ are inspired by properties of the collapsing function used to define
the Bachmann-Howard ordinal (cf. in particular [17]). It is worth noting that the
notion of Bachmann-Howard fixed point is most interesting for dilators that are
not normal (see the proof of [9, Proposition 3.3] for an instructive example). As is
well-known, Π1

1-comprehension is much stronger than Π1
1-bar induction. Thus the

results of [6] and the present paper help to explain why collapsing functions, rather
than derivatives, are the crucial feature of strong ordinal notation systems.

Acknowledgements. We would like to thank the anonymous referee for their
detailed comments, which have been very helpful in making our paper more read-
able.

2. Normal dilators in second order arithmetic

In the present section we define and investigate (prae-) dilators in the setting
of reverse mathematics. Our approach is based on the work of Girard [12] and
on details worked out by the first author [6, 9]. We will also characterize normal
prae-dilators and their (upper) derivatives.

Let us fix some category-theoretic terminology: To turn the class of (countable)
linear orders into a category we take the order embeddings (strictly increasing
functions) as morphisms. The forgetful functor to the underlying set of an order
will be left implicit. Conversely, a subset of an order will often be considered as a
suborder. The finite subset functor [·]<ω on the category of sets is given by

[X]<ω = “the set of finite subsets of X”,

[f ]<ω(a) = {f(x) |x ∈ a}.

We will often write the arguments of a functor T as subscripts, so that a morphism
f : X → Y is transformed into Tf : TX → TY . When we want to avoid iterated
subscripts we revert to the notation T (f) : T (X) → T (Y ).

Since the formalization of dilators in second order arithmetic is somewhat tech-
nical, we first give an informal summary. Guided by this summary, the reader can
skim through the rest of the section without considering all technical details.
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Summary 2.1. In a sufficiently expressive meta-theory, a class-sized prae-dilator
can be defined as a pair (T, suppT ) of

• a functor T from linear orders to linear orders and
• a natural transformation suppT : T ⇒ [·]<ω that satisfies the following
support condition: for any order X, each element σ ∈ TX lies in the range
of the morphism Tισ , where ισ : suppTX(σ) →֒ X is the inclusion.

If TX is well-founded for every well-order X, then T is called a class-sized dilator.
The specification “class-sized” will often be omitted. It is instructive to consider
Example 2.3 below. In [6, Remark 2.2.2] it has been verified that the given definition
of dilator coincides with the original one by Girard [12]. However, our prae-dilators
are not quite equivalent to Girard’s pre-dilators, as the latter must satisfy an ad-
ditional monotonicity condition that is automatic in the well-founded case. Any
dilator T induces a function α 7→ otp(Tα) on the ordinals. To ensure that this
function is normal one demands that T preserves initial segments. More precisely,
we write

X ↾x = {x′ ∈ X |x′ <X x}

for an order (X,<X) and x ∈ X. A normal (prae-) dilator consists of

• a (prae-) dilator (T, suppT ) and
• a natural family of functions µT

X : X → TX with the following property:
for any inclusion ιx : X ↾x →֒ X, the morphism Tιx has range TX ↾µT

X(x).

If T is a normal dilator, then α 7→ otp(Tα) is a normal function on the ordinals,
as shown in Proposition 2.14 below. Recall that a normal function g is an upper
derivative of f if we have f ◦g(α) = g(α) for every ordinal α. To ensure this equality
it suffices to have an embedding of f ◦ g(α) into g(α). In the categorical setting it
is natural to demand compatible embeddings: A morphism between normal prae-
dilators (T, µT ) and (S, µS) is given by a natural transformation ν : T ⇒ S such
that we have νX ◦ µT

X = µS
X for any order X. Now an upper derivative of a normal

prae-dilator T can be defined as a pair (S, ξ) of

• a normal prae-dilator S and
• a morphism ξ : T ◦ S ⇒ S of normal prae-dilators.

The derivative of a normal function is the upper derivative with the smallest possible
values. On the level of dilators this is naturaly expressed via the notion of initial
object: Consider two upper derivatives (S1, ξ1) and (S2, ξ2) of a normal prae-
dilator T . A morphism ν : S1 ⇒ S2 of normal prae-dilators is called a morphism of
upper derivatives if we have νx ◦ ξ1X = ξ2X ◦ TνX

for every order X. Now an upper
derivative (S, ξ) of T is called a derivative if any other upper derivative (S′, ξ′)
admits a unique morphism ν : S ⇒ S′ of upper derivatives. Just as all initial
objects, derivatives of normal prae-dilators are unique up to natural isomorphism.
If (S, ξ) is the derivative of a normal dilator T , then α 7→ otp(Sα) is the usual
derivative of the normal function α 7→ otp(Tα), as we will show in Corollary 5.11.
Together with the good categorical properties, this shows that we have found the
“right” definition of derivative on the level of dilators.

In the rest of this section we make the previous summary precise and formalize
it in reverse mathematics. The formalization relies on Girard’s observation that
dilators are essentially determined by their restrictions to finite orders. Let us fix
some terminology: The category of natural numbers consists of the finite orders
n = {0, . . . , n − 1} (ordered as usual) and all embeddings between them. Note
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that this yields a small category that is equivalent to the category of all finite
orders. The equivalence is witnessed by the increasing enumerations ena : |a| → a,
where |a| = {0, . . . , |a| − 1} denotes the cardinality of the finite order a. For each
embedding f : a → b there is a unique increasing function |f | : |a| → |b| with

enb ◦|f | = f ◦ ena .

Thus | · | and en become a functor and a natural isomorphism. We continue to
use the finite subset functor [·]<ω, even though [n]<ω coincides with the full power
set of n = {0, . . . , n − 1}. Hereditarily finite sets with the natural numbers as
urelements can be coded by natural numbers. It is straightforward to see that
basic relations and operations on these sets are primitive recursive in the codes.
This allows us to introduce the following notion in the theory RCA0, as in [9]:

Definition 2.2 (RCA0). A coded prae-dilator consists of

(i) a functor T from the category of natural numbers to the category of linear
orders with fields Tn ⊆ N and

(ii) a natural transformation suppT : T ⇒ [·]<ω such that any σ ∈ Tn lies in
the range of Tισ◦enσ

, where

| suppTn (σ)|
enσ−−−→ suppTn (σ)

ισ
−֒−−→ n = {0, . . . , n− 1}

factors the unique morphism with range suppTn (σ) ⊆ n.

More precisely, the functor T is represented by the sets

T 0 = {〈0, n, σ〉 |σ ∈ Tn} ∪ {〈1, n, σ, τ〉 |σ <Tn
τ},

T 1 = {〈f, σ, τ〉 |Tf (σ) = τ}

of natural numbers. The natural transformation suppT is represented by the set

suppT = {〈n, σ, a〉 | suppTn (σ) = a}.

Thus an expression such as σ ∈ Tn is an abbreviation for 〈0, n, σ〉 ∈ T 0, which is a
∆0

1-formula in RCA0. The statement that T is a coded prae-dilator is easily seen
to be arithmetical in the sets T 0, T 1, suppT ⊆ N.

Example 2.3. For any order X we consider the set

ωX = {〈xk−1, . . . , x0〉 |x0 ≤X · · · ≤X xk−1}

with the lexicographic order (it may help to think of 〈xk−1, . . . , x0〉 as the formal
Cantor normal form ωxk−1 + · · ·+ωx0). To obtain a functor we map each morphism
f : X → Y to the embedding ωf : ωX → ωY with

ωf (〈xk−1, . . . , x0〉) = 〈f(xk−1), . . . , f(x0)〉.

If we define suppωX : ωn → [X]<ω by

suppωX(〈xk−1, . . . , x0〉) = {xk−1, . . . , x0},

then we get a class-sized prae-dilator in the sense of Summary 2.1. Its restriction
to the category of finite orders is a coded prae-dilator in the sense of Definition 2.2.

Let us discuss how the class-sized prae-dilator X 7→ ωX from the previous ex-
ample can be reconstructed from its coded restriction. The idea is to view an
element 〈nk−1, . . . , n0〉 ∈ ωn as a term. In order to obtain an element of ωX ,
the “variables” ni in this term are substituted by elements xi ∈ X, in increasing
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order. For example, the pair 〈{x0, x1}, 〈1, 1, 0〉 〉 with x0 < x1 represents the ele-
ment 〈x1, x1, x0〉 ∈ ωX . To make the representations unique we require that the
variables are as small as possible. Thus 〈{x0, x1}, 〈3, 3, 1〉 〉 would not be a valid
representation. In order to formulate this requirement in general we will rely on the
observation that we have 〈1, 1, 0〉 ∈ ω2 = ω|{x0,x1}|. One should also demand that
all given elements of X are substituted for a variable. Thus 〈{x0, x1, x2}, 〈1, 1, 0〉 〉
with x0 <X x1 <X x2 would not be a valid representation. This can be expressed
via the condition suppω|{x0,x1}|

(〈1, 1, 0〉) = {0, 1} = 2 = |{x0, x1}|. In general, the

class-sized extension DT of a coded prae-dilator T can be defined as follows (cf. [9]):

Definition 2.4 (RCA0). Consider a coded prae-dilator T = (T, suppT ). For each
order X we define a set DT

X and a binary relation <DT
X

on DT
X by

DT
X = {〈a, σ〉 | a ∈ [X]<ω and σ ∈ T|a| and suppT|a|(σ) = |a|},

〈a, σ〉 <DT
X
〈b, τ〉 ⇔ T|ιa∪b

a |(σ) <T|a∪b|
T|ιa∪b

b
|(τ),

where ιa∪b
a : a →֒ a∪ b and ιa∪b

b : b →֒ a∪ b denote the inclusions between suborders
of X. Given an embedding f : X → Y , we define DT

f : DT
X → DT

Y by

DT
f (〈a, σ〉) = 〈[f ]<ω(a), σ〉.

To define a family of functions suppD
T

X : DT
X ⇒ [X]<ω we set

suppD
T

X (〈a, σ〉) = a

for each order X.

In order to see that DT
f (〈a, σ〉) still satisfies the uniqueness conditions (i. e. that

we have σ ∈ T|[f ]<ω(a)| and suppT|[f ]<ω(a)|(σ) = |[f ]<ω(a)|) it suffices to note that

[f ]<ω(a) has the same cardinality as a. The following shows that DT is a class-sized
prae-dilator in the sense of Summary 2.1 (in part (ii) of the proposition one could
replace ι〈a,σ〉 by ι〈a,σ〉 ◦ ena, since ena : |a| → a is an isomorphism).

Proposition 2.5 (RCA0). If T is a coded prae-dilator, then

(i) the maps X 7→ (DT
X , <DT

X
) and f 7→ DT

f form an endofunctor on the

category of linear orders and

(ii) the map X 7→ suppD
T

X is a natural transformation between DT and [·]<ω,
with the property that any 〈a, σ〉 ∈ DT

X lies in the range of DT
ι〈a,σ〉

, where

ι〈a,σ〉 : supp
DT

X (〈a, σ〉) = a →֒ X

is the inclusion.

Proof. In [9, Lemma 2.4] the same has been shown in a stronger base theory (we
point out that the uniqueness conditions are crucial for the linearity of <DT

X
). It is

straightforward to check that the proof goes through in RCA0. �

While DT is a class-sized object, its restriction DT ↾N to the category of natural
numbers can be constructed in RCA0. The following is similar to [9, Proposi-
tion 2.5]. Nevertheless we give a detailed proof, since we want to refer to it later.

Lemma 2.6 (RCA0). If T is a coded prae-dilator, then so is DT ↾N. In this case
we get a natural isomorphism ηT : DT ↾N ⇒ T by setting

ηTn (〈a, σ〉) = Tιa◦ena
(σ),
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where ιa : a →֒ n is the inclusion.

Proof. The previous proposition implies that DT ↾N is a coded prae-dilator. To see
that ηTn is order preserving we consider an inequality 〈a, σ〉 <DT

n
〈b, τ〉. According

to Definition 2.4 this amounts to T|ιa∪b
a |(σ) <T|a∪b|

T|ιa∪b
b

|(τ). Write ιa∪b : a∪b →֒ n

and observe

ιa∪b ◦ ena∪b ◦|ι
a∪b
a | = ιa∪b ◦ ι

a∪b
a ◦ ena = ιa ◦ ena .

Applying Tιa∪b◦ena∪b
to both sides of the above inequality we obtain

ηTn (〈a, σ〉) = Tιa◦ena
(σ) = Tιa∪b◦ena∪b

◦ T|ιa∪b
a |(σ) <Tn

<Tn
Tιa∪b◦ena∪b

◦ T|ιa∪b
b

|(τ) = Tιb◦enb
(τ) = ηTn (〈b, τ〉).

To establish naturality we consider an order preserving function f : n → m. Write
ι[f ]<ω(a) : [f ]

<ω(a) →֒ m and observe that we have

f ◦ ιa ◦ ena = ι[f ]<ω(a) ◦ en[f ]<ω(a),

as both sides are order isomorphisms between |a| = |[f ]<ω(a)| and [f ]<ω(a) ⊆ n.
We can deduce

ηTm ◦DT
f (〈a, σ〉) = ηTm(〈[f ]<ω(a), σ〉) = Tι[f]<ω(a)◦en[f]<ω(a)

(σ) =

= Tf ◦ Tιa◦ena
(σ) = Tf ◦ ηTn (〈a, σ〉).

By the definition of coded prae-dilator any σ ∈ Tn can be written as σ = Tιa◦ena
(σ0)

with a = suppTn (σ) and σ0 ∈ T|a|. In view of

[ιa ◦ ena]
<ω(suppT|a|(σ0)) = suppTn (Tιa◦ena

(σ0)) = suppTn (σ) = a

we have suppT|a|(σ0) = |a| and hence 〈a, σ0〉 ∈ DT
n . Since ηTn (〈a, σ0〉) = σ holds by

construction we can conclude that ηTn is surjective. �

As indicated in the introduction, the following notion plays a crucial role (there
is no ambiguity since the two obvious definitions of well-foundedness are equivalent
in RCA0, see e. g. [6, Lemma 2.3.12]):

Definition 2.7 (RCA0). A coded prae-dilator T is called a coded dilator if DT
X

is well-founded for every well-order X.

In a sufficiently expressive meta-theory, we can now discuss the reconstruction of
a class-sized prae-dilator T . Assuming that T preserves countability, we may assume
Tn ⊆ N for every number n. Then the restriction T ↾N is a coded prae-dilator. The
equivalence from Lemma 2.6 is readily extended into a natural isomorphism between

DT ↾N and T (see [9, Proposition 2.5]). In view of DT ↾N
X

∼= TX it is immediate that
T ↾ N is a coded dilator if T is a class-sized dilator. The converse is somewhat
more subtle, since Definition 2.7 only quantifies over well-orders with field X ⊆ N.
Girard [12, Theorem 2.1.15] has shown that it suffices to test the preservation of
well-foundedness on countable orders. Thus it is true thatDT is a class-sized dilator
for any coded dilator T . In second order arithmetic we can consider the orders TX

and the isomorphisms DT ↾N
X

∼= TX when T is a specific class-sized prae-dilator with
a computable construction. This can be useful when TX has a more transparent

description thanDT ↾N
X (as in the example above, where the term 〈x1, x1, x0〉 ∈ ωX is

more intelligible than the expression 〈{x0, x1}, 〈1, 1, 0〉 〉 ∈ Dω
X). On the other hand,

second order arithmetic cannot reason about class-sized prae-dilators in general
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(i. e. quantify over them). Thus we will mostly be concerned with coded prae-
dilators, which are more important on a theoretical level. We will often omit the
specification “coded” to improve readability.

Arguing in a sufficiently strong set theory, each coded dilator T induces a function
α 7→ otp(DT

α ) on the ordinals. To see that this function does not need to be normal
we consider the coded dilator that maps n to the order

Tn = {0, . . . , n− 1} ∪ {Ω}

with a new biggest element Ω. Its action on a morphism f : n → m and the support
functions suppTn : Tn → [n]<ω are given by

Tf (σ) =

{

f(σ) if σ ∈ {0, . . . , n− 1},

Ω if σ = Ω,
suppTn (σ) =

{

{σ} if σ ∈ {0, . . . , n− 1},

∅ if σ = Ω.

It is straightforward to check that

DT
X = {〈{x}, 0〉 |x ∈ X} ∪ {〈∅,Ω〉} (with 0 ∈ 1 ⊆ T1 and Ω ∈ T0)

is isomorphic to X ∪ {Ω} (where Ω is still the biggest element). Thus we have
otp(DT

α ) = α + 1, which means that the function induced by T is not continuous
at limit stages and does not have any fixed points.

To analyze the given counterexample we observe that the functor T from the
previous paragraph does not preserve initial segments: Given that the range of
f : n → m is an initial segment of m, we cannot infer that the range of Tf is an
initial segment of Tn (since it contains the element Ω). Indeed, Aczel [1, 2] and
Girard [12] have identified preservation of initial segments as the crucial condition
that reconciles categorical continuity, i. e. preservation of direct limits, and the usual
notion of continuity at limit ordinals (paraphrasing Girard). More precisely, Aczel
focuses on initial segments of the form

X ↾x = {y ∈ X | y <X x},

where x is an element of the linear order X = (X,<X). It will be convenient to
have the following notation: For a, b ∈ [X]<ω we abbreviate

a <fin
X b ⇔ ∀x∈a∃y∈b x <X y.

The relation ≤fin
X is defined in the same way, with ≤X at the place of <X . We omit

the subscript when we refer to the usual order on the natural numbers or on the
ordinals. In the case of a singleton we write a <fin

X y rather than a <fin
X {y}. Note

that this makes a <fin
X x equivalent to a ⊆ X ↾x. The following is fundamental:

Lemma 2.8 (RCA0). If T is a coded prae-dilator, then we have

rng(DT
f ) = {〈a, σ〉 ∈ DT

Y | a ⊆ rng(f)}

for any order embedding f : X → Y .

Proof. For the inclusion ⊆ it suffices to recall DT
f (〈b, σ〉) = 〈[f ]<ω(b), σ〉. Con-

versely, induction on the size of a ⊆ rng(f) yields a finite b ⊆ X with [f ]<ω(b) = a.
Then 〈a, σ〉 ∈ DT

Y is the image of 〈b, σ〉 ∈ DT
X (observe |b| = |a|). �

Preservation of initial segments can now be characterized as follows:

Corollary 2.9 (RCA0). Consider a coded prae-dilator T and a linear order X.
The following are equivalent for any elements x ∈ X and ρ ∈ DT

X :
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(i) We have rng(DT
ιx
) = DT

X ↾ρ, where ιx : X ↾x →֒ X is the inclusion.

(ii) For any 〈a, σ〉 ∈ DT
X we have

〈a, σ〉 <DT
X
ρ ⇔ a <fin

X x.

We will see that a coded dilator with the following property does induce a normal
function on the ordinals.

Definition 2.10 (RCA0). A normal prae-dilator consists of a (coded) prae-dilator T
and a natural family of order embeddings µT

n : n → Tn such that we have

σ <Tn
µT
n (m) ⇔ suppTn (σ) <

fin m

for all numbers m < n and all elements σ ∈ Tn.

Note that the family of functions µT
n can be represented by the set

µT = {〈n,m, ρ〉 |µT
n (m) = ρ}

of natural numbers. As an example we recall the coded dilator n 7→ ωn considered
above. It is straightforward to verify that we obtain a normal dilator by setting

µω
n(m) = 〈m〉 ∈ ωn

for all numbers m < n. Recall that 〈m〉 corresponds to the formal Cantor normal
form ωm. This suggests to think of µω

n as the restriction of the normal function
α 7→ ωα to the finite ordinal n. A formal version of this idea can be found in the
proof of Proposition 2.14 below. Before we can formulate it we must extend µT

beyond the category of natural numbers. This relies on the following observation:

Lemma 2.11 (RCA0). If T = (T, µT ) is a normal prae-dilator, then we have

suppTn (µ
T
n (m)) = {m}

for all numbers m < n.

Proof. Define ι : 1 → n by ι(0) = m. By the naturality of µT and suppT we get

suppTn (µ
T
n (m)) = suppTn (µ

T
n (ι(0))) = [ι]<ω(suppT1 (µ

T
1 (0))) ⊆ rng(ι) = {m}.

So it remains to show that we cannot have suppTn (µ
T
n (m)) = ∅. The latter would

imply suppTn (µ
T
n (m)) <fin m and hence µT

n (m) <Tn
µT
n (m), which is impossible. �

In particular the lemma yields suppT|{x}|(µ
T
1 (0)) = |{x}|, which secures the

uniqueness condition needed for the following construction:

Definition 2.12 (RCA0). Let T be a normal prae-dilator. For each order X we

define DµT

X : X → DT
X by setting

DµT

X (x) = 〈{x}, µT
1 (0)〉

for all elements x ∈ X.

The reader may have noticed that only the value µT
1 (0) was needed in order to

extend µT to arbitrary linear orders. To state the equivalence from Definition 2.10
for all numbers n it is nevertheless convenient to consider the entire family of
functions µT

n : n → Tn as given. The following shows that we have reconstructed
the normal prae-dilators from Summary 2.1.
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Proposition 2.13 (RCA0). If T is a normal prae-dilator, then the functions

DµT

X : X → DT
X form a natural family of order embeddings. Furthermore we have

〈a, σ〉 <DT
X
DµT

X (x) ⇔ a <fin
X x

for any order X and any element 〈a, σ〉 ∈ DT
X .

Proof. To show that DµT

X is an embedding we consider x0 <X x1. For j ∈ {0, 1}
we write ιj : {xj} →֒ {x0, x1}. Using the naturality of µT and the fact that µT

2 is
order preserving we get

T|ι0|(µ
T
1 (0)) = µT

2 (|ι0|(0)) = µT
2 (0) <T2

µT
2 (1) = µT

2 (|ι1|(0)) = T|ι1|(µ
T
1 (0)).

According to Definition 2.4 this yields

DµT

X (x0) = 〈{x0}, µ
T
1 (0)〉 <DT

X
〈{x1}, µ

T
1 (0)〉 = DµT

X (x1),

as desired. To see that DµT

is natural we compute

DT
f (D

µT

X (x)) = 〈[f ]<ω({x}), µT
1 (0)〉 = 〈{f(x)}, µT

1 (0)〉 = DµT

Y (f(x)).

It remains to establish the stated equivalence: First assume that we have

〈a, σ〉 <DT
X
DµT

X (x) = 〈{x}, µT
1 (0)〉.

Write ι0 : a →֒ a ∪ {x} and ι1 : {x} →֒ a ∪ {x} for the inclusions. By definition of
the order on DT

X we have

T|ι0|(σ) <T|a∪{x}|
T|ι1|(µ

T
1 (0)) = µT

|a∪{x}|(|ι1|(0)).

Using the equivalence from Definition 2.10 we can deduce

[|ι0|]
<ω(|a|) = [|ι0|]

<ω(suppT|a|(σ)) = suppT|a∪{x}|(T|ι0|(σ)) <
fin |ι1|(0).

This implies a <fin
X x, as desired. To establish the converse implication one follows

the argument backwards, noting that a <fin
X x implies [|ι0|]

<ω(|a|) <fin |ι1|(0). �

Working in a sufficiently strong set theory, we can now prove that normal dilators
do induce normal functions. This result is due to Aczel [1, Theorem 2.11].

Proposition 2.14. Assume that T is a normal dilator. Then α 7→ otp(DT
α ) is a

normal function on the ordinals.

Proof. As a preparation we observe the following: Writing ιx : X ↾x →֒ X for the
inclusion, we can combine Corollary 2.9 and Proposition 2.13 to see that the range

of DT
ιx

is equal to DT
X ↾DµT

X (x). Since DT
ιx

is an order embedding this yields

DT
X↾x

∼= DT
X ↾DµT

X (x)

for any order X and any x ∈ X. Now we prove that α 7→ otp(DT
α ) is strictly

increasing: If we have α < β, then α is isomorphic (and, with the usual set-theoretic
definition of ordinals, even equal) to β ↾α. As DT is functorial (see Proposition 2.5)
we get DT

α
∼= DT

β↾α. Together with the above observation this yields

otp(DT
α ) = otp(DT

β↾α) = otp(DT
β ↾DµT

β (α)) < otp(DT
β ).

To conclude that α 7→ otp(DT
α ) is a normal function we must establish

otp(DT
λ ) ≤ sup{otp(DT

α ) |α < λ}
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when λ is a limit ordinal. Given an element 〈a, σ〉 ∈ DT
λ , pick an ordinal α < λ

with a <fin α. Then Lemma 2.8 tells us that 〈a, σ〉 lies in the range of DT
ια
. By the

above we obtain

otp(DT
λ ↾〈a, σ〉) < otp(DT

λ ↾DµT

λ (α)) = otp(DT
α ).

Since 〈a, σ〉 ∈ DT
λ was arbitrary this implies the claim. �

The notion of upper derivative has already been described in Summary 2.1. It
order to make it precise, we need to consider compositions of and natural trans-
formations between coded prae-dilators. Compositions are particularly technical in
the coded case, since we cannot form T (Sn) when T is coded and Sn is infinite. The
reader may wish to skim through the following considerations (up to and including
Lemma 2.21) without considering all technical details.

Definition 2.15 (RCA0). Let T and S be coded prae-dilators. For each number n
and each morphism f : n → m we put

(T ◦ S)n = DT (Sn), (T ◦ S)f = DT (Sf ),

where DT (Sn) is ordered according to Definition 2.4. We also define a family of
functions suppT◦S

n : (T ◦ S)n → [n]<ω by setting

suppT◦S
n (〈a, τ〉) =

⋃

σ∈a

suppSn(σ)

for each number n.

It is straightforward to see that RCA0 proves the existence of T ◦ S. Crucially,
the extension DT◦S recovers the composition of DT and DS :

Proposition 2.16 (RCA0). If T and S are coded (prae-) dilators, then so is T ◦S.

We get a natural collection of isomorphisms ζT,S
X : DT (DS

X) → DT◦S
X by setting

ζT,S
X (〈{〈a1, σ1〉, . . . , 〈ak, σk〉}, τ〉) = 〈a1 ∪ · · · ∪ ak, 〈{S|ι1|(σ1), . . . , S|ιk|(σk)}, τ〉 〉,

where ιj : aj →֒ a1 ∪ · · · ∪ ak are the inclusion maps. Furthermore we have

suppD
T◦S

X (ζT,S
X (σ)) =

⋃

{suppD
S

X (ρ) | ρ ∈ suppD
T

DS
X
(σ)}

for any element σ ∈ DT (DS
X).

Proof. One readily verifies that T ◦ S is a functor, using Proposition 2.5. The
naturality of suppT◦S follows from the naturality of suppS . To see that the support
condition from Definition 2.2 is satisfied we consider an arbitrary 〈a, τ〉 ∈ (T ◦S)n.
Abbreviate c = suppT◦S

n (〈a, τ〉) and observe that suppSn(σ) ⊆ c holds for any σ ∈ a.
Using the support condition for S we get σ ∈ rng(Sιc◦enc

), where ιc : c →֒ n is the
inclusion. Induction on |a| yields a finite set b ⊆ S|c| with [Sιc◦enc

]<ω(b) = a. Since

Sιc◦enc
is an embedding we have |b| = |a| and hence 〈b, τ〉 ∈ DT (S|c|). In view of

(T ◦ S)ιc◦enc
(〈b, τ〉) = DT (Sιc◦enc

)(〈b, τ〉) = 〈[Sιc◦enc
]<ω(b), τ〉 = 〈a, τ〉

we learn that 〈a, τ〉 lies in the range of (T ◦ S)ιc◦enc
, as required. If T and S are

coded dilators, then DT (DS
X) is well-founded for any well-order X. The claim that

T ◦S is a coded dilator will follow once we have proved DT (DS
X) ∼= DT◦S

X . To show

that the given equation for ζT,S
X defines such an isomorphism we first check that

σ = 〈{〈a1, σ1〉, . . . , 〈ak, σk〉}, τ〉 ∈ DT (DS
X)
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implies

ζT,S
X (σ) = 〈a1 ∪ · · · ∪ ak, 〈{S|ι1|(σ1), . . . , S|ιk|(σk)}, τ〉 〉 ∈ DT◦S

X .

Assuming that the pairs 〈aj , σj〉 are all distinct, we see that σ ∈ DT (DS
X) requires

τ ∈ Tk and suppTk (τ) = k. Definition 2.4 also shows that 〈ai, σi〉 <DS
X

〈aj , σj〉

implies S|ιi|(σi) <S|c|
S|ιj |(σj), where we abbreviate c = a1 ∪ · · · ∪ ak. Thus the set

{S|ι1|(σ1), . . . , S|ιk|(σk)} is still of cardinality k, which yields

ρ := 〈{S|ι1|(σ1), . . . , S|ιk|(σk)}, τ〉 ∈ DT (S|c|) = (T ◦ S)|c|.

To conclude ζT,S
X (σ) ∈ DT◦S

X it remains to establish suppT◦S
|c| (ρ) = |c|. In view of

σ ∈ DT (DS
X) we must have 〈aj , σj〉 ∈ DS

X and hence suppS|aj |
(σj) = |aj |. Together

with the naturality of suppS we indeed get

suppT◦S
|c| (ρ) =

⋃

j=1,...,k

suppS|c|(S|ιj |(σj)) =
⋃

j=1,...,k

[|ιj |]
<ω(suppS|aj |

(σj)) = |c|.

It is straightforward to check that ζT,S is natural, i. e. that we have

ζT,S
Y ◦DT (DS

f ) = DT◦S
f ◦ ζT,S

X

for any embedding f : X → Y . Using naturality, the claim that ζT,S
X is order

preserving can be reduced to the case where X = n is a natural number. There it
follows from the observation that ζT,S

n factors as

DT (DS
n)

DT (ηS
n)

−−−−−→ DT (Sn) = (T ◦ S)n
(ηT◦S

n )−1

−−−−−−→ DT◦S
n ,

where ηSn and ηT◦S
n are the isomorphisms from Lemma 2.6. To establish that ζT,S

X

is surjective we consider an arbitrary element 〈c, 〈{ρ1, . . . , ρk}, τ〉〉 ∈ DT◦S
X . Define

aj = [enc]
<ω(suppS|c|(ρi)) and write ιj : aj →֒ c for the inclusions. Using the support

condition for S we get an element σj ∈ S|aj | with ρj = S|ιj |(σj). In view of

[enc ◦|ιj |]
<ω(suppS|aj |

(σj)) = [enc]
<ω(suppS|c|(ρj)) = aj

we have 〈ai, σi〉 ∈ DS
X . One can check that 〈{〈a1, σ1〉, . . . , 〈ak, σk〉}, τ〉 ∈ DT (DS

X)

is the desired preimage under ζT,S
X . The support formula given in the lemma follows

by unravelling definitions. �

We should also consider compositions in the normal case:

Definition 2.17 (RCA0). Let T = (T, µT ) and S = (S, µS) be normal prae-
dilators. We define a family of functions µT◦S

n : n → (T ◦ S)n = DT (Sn) by setting

µT◦S
n (m) = DµT

Sn
◦ µS

n(m) = 〈{µS
n(m)}, µT

1 (0)〉

for all numbers m < n.

We verify the expected property:

Lemma 2.18 (RCA0). If (T, µT ) and (S, µS) are normal prae-dilators, then so
is (T ◦ S, µT◦S). Furthermore we have

ζT,S
X ◦DµT

DS
X

◦DµS

X = DµT◦S

X

for any order X, where ζT,S
X is the isomorphism from Proposition 2.16.
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Proof. Proposition 2.16 tells us that T ◦S is a prae-dilator. The fact that µT◦S is a
natural transformation is readily deduced from Proposition 2.13. To verify the equi-
valence from Definition 2.10 we consider an arbitrary element ρ = 〈{σ1, . . . , σk}, τ〉
of (T ◦ S)n = DT (Sn). By Proposition 2.13 and the normality of S we get

ρ <(T◦S)n µT◦S
n (m) = DµT

Sn
◦ µS

n(m) ⇔ {σ1, . . . , σk} <fin
Sn

µS
n(m)

⇔ suppT◦S
n (ρ) =

⋃

i=1,...,k

suppSn(σ) <
fin m.

The equality asserted in the lemma can be verified by unravelling definitions. �

Let us now look at natural transformations between coded prae-dilators. To
define their extensions beyond the natural numbers we will use the following result
of Girard (the given proof is similar to that of [12, Proposition 2.3.15]):

Lemma 2.19 (RCA0). Any natural transformation ν : T ⇒ S between coded
prae-dilators satisfies suppS ◦ ν = suppT .

Proof. Consider a number n and an element σ ∈ Tn. By the support condition from
Definition 2.2 we have σ = Tισ◦enσ

(σ0) for some σ0 ∈ Tm, with m = | suppTn (σ)|.
Using the naturality of ν and suppS we get

suppSn(νn(σ)) = suppSn(νn ◦ Tισ◦enσ
(σ0)) = suppSn(Sισ◦enσ

◦ νm(σ0)) =

= [ισ ◦ enσ]
<ω(suppSm(νm(σ0))) ⊆ rng(ισ) = suppTn (σ).

Aiming at a contradiction, let us now assume that there is a k ∈ suppTn (σ) that
does not lie in suppSn(νn(σ)). Consider the functions f1, f2 : n → n+ 1 with

f1(i) =

{

i if i ≤ k,

i+ 1 if i > k,
f2(i) =

{

i if i < k,

i+ 1 if i ≥ k.

Observe that we have

k = f1(k) ∈ [f1]
<ω(suppTn (σ)) = suppTn+1(Tf1(σ)),

as well as

k /∈ rng(f2) ⊇ [f2]
<ω(suppTn (σ)) = suppTn+1(Tf2(σ)).

Thus Tf1(σ) and Tf2(σ) are distinguished by their supports. Since νn+1 is injective
we obtain

Sf1 ◦ νn(σ) = νn+1 ◦ Tf1(σ) 6= νn+1 ◦ Tf2(σ) = Sf2 ◦ νn(σ).

By Definition 2.2 we may write νn(σ) = Sινn(σ)◦enνn(σ)
(τ0). Since k is not contained

in rng(ινn(σ)) = suppSn(νn(σ)) we have

f1 ◦ ινn(σ) ◦ enνn(σ) = f2 ◦ ινn(σ) ◦ enνn(σ) .

Thus we get

Sf1 ◦ νn(σ) = Sf1 ◦ Sινn(σ)◦enνn(σ)
(τ0) = Sf2 ◦ Sινn(σ)◦enνn(σ)

(τ0) = Sf2 ◦ νn(σ),

which contradicts the inequality established above. �

Let us remark that suppS ◦ ν = suppT is equivalent to the assertion that ν
is Cartesian (i. e. that the naturality squares for ν are pullbacks). Thus the lat-
ter holds for any natural transformation between prae-dilators, as pointed out by



16 ANTON FREUND AND MICHAEL RATHJEN

P. Taylor [22] (the first author would like to thank Thomas Streicher for this ref-
erence and for enlightening explanations). For us the lemma is important since
it ensures that the uniqueness condition suppT|a|(σ) = |a| from Definition 2.4 is

preserved under natural transformations, which justifies the definition of Dν :

Definition 2.20 (RCA0). Given coded prae-dilators T and S, any natural trans-
formation ν : T ⇒ S is called a morphism of coded prae-dilators. If T = (T, µT )
and S = (S, µS) are normal and we have ν ◦ µT = µS , then ν is called a morphism
of normal prae-dilators. To extend ν beyond the category of natural numbers we
define Dν

X : DT
X → DS

X by setting

Dν
X(〈a, σ〉) = 〈a, ν|a|(σ)〉

for each linear order X.

Let us verify that the extension of a morphism has the expected property:

Lemma 2.21 (RCA0). If ν : T ⇒ S is a morphism of (normal) prae-dilators, then

the maps Dν
X : DT

X → DS
X form a natural transformation (and Dν

X ◦DµT

X = DµS

X

holds for every order X). Furthermore we have suppD
S

X ◦Dν
X = suppD

T

X .

Proof. To see that each function Dν
X : DT

X → DS
X is order preserving it suffices to

observe that T|ιa∪b
a |(σ) <T|a∪b|

T|ιa∪b
b

|(τ) implies

S|ιa∪b
a |(ν|a|(σ)) = ν|a∪b|(T|ιa∪b

a |(σ)) <S|a∪b|
ν|a∪b|(T|ιa∪b

b
|(τ)) = S|ιa∪b

b
|(ν|b|(τ)),

using the naturality of ν and the fact that ν|a∪b| is order preserving. The naturality
of Dν follows from the fact that we have |[f ]<ω(a)| = |a| for any order preserving
function f . If ν is a morphism of normal prae-dilators, then we get

Dν
X ◦DµT

X (x) = Dν
X(〈{x}, µT

1 (0)〉) = 〈{x}, ν1 ◦ µ
T
1 (0)〉 = 〈{x}, µS

1 (0)〉 = DµS

X (x).

The relation between the supports is immediate in view of Definition 2.4. �

As suggested by the last line of equations, one can show that the general condition
νn ◦ µT

n = µS
n follows from the special case n = 1 (write m < n as m = ι(0) with

ι : 1 → n and use naturality). In practice it is just as straightforward to verify the
condition for arbitrary n. We now have all ingredients to define upper derivatives
on the level of coded prae-dilators:

Definition 2.22 (RCA0). Let T be a normal prae-dilator. An upper derivative
of T consists of a normal prae-dilator S and a morphism ξ : T ◦ S ⇒ S of normal
prae-dilators.

With the previous definition we have completed our formalization of state-
ment (2) from the introduction (where S stands for (S, ξ)). Of course we want
to know that we have recovered the notion of upper derivative for normal func-
tions. This fact can be established in a sufficiently strong set theory:

Proposition 2.23. Consider normal dilators T and S. If there is a natural trans-
formation ξ : T ◦ S ⇒ S, then the normal function α 7→ otp(DS

α) is an upper
derivative of the normal function α 7→ otp(DT

α ).

Before we prove the proposition, let us remark that X 7→ DT
X automatically

preserves well-foundedness if X 7→ DS
X does, since

Dξ
X ◦ ζT,S

X ◦DT (DµS

X ) : DT
X → DS

X
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is an embedding (ζT,S is the natural isomorphism from Proposition 2.16).

Proof. In view of Proposition 2.14 it suffices to establish otp(DT
γ ) ≤ γ for any

value γ = otp(DS
α)

∼= DS
α . The required inequality is witnessed by the embeddings

DT
γ
∼= DT (DS

α)
ζT,S
α−−−→ DT◦S

α

Dξ
α−−−→ DS

α
∼= γ,

where the first isomorphism uses the functoriality of DT (cf. Proposition 2.5). �

To conclude the discussion of upper derivatives we record an immediate con-
sequence of Lemmas 2.18 and 2.21. The equality in the corollary has an intuitive
meaning, which will become clear in the proof of Theorem 2.29.

Corollary 2.24 (RCA0). Assume that (S, ξ) is an upper derivative of a normal
prae-dilator T . Then we have

Dξ
X ◦ ζT,S

X ◦DµT

DS
X

◦DµS

X = DµS

X

for any order X.

As a final topic of this section we consider derivatives of normal prae-dilators.
On the level of normal functions the derivative is the upper derivative with the
smallest possible values. In a categorical setting this is naturally expressed via the
notion of initial object. To make this precise we need the following construction:

Definition 2.25 (RCA0). Given coded prae-dilators T, S1, S2 and a natural trans-
formation ν : S1 ⇒ S2, we define a family of functions T (ν)n : (T ◦S1)n → (T ◦S2)n
by setting

T (ν)n = DT (νn)

for each number n.

We verify the expected properties:

Lemma 2.26 (RCA0). Let T be a (normal) prae-dilator. If ν : S1 ⇒ S2 is a
morphism of (normal) prae-dilators, then so is T (ν) : T ◦S1 ⇒ T ◦S2. Furthermore
we have

D
T (ν)
X ◦ ζT,S1

X = ζT,S2

X ◦DT (Dν
X)

for each order X, where ζT,Si

are the natural isomorphisms from Proposition 2.16.

Proof. Using Proposition 2.5 and the naturality of ν one readily shows that T (ν)
is a natural family of embeddings. If ν is a morphism of normal prae-dilators, then

we invoke the naturality of DµT

(due to Proposition 2.13) to get

T (ν)n ◦ µT◦S1

n = DT (νn) ◦D
µT

S1
n
◦ µS1

n = DµT

S2
n
◦ νn ◦ µS1

n = DµT

S2
n
◦ µS2

n = µT◦S2

n ,

which shows that T (ν) is a morphism of normal prae-dilators. The equality asserted
in the lemma can be verified by unravelling definitions. �

Let us introduce a last ingredient for the definition of derivatives:

Definition 2.27 (RCA0). Consider a normal prae-dilator T with upper derivatives
(S1, ξ1) and (S2, ξ2). A morphism of upper derivatives is a morphism ν : S1 ⇒ S2

of normal prae-dilators that satisfies ν ◦ ξ1 = ξ2 ◦ T (ν).

Finally, we can characterize derivatives on the level of coded prae-dilators:
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Definition 2.28 (RCA0). A derivative of a normal prae-dilator T is an upper
derivative (S, ξ) of T that is initial in the following sense: For any upper derivative
(S′, ξ′) of T there is a unique morphism ν : S ⇒ S′ of upper derivatives.

Due to the form of the given definition it is clear that the derivative of a normal
prae-dilator is unique up to isomorphism of upper derivatives. Other properties of
the derivative are harder to establish. In Sections 4 and 5 we will show that the as-
sumptions of the following theorem hold when (S, ξ) is a derivative of T . This leads
to an unconditional version of the result, which will be stated as Corollary 5.11.

Theorem 2.29. Let (S, ξ) be an upper derivative of a normal dilator T . Assume
that the maps ξn : (T ◦S)n → Sn are surjective (so that ξ is an isomorphism), that

n Sn Sn

µS
n

IdSn

ξn◦D
µT

Sn

is an equalizer diagram for every n, and that X 7→ DS
X preserves well-foundedness.

Then α 7→ otp(DS
α) is the derivative of the normal function α 7→ otp(DT

α ).

Before we prove the theorem we motivate the equalizer condition: By Defini-
tion 2.17 and the fact that ξ is a morphism of normal prae-dilators we get

ξn ◦DµT

Sn
◦ µS

n = ξn ◦ µT◦S
n = µS

n .

So the assumption that the equalizer diagrams commute is automatic. After Defin-
ition 2.10 we have explained that µT can be seen as an internal version of the
function α 7→ otp(DT

α ). Intuitively speaking, the equalizer condition thus demands
that any ordinal α with otp(DT

α ) = α lies in the range of α 7→ otp(DS
α).

Proof. As a preparation we lift the assumptions of the theorem to the level of class-
sized dilators: In view of Definition 2.20 it is straightforward to show that each

function Dξ
X : DT◦S

X → DS
X is an isomorphism. From Corollary 2.24 we know that

X DS
X DS

X

D
µS

X

Id
DS

X

D
ξ
X
◦ζT,S

X
◦DµT

DS
X

is a commutative diagram. To show that it defines an equalizer we consider an
arbitrary element 〈a, σ〉 ∈ DS

X . Invoking Definitions 2.12 and 2.20, as well as the
proof of Proposition 2.16, we see

Dξ
X ◦ ζT,S

X ◦DµT

DS
X

(〈a, σ〉) = Dξ
X ◦ ζT,S

X (〈{〈a, σ〉}, µT
1 (0)〉) =

= Dξ
X(〈a, 〈{σ}, µT

1 (0)〉〉) = 〈a, ξ|a|(〈{σ}, µ
T
1 (0)〉)〉 = 〈a, ξ|a| ◦D

µT

S|a|
(σ)〉.

If this value is equal to 〈a, σ〉, then we have ξ|a| ◦D
µT

S|a|
(σ) = σ. Thus the equalizer

condition from the theorem yields σ = µS
|a|(m) for some m < |a|. According to

Definition 2.4 and Lemma 2.11 we must have

|a| = suppS|a|(σ) = suppS|a|(µ
S
|a|(m)) = {m}.

This forces m = 0 and |a| = 1, say a = {x}. We can conclude

〈a, σ〉 = 〈{x}, µS
1 (0)〉 = DµS

X (x) ∈ rng(DµS

X ),
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as required to make the above an equalizer diagram. Based on these preparations
we can now prove the actual claim of the theorem: Write f for the normal function
α 7→ otp(DT

α ) and f ′ for its derivative. Proposition 2.23 yields otp(DS
β ) ≥ f ′(β).

We may thus define an order embedding f ′
S : β → DS

β by stipulating

otp(DS
β ↾f ′

S(α)) = f ′(α).

To make use of the equalizer diagram from the beginning of the proof we need

Dξ
β ◦ ζT,S

β ◦DµT

DS
β

◦ f ′
S(α) = f ′

S(α).

Since Dξ
β ◦ ζT,S

β : DT (DS
β ) → DS

β is an isomorphism this reduces to

otp(DT (DS
β )↾D

µT

DS
β

◦ f ′
S(α)) = f ′(α).

By the proof of Proposition 2.14 and the functoriality of DT , the left side is indeed
equal to

otp(DT (DS
β ↾f ′

S(α))) = otp(DT
f ′(α)) = f(f ′(α)) = f ′(α).

Now the universal property of equalizers yields an embedding g : β → β that

satisfies DµS

β ◦ g = f ′
S . Since g is a strictly increasing function on the ordinals we

have α ≤ g(α). Thus, again invoking the proof of Proposition 2.14, we get

otp(DS
α) = otp(DS

β ↾DµS

β (α)) ≤ otp(DS
β ↾DµS

β ◦ g(α)) = otp(DS
β ↾f ′

S(α)) = f ′(α).

We have already seen otp(DS
α) ≥ f ′(α). So we can conclude that α 7→ otp(DS

α)
coincides with the derivative f ′ of the normal function α 7→ otp(DT

α ), as desired. �

In Example 4.14 we will exhibit an upper derivative (S, ξ) that satisfies the
equalizer condition but fails to be a derivative in the sense of Definition 2.28. This
shows that the equalizer condition does not suffice to characterize derivatives on
the categorical level. The relevance of Example 4.14 is somewhat diminished by
the fact that X 7→ DS

X does not preserve well-foundedness.

3. From upper derivative to Π1
1-bar induction

In this section we prove that bar induction for Π1
1-formulas follows from the

principle that every normal dilator has an upper derivative that preserves well-
foundedness (i. e. that is again a normal dilator). To establish this result we follow
the informal argument given at the beginning of the introduction.

The first major goal of the section is to reconstruct the functions h and f from the
informal argument in terms of dilators. Since the notion of dilator is Π1

2-complete
(due to Girard) it makes sense that this is possible. Indeed our reconstruction
of h is inspired by Norman’s proof of Π1

2-completeness (see [14, Annex 8.E]). To
get a usable result we will have to adapt his argument to the specific form of bar
induction. Our reconstruction of f can be read as a proof that the more restrictive
class of normal dilators is Π1

2-complete as well.
Let us begin with some terminology: Given a set Y , we write Y <ω for the tree

of finite sequences with entries in Y . If Y = (Y,<Y ) is a linear order, then the
Kleene-Brouwer order (also known as Lusin-Sierpiński order) on Y <ω is defined by

σ <KB(Y ) τ ⇔

{

either σ is a proper end extension of τ ,

or we have (σ)j <Y (τ)j for the smallest j with (σ)j 6= (τ)j .
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In the second clause (σ)j refers to the j-th entry of σ, for j < len(σ) below the
length of σ (note that such a j exists when neither sequence is an end extension of
the other). If we want to emphasize that T is ordered as a subtree of Y <ω, then we
say that it carries the Kleene-Brouwer order with respect to Y . The symbol <KB

will be reserved for the Kleene-Brouwer order with respect to N (ordered as usual).
Recall that a branch of T ⊆ Y <ω is given by a function f : N → Y such that we
have f [n] ∈ T for all n ∈ N, where the sequence

f [n] = 〈f(0), . . . , f(n− 1)〉

lists the first n values of f . It is well-known that ACA0 proves the characteristic
property of the Kleene-Brouwer order: If Y is a well-order, then T has no branch
if, and only if, the Kleene-Brouwer order with respect to Y is well-founded on T (to
adapt the proof from [21, Lemma V.1.3], which treats the case Y = N, one observes
that N embeds into any infinite suborder Y0 ⊆ Y , e. g. as an initial segment).

Given an order X = (X,<X), an X-indexed family of orders is given as a set

Y = {〈x, y〉 |x ∈ X and y ∈ Yx},

where Yx = (Yx, <Yx
) is an order for each x ∈ X. The dependent sum Σx∈XYx (or

shorter ΣY ) is the order with underlying set Y and order relation given by

〈x, y〉 <ΣY 〈x′, y′〉 ⇔

{

either x <X x′,

or x = x′ and y <Yx
y′.

For x ∈ X we write Σx′<XxYx′ (or shorter ΣxY ) for the suborder that contains all
pairs 〈x′, y〉 ∈ ΣY with x′ <X x. IfX is a well-order, then ΣY is well-founded if, and
only if, Yx is well-founded for every x ∈ X, provably in RCA0 (the first components
of a descending sequence in ΣY must become constant with some value x ∈ X,
from which point on the second components form a descending sequence in Yx).
The product X × Y of two orders is explained as the special case where we have
Yx = Y for all x ∈ X. Let us mention one other construction that will be needed
later: Given an order Y = (Y,<Y ), we write

Y ⊥ = {⊥} ∪ Y

for the extension of Y by a new minimal element (i. e. we have ⊥ <Y ⊥ y <Y ⊥ y′

for any y, y′ ∈ Y with y <Y y′). If f : Y → Z is an embedding, then we get an
embedding f⊥ : Y ⊥ → Z⊥ by setting

f⊥(y) =

{

f(y) if y ∈ Y ⊆ Y ⊥,

⊥ if y = ⊥.

One readily verifies that the construction is functorial (and in fact a dilator), in the
sense that we have (g ◦ f)⊥ = g⊥ ◦ f⊥ for functions f, g of suitable (co-)domain.

We will be particularly interested in dependent sums of the form ΣT = Σx∈XTx,
where X is a well-order and each Tx is a subtree of N<ω, with the usual Kleene-
Brouwer order. In this situation we call T an X-indexed family of N-trees. As in
the informal argument from the introduction, the idea is that the well-foundedness
of Tx corresponds to the fact that some Π1

1-formula ϕ holds at x ∈ X. Above we
have seen that ΣxT is well-founded if, and only if, Ty is well-founded for all y <X x.
Thus it makes sense to call T progressive at x ∈ X if we have

“ΣxT is well-founded” → “Tx is well-founded”.
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If T is progressive at every x ∈ X, then it is called progressive along X.
Let us now describe our reconstruction of the function h: The ordinal α and the

induction formula ϕ that appear in the informal argument from the introduction
correspond to a well-order X and an X-indexed family T of N-trees. In order to
represent the function δ 7→ h(γ, δ) with γ < α we will construct a prae-dilator H[x]
such that T is progressive at x ∈ X if, and only if, H[x] is a dilator (we write
H[x] for both the class-sized dilator and its coded restriction, cf. the discussion
after Definition 2.7). Considering the contrapositive of the implication from left to

right, we see that we should ensure the following: If H[x]Z ∼= D
H[x]
Z is ill-founded

for some well-order Z, then ΣxT must be well-founded while Tx is not. Inspired by
Norman’s proof of Π1

2-completeness, the idea is to defineH[x]Z as a tree: Along each
potential branch one searches for an embedding of ΣxT into Z and, simultaneously,
for a descending sequence in Tx. This leads to the following construction:

Definition 3.1 (RCA0). Consider a well-order X, an X-indexed family T of
N-trees and an element x ∈ X. For each order Z we define H[x]Z = H[X, T , x]Z
as the tree of all sequences

〈〈z0, s0〉, . . . , 〈zk−1, sk−1〉〉 ∈ (Z⊥ × N)<ω

that satisfy the following:

(i) Whenever j1, j2 < k code elements ji = 〈yi, σi〉 ∈ ΣxT , we have zji ∈ Z
(i. e. zji 6= ⊥) and

〈y1, σ1〉 <ΣT 〈y2, σ2〉 ⇒ zj1 <Z zj2 .

(ii) We have 〈s0, . . . , sk−1〉 ∈ Tx.

The order on H[x]Z is the Kleene-Brouwer order with respect to Z⊥ × N. For an
embedding f : Z → Y we define H[x]f : H[x]Z → H[x]Y by

H[x]f (〈〈z0, s0〉, . . . , 〈zk−1, sk−1〉〉) = 〈〈f⊥(z0), s0〉, . . . , 〈f
⊥(zk−1), sk−1〉〉.

To define a family of functions supp
H[x]
Z : H[x]Z → [Z]<ω we set

supp
H[x]
Z (〈〈z0, s0〉, . . . , 〈zk−1, sk−1〉〉) = {zj | j < k and zj 6= ⊥}

for each order Z.

The following is readily verified:

Lemma 3.2 (RCA0). The orders and functions that we have constructed in the
previous definition form a prae-dilator H[x] = H[X, T , x].

Since the previous result is formulated in RCA0, it is officially concerned with
the coded restriction of H[x] to the category of natural numbers. The following
technical observation shows that the class-sized and coded versions of H[x] can be
identified (cf. the discussion after Definition 2.7).

Lemma 3.3 (RCA0). For each order Z we get an isomorphism D
H[x]
Z

∼= H[x]Z
by stipulating

〈a, 〈〈n0, s0〉, . . . , 〈nk−1, sk−1〉〉 〉 7→

〈〈(ιa ◦ ena)
⊥(n0), s0〉, . . . , 〈(ιa ◦ ena)

⊥(nk−1), sk−1〉〉

where ιa ◦ ena : |a| → Z is the unique embedding with range a ∈ [Z]<ω.
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Proof. To verify the claim one follows the proof of Lemma 2.6. �

We can now deduce the connection with the premise of Π1
1-bar induction. As

mentioned before, this part of our argument is similar to Norman’s proof that the
notion of dilator is Π1

2-complete (see [14, Annex 8.E]). We choose the base theory
ACA0 since we will apply the characteristic property of the Kleene-Brouwer order:

Proposition 3.4 (ACA0). An X-indexed family T of N-trees is progressive at
x ∈ X if, and only if, H[x] = H[X, T , x] is a dilator.

Proof. By Lemma 3.2 we already know that H[x] is a prae-dilator. Thus we need
to show that the implication

“ΣxT is well-founded” → “Tx is well-founded”

holds if, and only if, H[x]Z ∼= D
H[x]
Z is well-founded for every well-order Z. Aiming

at the contrapositive of the first direction, assume that Z is a well-order such that
H[x]Z is ill-founded. By the characteristic property of the Kleene-Brouwer order
we get a branch in the tree H[x]Z ⊆ (Z⊥ × N)<ω. In view of Definition 3.1 the
first components of this branch form an embedding of ΣxT into the well-order Z,
which witnesses the premise of the above implication. The second components of
our branch form a branch in the tree Tx, so that the latter is ill-founded. Thus our
implication fails and the first direction is established. For the other direction we
assume that H[x] is a dilator. Assuming the premise of the above implication, it
follows that H[x]ΣxT is a well-order. To establish the conclusion of our implication,
we construct an embedding of Tx into H[x]ΣxT . Define e : N → (ΣxT )⊥ by

e(j) =

{

〈y, σ〉 if j codes the element 〈y, σ〉 ∈ ΣxT ,

⊥ if j does not code an element of ΣxT .

It is straightforward to verify that

Tx ∋ 〈s0, . . . , sk−1〉 7→ 〈〈e(0), s0〉, . . . , 〈e(k − 1), sk−1〉〉 ∈ H[x]ΣxT

is the required embedding. �

So far we have reconstructed the function h from the informal argument from
the introduction. In the rest of this section we reconstruct the normal function f
and conclude the proof of Π1

1-bar induction. Since the formalization in second order
arithmetic is somewhat technical, we begin with an informal exposition:

Summary 3.5. In the informal argument from the introduction we have trans-
formed h into a function h0 with h0(δ) = supγ≤δ h(γ, δ). The supremum does not
seem to be available on the level of dilators, but it can be bounded by a transfinite
sum: For each order Z we consider the order

H0
Z = Σx∈XH[x]Z .

Here H[x] = H[X, T , x] is constructed with respect to a fixed well-order X and an
X-indexed family T of N-trees that is progressive along X. It is straightforward to
turn H0 into a prae-dilator, and Proposition 3.4 implies that H0 is a dilator. The
informal argument proceeds with a normal function f with f(δ) =

∑

γ<δ 1+h0(γ).

If δ is represented by Z, then γ < δ corresponds to Z ↾ z = {z′ ∈ Z | z′ <Z z} for
some z ∈ Z. Hence f can be represented by a dilator F with

FZ = Σz∈Z(H
0
Z↾z)

⊥ = Σz∈Z (Σx∈XH[x]Z↾z)
⊥
.
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Elements of FZ have the form 〈z,⊥〉 or 〈z, x, σ〉 (with one pair of parentheses
omitted) for z ∈ Z, x ∈ X and σ ∈ H[x]Z↾z. One can check that F becomes
normal if we define µF

Z : Z → FZ by µF
Z (z) = 〈z,⊥〉 (cf. Proposition 3.7 below).

We point out that the definition of F resembles Girard’s construction of a flower
∫

T from a given dilator T (cf. [12, Example 2.4.9]). In our setting, the conclusion
of Π1

1-bar induction amounts to the claim that Σx∈XTx is well-founded. We want
to deduce this claim from the assumption that F has an upper derivative

ξ : G ◦ F ⇒ G

such that G preserves well-foundedness. Since X is a well-order, it suffices to
construct an embedding

J : Σx∈XTx → GX .

In a sufficiently strong meta theory, the value J(〈x, σ〉) can be constructed by
recursion on x: The normal dilator G comes with an embedding µG

X : X → GX .
Inductively we assume that we already have values J(〈y, σ〉) ∈ GX ↾ µG

X(x) for
all 〈y, σ〉 ∈ Σy<XxTy = ΣxT . We can then define Jx : N → (GX ↾µG

X(x))⊥ by

Jx(j) =

{

J(〈y, σ〉) if j codes the element 〈y, σ〉 ∈ ΣxT ,

⊥ if j does not code an element of ΣxT .

Assuming that J is order preserving on ΣxT , we have

〈s0, . . . , sk−1〉 ∈ Tx ⇒ 〈〈Jx(0), s0〉, . . . , 〈Jx(k − 1), sk−1〉〉 ∈ H[x]GX↾µG
X
(x).

Using the function ξX : F (GX) → GX , we can now define J(〈x, 〈s0, . . . , sk−1〉〉) as

ξX(〈µG
X(x), x, 〈〈Jx(0), s0〉, . . . , 〈Jx(k − 1), sk−1〉〉〉) ∈ GX .

For x <X x′ the argument of ξX is below 〈µG
X(x′),⊥〉 = µF

G(X)◦µ
G
X(x′) = µF◦G

X (x′).

Since ξ : F ◦G ⇒ G is a morphism of normal dilators, this implies

J(〈x, 〈s0, . . . , sk−1〉〉) <G(X) ξX ◦ µF◦G
X (x′) = µG

X(x′),

as we have assumed in the recursive construction. In the proof of Theorem 3.12 we
will see that J can be constructed by primitive recursion, since each value J(〈x, σ〉)
does only depend on a finite (and effectively bounded) collection of previous values.

In the rest of this section we provide a detailed formalization of the argument
from Summary 3.5. The first step is to define F as a coded dilator. As ex-
plained in the previous section, this means that F acts on finite orders of the
form n = {0, . . . , n− 1}. It will be very convenient to have a more uniform presenta-
tion of the orders (Σx∈XH[x]n)

⊥. For this purpose we extend the X-indexed family
of prae-dilators H[x] to a family indexed by X⊥: Define H[⊥] = H[X, T ,⊥] as the
constant prae-dilator with values

H[⊥]n = {⋆},

where ⋆ is some new symbol. Its action on morphisms and the support functions

are given by H[⊥]f (⋆) = ⋆ and supp
H[⊥]
n (⋆) = ∅. Then we have

(Σx∈XH[x]n)
⊥ ∼= Σx∈X⊥H[x]n,

where the isomorphism sends ⊥ to 〈⊥, ⋆〉 and leaves 〈x, τ〉 with x ∈ X unchanged.
The point is that all elements of the right side are pairs, which will save us many
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case distinctions. Invoking Definition 2.4 we see that D
H[⊥]
Z consists of the single

element 〈∅, ⋆〉. Thus H[⊥] is a dilator and we have
(

Σx∈XD
H[x]
Z

)⊥
∼= Σx∈X⊥D

H[x]
Z .

We now define the coded prae-dilator F that reconstructs the function f from the
informal argument. The crucial point is that F is normal, as we shall see below.

Definition 3.6 (RCA0). Consider a well-order X and an X-indexed family T of
N-trees. For each number n we define

Fn = F [X, T ]n = ΣN∈nΣx∈X⊥H[X, T , x]N .

Omitting one pair of parentheses, we write the elements of Fn in the form 〈N, x, σ〉
with N ∈ n = {0, . . . , n − 1}, x ∈ X⊥ and σ ∈ H[x]N . The order on Fn is the
usual order on a dependent sum, which coincides with the lexicographic order on
the triples 〈N, x, σ〉. Given an embedding f : n → m, we write f ↾N : N → f(N)
for the restriction of f . Then we define Ff : Fn → Fm by

Ff (〈N, x, τ〉) = 〈f(N), x,H[x]f↾N (τ)〉.

The functions suppFn : Fn → [n]<ω are given as

suppFn (〈N, x, τ〉) = {N} ∪ supp
H[x]
N (τ).

Finally we define a family of functions µF
n : n → Fn by setting

µF
n (N) = 〈N,⊥, ⋆〉

for all numbers N < n.

Let us verify the following:

Proposition 3.7 (RCA0). The orders and functions from the previous definition
form a normal prae-dilator F = F [X, T ].

Proof. Using Lemma 3.2 it is straightforward to show that F is a functor and that
suppF is a natural transformation. To conclude that F is a prae-dilator we must
verify the support condition from clause (ii) of Definition 2.2. To do so we consider

an arbitrary σ = 〈N, x, τ〉 ∈ Fn. We abbreviate a := supp
H[x]
N (τ) ⊆ {0, . . . , N − 1}

and write ισ ◦ enσ : |a|+1 → n for the embedding with range suppFn (σ) = a∪{N}.
Since the restriction (ισ ◦ enσ) ↾ |a| : |a| → N has range a, the support condition
for H[x] yields a τ0 ∈ H[x]|a| with τ = H[x](ισ◦enσ)↾|a|(τ0). By construction we
have 〈|a|, x, τ0〉 ∈ F|a∪{N}| and σ = Fισ◦enσ

(〈|a|, x, τ0〉), which completes the proof

of the support condition for F . One readily verifies that µF is a natural family of
embeddings (for naturality we recall H[⊥]f↾N (⋆) = ⋆). In view of Definition 2.10
it remains to establish

σ <Fn
µF
n (N) ⇔ suppFn (σ) <

fin N

for arbitrary σ ∈ Fn and N < n. For the first direction we recall that 〈⊥, ⋆〉 is the
smallest element of Σx∈X⊥H[x]N . Thus any σ <Fn

µF
n (N) = 〈N,⊥, ⋆〉 must have

the form σ = 〈N ′, x, τ〉 with N ′ < N . In view of supp
H[x]
N ′ (τ) ∈ [N ′]<ω we get

suppFn (σ) = {N ′} ∪ supp
H[x]
N ′ (τ) <fin N.

For the converse we also write σ = 〈N ′, x, τ〉. In view of N ′ ∈ suppFn (σ) the right
side of the desired equivalence implies N ′ < N and thus σ <Fn

µF
n (N). �
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Lemma 3.3 provides a transparent description of the orders D
H[x]
Z (recall that

the latter consist of pairs 〈a, τ〉 with a ∈ [Z]<ω and τ ∈ H[x]|a|, see Definition 2.4).

We now describe DF
Z relative to these orders:

Definition 3.8 (RCA0). Given an order Z, we put

FZ = {〈z, x, 〈a, τ〉〉 ∈ Z × Σx∈X⊥D
H[x]
Z | a <fin

Z z}.

The order on FZ is the indicated product order, which coincides with the lexico-
graphic order on the triples 〈z, x, 〈a, τ〉〉 (we again omit a pair of angle parentheses).

Note that the previous definition of FZ is similar but not quite identical to the
informal construction in Summary 3.5. The following proof consists in a technical
verification, which can be skipped at first reading.

Lemma 3.9 (RCA0). For each order Z the clause

χF
X(〈z, x, 〈a, τ〉〉) = 〈a ∪ {z}, 〈|a|, x, τ〉〉

defines an isomorphism χF
Z : FZ → DF

Z .

Proof. To see that χF
Z has values in DF

Z we consider an arbitrary 〈z, x, 〈a, τ〉〉 ∈ FZ .

In view of Definition 2.4 we have τ ∈ H[x]|a| and supp
H[x]
|a| (τ) = |a|. This yields

〈|a|, x, τ〉 ∈ F|a|+1 and suppF|a|+1(〈|a|, x, τ〉) = {|a|} ∪ supp
H[x]
|a| (τ) = |a|+ 1.

The condition a <fin
Z z ensures |a ∪ {z}| = |a|+ 1. Thus we indeed have

χF
Z (〈z, x, 〈a, τ〉〉) = 〈a ∪ {z}, 〈|a|, x, τ〉〉 ∈ DF

Z .

To prove that χF
Z is order preserving we consider an inequality

〈z0, x0, 〈a0, τ0〉〉 <FZ
〈z1, x1, 〈a1, τ1〉〉.

We write ιj : aj ∪ {zj} →֒ a0 ∪ a1 ∪ {z0, z1} =: c with j ∈ {0, 1} for the inclusions.
Furthermore, let enc : |c| → c and enj : |aj∪{zj}| → aj∪{zj} denote the increasing
enumerations. As in the previous section, the function |ιj | : |aj ∪ {zj}| → |c| is
determined by the property that it is order preserving and makes the following
diagram commute:

|aj ∪ {zj}| |c|

aj ∪ {zj} c.

|ιj |

enj enc

ιj

According to Definition 2.4 the desired inequality between the values of χF
Z is

equivalent to

F|ι0|(〈|a0|, x0, τ0〉) <F|c|
F|ι1|(〈|a1|, x1, τ1〉).

By the definition of F the latter amounts to

〈|ι0|(|a0|), x0, H[x0]|ι0|↾|a0|(τ0)〉 <F|c|
〈|ι1|(|a1|), x1, H[x1]|ι1|↾|a1|(τ1)〉.

To establish this inequality we first assume that the given inequality between the
arguments of χF

Z holds because of z0 <Z z1. In view of the condition aj <
fin
Z zj we

have enj(|aj |) = zj and thus

enc ◦|ι0|(|a0|) = ι0 ◦ en0(|a0|) = z0 <Z z1 = ι1 ◦ en1(|a1|) = enc ◦|ι1|(|a1|).
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This implies |ι0|(|a0|) < |ι1|(|a1|), so that the required inequality holds. A similar
argument shows that z0 = z1 implies |ι0|(|a0|) = |ι1|(|a1|). The case where we have
z0 = z1 and x0 <X x1 is now immediate. Finally assume z0 = z1, x0 = x1 =: x and

〈a0, τ0〉 <D
H[x]
Z

〈a1, τ1〉.

It is straightforward to check that the restriction |ιj | ↾ |aj | makes the following
diagram commute, where the vertical arrows are the increasing enumerations:

|aj | |a0 ∪ a1|

aj a0 ∪ a1.

|ιj |↾|aj |

In view of Definition 2.4 we can conclude

H[x]|ι0|↾|a0|(τ0) <H|a0∪a1|
H[x]|ι1|↾|a1|(τ1),

which implies the required inequality. To show that χF
Z is surjective we consider an

arbitrary 〈b, 〈N, x, τ〉〉 ∈ DF
Z . According to Definition 2.4 we must have

|b| = suppF|b|(〈N, x, τ〉) = {N} ∪ supp
H[x]
N (τ),

which forces |b| = N+1 and supp
H[x]
N (τ) = N . In particular b is non-empty, so that

we can write b = a ∪ {z} with a <fin
Z z. In view of |a| = N we get 〈a, τ〉 ∈ D

H[x]
Z

and then 〈z, x, 〈a, τ〉〉 ∈ FZ , as well as χ
F
Z (〈z, x, 〈a, τ〉〉) = 〈b, 〈N, x, τ〉〉. �

By combining previous results we obtain the following:

Corollary 3.10 (ACA0). Consider a well-order X. An X-indexed family T of
N-trees is progressive along X if, and only if, F [X, T ] is a normal dilator.

Proof. In view of Proposition 3.4, Proposition 3.7 and the previous lemma it suf-

fices to show that Z 7→ FZ preserves well-foundedness if, and only if, Z 7→ D
H[x]
Z

preserves well-foundedness for all x ∈ X. If the latter holds, then

Z × Σx∈X⊥D
H[x]
Z

is well-founded for any well-order Z (recall that D
H[⊥]
Z = {〈∅, ⋆〉} consists of a single

element, so that it is well-founded in any case). Since FZ is contained in that order it
must be well-founded itself. To establish the other direction we show the following:

For any x ∈ X the order D
H[x]
Z can be embedded into FZ⊤ , where Z⊤ = Z ∪ {⊤}

extends Z by a new maximal element. Let us write ι : Z →֒ Z⊤ for the inclusion.

Definition 2.4 and Proposition 2.5 tell us that D
H[x]
ι (〈a, τ〉) = 〈[ι]<ω(a), τ〉 = 〈a, τ〉

defines an embedding of D
H[x]
Z into D

H[x]

Z⊤ . Since any a ∈ [Z]<ω satisfies a <fin
Z⊤ ⊤

we see that 〈a, τ〉 7→ 〈⊤, x, 〈a, τ〉〉 is the desired embedding of D
H[x]
Z into FZ⊤ . �

With the previous result we have completed our reconstruction of the functions
h and f that appear in the informal argument from the introduction. The latter
proceeds by considering an upper derivative g of f . It then invokes induction on γ
to show that each tree Tγ can be embedded into the ordinal g(γ + 1) ≤ g(α).
To avoid the use of transfinite induction (or recursion) we now give a particularly
careful construction of embeddings. This construction will involve the finite orders

ΣxT ∩ k = {j < k | j is (the code of) an element of ΣxT },
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with the same order relation as on ΣxT . Let us also recall that Tx carries the
Kleene-Brouwer order <KB with respect to N.

Proposition 3.11 (RCA0). Consider a well-order X and an X-indexed family T
of N-trees. There is a function E : ΣT → N such that the following holds for any
element x ∈ X, any σ, σ1, σ2 ∈ Tx and any order Z:

(i) Given a (finite) embedding e : ΣxT ∩ len(σ) → Z, we have

〈rng(e), E(〈x, σ〉)〉 ∈ D
H[x]
Z .

(ii) If e1 : ΣxT ∩ len(σ1) → Z and e2 : ΣxT ∩ len(σ2) → Z coincide on the
intersection of their domains, then we have

σ1 <KB σ2 ⇒ 〈rng(e1), E(〈x, σ1〉)〉 <D
H[x]
Z

〈rng(e2), E(〈x, σ2〉)〉.

Proof. We begin by defining E(〈x, σ〉) for given x ∈ X and σ = 〈s0, . . . , sk−1〉 ∈ Tx.
For j ∈ ΣxT ∩k we define nj < |ΣxT ∩k| by stipulating that j is the nj-th element
of ΣxT ∩ k. For all j < k outside of ΣxT we set nj = ⊥. Now we put

E(〈x, σ〉) = 〈〈n0, s0〉, . . . , 〈nk−1, sk−1〉〉.

To establish (i) we first need E(〈x, σ〉) ∈ H[x]| rng(e)|. Since e is injective its range
has the same cardinality as ΣxT ∩ k (continuing the notation from above, so
that k = len(σ)). Thus we do have nj ∈ | rng(e)|⊥ for all j < k. Clause (i) of
Definition 3.1 is satisfied by construction. Clause (ii) says nothing but σ ∈ Tx. To
complete the verification of (i) we need

supp
H[x]
| rng(e)|(E(〈x, σ〉)) = | rng(e)|.

For the crucial inclusion ⊇ it suffices to observe that any n ∈ | rng(e)| = |ΣxT ∩ k|
is the position of some j ∈ ΣxT ∩ k. To prove property (ii) we compose with the
order isomorphism from Lemma 3.3. If j is the nj-th element of ΣxT ∩k, then e(j)
is the nj-th element of rng(e). Thus (still with the same notation as above) we see
that 〈rng(e), E(〈x, σ〉)〉 corresponds to

〈〈e⊥(0), s0〉, . . . , 〈e⊥(k − 1), sk−1〉〉 ∈ H[x]Z ,

where e⊥ : k → Z⊥ extends e by the values e⊥(j) = ⊥ for j /∈ ΣxT . With this
description it is straightforward to check property (ii): Assume that we have

σ1 = 〈s0, . . . , sk−1〉 <KB 〈s′0, . . . , s
′
l−1〉 = σ2

and that e1 : ΣxT ∩ k → Z and e2 : ΣxT ∩ l → Z coincide below min{k, l}. Since
H[x]Z carries the Kleene-Brouwer order with respect to Z⊥ × N we get

〈〈(e1)⊥(0), s0〉, . . . , 〈(e1)⊥(k − 1), sk−1〉〉 <H[x]Z

〈〈(e2)⊥(0), s
′
0〉, . . . , 〈(e2)⊥(l − 1), s′l−1〉.

Up to the isomorphism H[x]Z ∼= D
H[x]
Z this is just as required. �

Using the previous result, we now show that the embedding J from Summary 3.5
can be constructed in a weak meta-theory.

Theorem 3.12 (RCA0). Consider a well-order X and an X-indexed family T of
N-trees. Assume that G and ξ : F ◦G ⇒ G form an upper derivative of the normal
prae-dilator F = F [X, T ]. Then ΣT can be embedded into the order DG

X .
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Proof. As a preparation we specify two functions that are implicit in the given data:
By combining Proposition 2.16, Lemma 2.21 and Lemma 3.9 we get an embedding

ξF := Dξ
X ◦ ζF,G

X ◦ χF
DG

X
: FDG

X
→ DG

X .

From Definitions 2.10, 2.12 and 2.22 we know that G = (G,µG) must be a normal
prae-dilator and does, as such, give rise to an order preserving function

DµG

X : X → DG
X .

We now show that the desired embedding

J : ΣT → DG
X

can be constructed by a finitary course-of-values recursion. For this purpose we
assume that the code of any 〈x, σ〉 ∈ ΣT is at least as big as the length of the
sequence σ. The value J(〈x, σ〉) may then depend on the finite function

ex,σ := J ↾(ΣxT ∩ len(σ)) : ΣxT ∩ len(σ) → DG
X .

After describing the construction of J we will set up an induction which ensures
that ex,σ is an embedding. When this is the case Proposition 3.11 yields an element

J0(〈x, σ〉) := 〈rng(ex,σ), E(〈x, σ〉)〉 ∈ DH[x](DG
X).

In view of Definition 3.8 we can now state the recursive clause for J as

J(〈x, σ〉) = ξF (〈DµG

X (x), x, J0(〈x, σ〉)〉).

To conclude the proof we show the following by simultaneous induction on j:

(i) If j codes an element of ΣT , then we have J(j) ∈ DG
X .

(ii) If j1, j2 ≤ j code elements of ΣT , then we have

j1 <ΣT j2 ⇒ J(j1) <DG
X
J(j2).

(iii) If j codes an element of ΣxT , then we have J(j) <DG
X
DµG

X (x).

To verify the induction step for (i) we write j = 〈x, σ〉. Parts (i) and (ii) of the
induction hypothesis guarantee that ex,σ is an embedding with values in DG

X , as

promised above. We have seen that this yields J0(〈x, σ〉) ∈ DH[x](DG
X). In view of

Definition 3.8 we also need

rng(ex,σ) <
fin
DG

X
DµG

X (x).

This holds by part (iii) of the induction hypothesis. To establish the induction step
for (ii) we consider an inequality

j1 = 〈x1, σ1〉 <ΣT 〈x2, σ2〉 = j2.

If we have x1 <X x2, then we get DµG

X (x1) <DG
X
DµG

X (x2) and thus

〈DµG

X (x1), x1, J
0(〈x1, σ1〉)〉 <F

DG
X

〈DµG

X (x2), x2, J
0(〈x2, σ2〉)〉.

As ξF is order preserving this implies J(j1) <DG
X
J(j2). Now assume that j1 <ΣT j2

holds because we have x1 = x2 =: x and σ1 <KB σ2 (recall that Tx carries the usual
Kleene-Brouwer order). Since ex,σ1

and ex,σ2
are restrictions of the same function,

they coincide on the intersection of their domains. Thus Proposition 3.11 yields

J0(〈x1, σ1〉) <DH[x](DG
X
) J

0(〈x2, σ2〉),
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which again implies J(j1) <DG
X
J(j2). Finally we prove the induction step for (iii).

As a preparation we recall that DH[⊥](DG
X) consists of the single element 〈∅, ⋆〉. In

view of Lemma 3.9, Definition 3.6 and Definition 2.12 we have

χF
DG

X
(〈DµG

X (x),⊥, 〈∅, ⋆〉〉) = 〈{DµG

X (x)}, 〈0,⊥, ⋆〉〉 =

= 〈{DµG

X (x)}, µF
1 (0)〉 = DµF

DG
X

◦DµG

X (x).

Together with Corollary 2.24 we get

ξF (〈DµG

X (x),⊥, 〈∅, ⋆〉〉) = Dξ
X ◦ ζF,G

X ◦DµF

DG
X

◦DµG

X (x) = DµG

X (x).

To deduce (iii) we observe that any j ∈ ΣxT has the form j = 〈y, σ〉 with y <X x.
The latter implies

〈DµG

X (y), y, J0(〈y, σ〉)〉 <F
DG

X

〈DµG

X (x),⊥, 〈∅, ⋆〉〉.

By the above this yields

J(j) <DG
X
ξF (〈DµG

X (x),⊥, 〈∅, ⋆〉〉) = DµG

X (x),

as required. �

The following result completes our reconstruction of the informal argument and
establishes the implication (2)⇒(3) that we have discussed in the introduction. The
notions that appear in statement (2) have been made precise in Section 2.

Corollary 3.13. For each Π1
1-formula ϕ(x) (possibly with further free variables) the

following is provable in ACA0: If every normal dilator F has an upper derivative
(G, ξ) such that G is a dilator, then ϕ satisfies bar induction, i. e. we have

∀x∈X(∀y<Xxϕ(y) → ϕ(x)) → ∀x∈Xϕ(x)

for any well-order X = (X,<X).

Proof. By the Kleene normal form theorem (see [21, Lemma V.1.4]) there is a
bounded arithmetical formula θ(σ, x) such that ACA0 proves

ϕ(x) ↔ ∀f∃nθ(f [n], x).

Here the universal quantifier ranges over all functions f : N → N. Let us recall that
f [n] = 〈f(0), . . . , f(n− 1)〉 denotes the sequence that contains the first n values of
such a function. Given a sequence σ = 〈σ0, . . . , σlen(σ)−1〉 and a number n ≤ len(σ),
we similarly write σ[n] = 〈σ0, . . . , σn−1〉. We can now define an X-indexed family
T = {〈x, σ〉 |x ∈ X and σ ∈ Tx} of N-trees by setting

Tx = {σ ∈ N<ω | ∀n≤len(σ)¬θ(σ[n], x)}

for every x ∈ X. Observe that ∀n¬θ(f [n], x) is equivalent to the assertion that f
is a branch in Tx. Thus we have

ϕ(x) ↔ “Tx is well-founded”,

where Tx carries the usual Kleene-Brouwer order with respect to N. Let us now
assume that the premise of the desired induction statement holds. Then T is pro-
gressive along X, using the terminology that we have introduced at the beginning of
this section. Consider the prae-dilator F = F [X, T ] that is constructed according
to Definition 3.6. From Corollary 3.10 we learn that F is a normal dilator. By the
assumption of the present corollary we get a dilator G and a natural transformation
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ξ : F ◦G → G that form an upper derivative of F . Theorem 3.12 tells us that ΣT
can be embedded into the order DG

X . The latter is well-founded, because X is a
well-order and G is a dilator. Hence ΣT is well-founded as well. It follows that
Tx is well-founded for every x ∈ X, which yields the conclusion ∀x∈Xϕ(x) of the
desired induction statement. �

4. Constructing the derivative

In the present section we show how to construct a derivative ∂T of a given normal
prae-dilator T . We will see that RCA0 proves the existence of ∂T , as well as the
fact that it is a derivative. As a consequence we obtain the implication (1)⇒(2)
from the introduction. What RCA0 cannot show is that ∂T is a dilator (i. e. that
X 7→ D∂T

X preserves well-foundedness) whenever T is one: Due to Corollary 3.13
this statement implies Π1

1-bar induction. The converse implication, which amounts
to (3)⇒(1) from the introduction, will be established in Section 5.

The construction of ∂T can also be exploited to establish general results about
derivatives. This relies on the fact that derivatives are essentially unique, as ob-
served after Definition 2.28. We will use this approach to show that the assumptions
of Theorem 2.29 are automatic when (S, ξ) is a derivative of T .

As mentioned in the introduction, a categorical construction of derivatives has
already been given by Aczel [1, 2]. In the following we give a rather informal
presentation of his approach in the terminology of the present paper (in particular
we are rather liberal about the distinction between coded and class-sized dilators,
cf. the discussion after Definition 2.7). Given a normal dilator T = (T, µT ) and an
order X, Aczel’s idea was to define the value ∂TX as the direct limit of the diagram

X TX T 2
X := T (TX) · · · .

µT
X T (µT

X) T 2(µT
X):=T (T (µT

X))

As a direct limit, ∂TX comes with compatible embeddings jnX : Tn
X → ∂TX . By the

universal property the functions

T (jnX) ◦ Tn(µT
X) : Tn

X → T (∂TX)

glue to an embedding of ∂TX into T (∂TX). The latter is an isomorphism since
T preserves direct limits. Thus ∂TX is a fixed-point of T , as one would expect
if ∂T is to be a derivative. Furthermore, Aczel could show that ∂T preserves
well-foundedness if T does. This is a non-trivial matter, since well-foundedness is
not preserved under direct limits in general. The proof that it is preserved under
the specific limit constructed above makes crucial use of the assumption that T
preserves initial segments (cf. the discussion before Lemma 2.8). Finally, Aczel has
shown that α 7→ otp(∂Tα) is the derivative of the normal function α 7→ otp(Tα).
Let us mention that he did not give an explicit characterization of derivatives on
the level of functors, i. e. he did not formulate an analogue of Definition 2.28.

In order to recover Aczel’s construction in RCA0 we need to approach the direct
limit in a particularly finitistic way. Our idea is to represent ∂TX by a system
of terms. To see how this works, recall that we want to ensure the existence of an
isomorphism ξX : T (∂TX) → ∂TX . In view of Lemma 2.6 (and the discussion after
Definition 2.7) any element of T (∂TX) corresponds to a pair 〈a, σ〉 ∈ DT (∂TX),
where a ⊆ ∂TX is finite and σ ∈ T|a| satisfies supp

T
|a|(σ) = |a|. Assuming that the

elements of a are already represented by terms, we can add a term ξ〈a, σ〉 ∈ ∂TX

that represents the value of 〈a, σ〉 under ξX . To make this idea precise we switch
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back to the rigorous framework of coded prae-dilators, as introduced in Section 2.
In particular we want to construct ∂T as a coded prae-dilator, which leads us to
focus on the values ∂Tn for the finite orders n = {0, . . . , n− 1}. Let us first specify
the underlying set of the order ∂Tn:

Definition 4.1 (RCA0). Consider a normal prae-dilator T = (T, suppT , µT ). For
each number n we define a term system ∂Tn by the following inductive clauses:

(i) We have a term µm ∈ ∂Tn for every number m < n.
(ii) Given a finite set a ⊆ ∂Tn of terms and a σ ∈ T|a| with suppT|a|(σ) = |a|,

we get a term ξ〈a, σ〉 ∈ ∂Tn, provided that the following holds: If we have
a = {µm} for some m < n, then σ must be different from µT

1 (0) ∈ T1.

Note that the term systems ∂Tn are uniformly computable (with respect to n),
so that RCA0 proves the existence of the set

{〈n, s〉 | s ∈ ∂Tn}.

This is crucial if we want to extend ∂T into a coded prae-dilator (cf. the discussion
after Definition 2.2). In order to understand the proviso in clause (ii) one should
think of µm as a notation for f ′(m), where f is the normal function induced by T

and f ′ is its derivative. In the proof of Proposition 2.14 we have seen that DµT

amounts to an internal version of the function f . Together with Definition 2.12

we see that 〈{µm}, µT
1 (0)〉 = DµT

∂Tn
(µm) corresponds to f(f ′(m)). Since the lat-

ter is equal to f ′(m) the terms ξ〈{µm}, µT
1 (0)〉 and µm would represent the same

ordinal. To keep our notations unique, the first of these terms has been excluded
in clause (ii). A formal version of this intuitive explanation will play a role in the
proof of Theorem 4.13. The following notion of term length will be used to define
the order on ∂Tn:

Definition 4.2 (RCA0). For each n we define a length function L∂T
n : ∂Tn → N

by recursion over the build-up of terms, setting

L∂T
n (s) =

{

psq if s = µm,

max{psq, 1 +
∑

t∈a 2 · L
∂T
n (t)} if s = ξ〈a, σ〉,

where psq denotes the code (Gödel number) of the term s.

Note that psq coincides with s if Definition 4.1 is already arithmetized. The role
of the Gödel numbers is to justify certain applications of induction and recursion
over the length of terms: In view of psq ≤ L∂T

n (s) a quantifier of the form

∀s∈∂Tn
(L∂T

n (s) ≤ l → . . . )

is bounded. Thus such a quantifier does not lead out of the Σ0
1-formulas, for which

induction is available in RCA0. To construct a binary relation <∂Tn
on ∂Tn, the

following definition decides s <∂Tn
t by recursion on L∂T

n (s) + L∂T
n (t). In case

we have s = ξ〈a, σ〉 and t = ξ〈b, τ〉 we can assume that the restriction of <∂Tn

to a ∪ b is already determined (note that r ∈ a yields 2 · L∂T
n (r) < L∂T

n (s), so
that we can decide r <∂Tn

r). In particular we can check whether <∂Tn
is a

linear order on the finite set a ∪ b. If it is, then we may refer to the functions
|ιa∪b
a | and |ιa∪b

b | from Definition 2.4. More explicitly, we can write ena : |a| → a
and ena∪b : |a ∪ b| → a ∪ b for the unique increasing enumerations with respect
to <∂Tn

. Then the function |ιa∪b
a | : |a| → |a∪ b| is characterized by the fact that it
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satisfies ena∪b ◦|ι
a∪b
a | = ιa∪b

a ◦ ena, where ιa∪b
a : a →֒ a ∪ b is the inclusion. Before

Lemma 2.8 we have seen that a linear order <X on a set X induces relations <fin
X

and ≤fin
X between finite subsets of X. In the following we use <fin

∂Tn
and ≤fin

∂Tn
as

abbreviations, without assuming that <∂Tn
is linear on the relevant parts of X. In

particular we have

s ≤fin
∂Tn

b ⇔ ∃r∈b s ≤∂Tn
r

for any element s ∈ ∂Tn and any finite subset b ⊆ ∂Tn. Note that s ≤∂Tn
r

abbreviates s <∂Tn
r ∨ s = r, where the second disjunct refers to the equality of

terms. We can now state the definition of the desired order relation:

Definition 4.3 (RCA0). For each n we define a binary relation <∂Tn
on ∂Tn.

Invoking recursion on L∂T
n (s) + L∂T

n (t), we stipulate that s <∂Tn
t holds if, and

only if, one of the following is satisfied:

(i) We have s = µm and
• either t = µk and m < k,
• or t = ξ〈b, τ〉 and s ≤fin

∂Tn
b.

(ii) We have s = ξ〈a, σ〉 and
• either t = µk and a <fin

∂Tn
t,

• or we have t = ξ〈b, τ〉, the restriction of <∂Tn
to a∪ b is linear, and we

have T|ιa∪b
a |(σ) <T|a∪b|

T|ιa∪b
b

|(τ).

To show that <∂Tn
is a linear order we will need the following auxiliary result:

Lemma 4.4 (RCA0). If T is a normal prae-dilator, then we have

σ ≤Tk
τ ⇒ suppTk (σ) ≤

fin suppTk (τ)

for any number k and arbitrary elements σ, τ ∈ Tk.

Proof. If the conclusion of the implication is false, then we have suppTk (τ) <fin

m for some m ∈ suppTk (σ). Note that suppTk (σ) <fin m must fail. In view of
Definition 2.10 we obtain τ <Tk

µT
k (m) ≤Tk

σ, so that the premise of our implication
is false. �

We can now establish the expected fact:

Lemma 4.5 (RCA0). Given a normal prae-dilator T and any number n, the
relation <∂Tn

is a linear order on the term system ∂Tn.

Proof. It is straightforward to see that s <∂Tn
s must fail for every s, based on the

fact that the linear order <Tk
is antisymmetric for any number k. We now show

s <∂Tn
t ∨ s = t ∨ t <∂Tn

s,

r <∂Tn
s ∧ s <∂Tn

t → r <∂Tn
t

by simultaneous induction on L∂T
n (s) + L∂T

n (t) resp. L∂T
n (r) + L∂T

n (s) + L∂T
n (t).

Trichotomy is immediate if we have s = µm and t = µk with m, k < n. If we have
s = µm and t = ξ〈b, τ〉, then the induction hypothesis yields s ≤fin

∂Tn
b or b <fin

∂Tn
s.

In the first case we get s <∂Tn
t while the second leads to t <∂Tn

s. Now assume
that we have s = ξ〈a, σ〉 and t = ξ〈b, τ〉. The simultaneous induction hypothesis
ensures that <∂Tn

is linear on a∪b (note that s′ <∂Tn
t′∧ t′ <∂Tn

s′ → s′ <∂Tn
s′ is
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covered, due to the factor 2 in the definition of L∂T
n ). It is easy to conclude unless

we have T|ιa∪b
a |(σ) = T|ιa∪b

b
|(τ). In this case the naturality of suppT yields

[|ιa∪b
a |]<ω(|a|) = [|ιa∪b

a |]<ω(suppT|a|(σ)) = suppT|a∪b|(T|ιa∪b
a |(σ)) =

= suppT|a∪b|(T|ιa∪b
b

|(τ)) = [|ιa∪b
b |]<ω(suppT|b|(τ)) = [|ιa∪b

b |]<ω(|b|).

Composing both sides with [ena∪b]
<ω we get a = b. Then |ιa∪b

a | and |ιa∪b
b | must be

the identity on |a| = |a ∪ b| = |b|. As T is functorial we get σ = τ and hence s = t.
To establish transitivity one needs to distinguish several cases according to the form
of the terms r, s and t. In the first interesting case we have r = µm, s = ξ〈a, σ〉 and
t = ξ〈b, τ〉. Invoking the previous lemma we see that s <∂Tn

t implies

[|ιa∪b
a |]<ω(|a|) = suppT|a∪b|(T|ιa∪b

a |(σ)) ≤
fin suppT|a∪b|(T|ιa∪b

b
|(τ)) = [|ιa∪b

b |]<ω(|b|).

Again we compose both sides with [ena∪b]
<ω, to get a ≤fin

∂Tn
b. In view of r <∂Tn

s

we have µm ≤fin
∂Tn

a. Using the induction hypothesis we can infer µm ≤fin
∂Tn

b and
thus r <∂Tn

t. Let us now consider r = ξ〈a, σ〉, s = µm and t = ξ〈b, τ〉. In this
situation r <∂Tn

s <∂Tn
t amounts to a <fin

∂Tn
s ≤fin

∂Tn
b, which implies that b ≤fin

∂Tn
a

must fail. Similarly to the previous case we can conclude

suppT|a∪b|(T|ιa∪b
b

|(τ)) 6≤
fin suppT|a∪b|(T|ιa∪b

a |(σ)).

Note that we can refer to |ιa∪b
a | and |ιa∪b

b |, since the simultaneous induction hypo-
thesis ensures that <∂Tn

is linear on a∪b. Using the previous lemma and trichotomy
for <T|a∪b|

we obtain T|ιa∪b
a |(σ) <T|a∪b|

T|ιa∪b
b

|(τ) and hence r <∂Tn
t. To establish

transitivity for r = ξ〈a, σ〉, s = ξ〈b, τ〉 and t = ξ〈c, ρ〉 it suffices to considers the
inclusions into a ∪ b ∪ c and to use transitivity for <T|a∪b∪c|

. �

We will see that the following turns n 7→ ∂Tn into a functor:

Definition 4.6 (RCA0). Given a strictly increasing function f : n → l, we define
a function ∂Tf : ∂Tn → ∂Tl by recursion over the build-up of terms, setting

∂Tf (µm) = µf(m),

∂Tf (ξ〈a, σ〉) = ξ〈[∂Tf ]
<ω(a), σ〉.

The fact that ∂Tf has values in ∂Tl is established as part of the following proof:

Lemma 4.7 (RCA0). If f : n → l is strictly increasing, then ∂Tf : ∂Tn → ∂Tl is
an order embedding.

Proof. By simultaneous induction on L∂T
n (r) resp. L∂T

n (s) + L∂T
n (t) one can verify

r ∈ ∂Tn → ∂Tf (r) ∈ ∂Tl,

s <∂Tn
t → ∂Tf (s) <∂Tl

∂Tf (t).

Let us consider the first claim for r = ξ〈a, σ〉: The simultaneous induction hypo-
thesis implies that ∂Tf is order preserving and hence injective on a. In particular
we have |[∂Tf ]

<ω(a)| = |a|. Furthermore, it is easy to see that [∂Tf ]
<ω(a) = {µk}

implies a = {µm} with k = f(m). Invoking Definition 4.1 we can now conclude
that r ∈ ∂Tn implies ∂Tf (r) = ξ〈[∂Tf ]

<ω(a), σ〉 ∈ ∂Tl. To verify that ∂Tf is order
preserving we distinguish cases according to the form of s and t. In the first inter-
esting case we have s = µm <∂Tn

ξ〈b, τ〉 = t because of s ≤fin
∂Tn

b. By the induction

hypothesis we obtain ∂Tf (s) ≤
fin
∂Tk

[∂Tf ]
<ω(b) and hence

∂Tf (s) = µf(m) <∂Tk
ξ〈[∂Tf ]

<ω(b), τ〉 = ∂Tf (t).
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Let us also consider the case where s = ξ〈a, σ〉 <∂Tk
ξ〈b, τ〉 = t holds because we

have T|ιa∪b
a |(σ) <T|a∪b|

T|ιa∪b
b

|(τ). To infer ∂Tf (s) <∂Tk
∂Tf (t) it suffices to show

∣

∣

∣
ι
[∂Tf ]

<ω(a∪b)

[∂Tf ]<ω(a)

∣

∣

∣
= |ιa∪b

a | and
∣

∣

∣
ι
[∂Tf ]

<ω(a∪b)

[∂Tf ]<ω(b)

∣

∣

∣
= |ιa∪b

b |.

By the definition of the functor | · | (cf. the paragraph after Summary 2.1), the first
of these equations reduces to

en[∂Tf ]<ω(a∪b) ◦|ι
a∪b
a | = ι

[∂Tf ]
<ω(a∪b)

[∂Tf ]<ω(a) ◦ en[∂Tf ]<ω(a) .

The induction hypothesis tells us that ∂Tf is order preserving on a ∪ b. Since the
increasing enumeration of a finite order is uniquely determined this yields

en[∂Tf ]<ω(a∪b) = ∂Tf ◦ ena∪b : |[∂Tf ]
<ω(a ∪ b)| = |a ∪ b| → [∂Tf ]

<ω(a ∪ b).

Together with ena∪b ◦|ι
a∪b
a | = ιa∪b

a ◦ ena we indeed get

en[∂Tf ]<ω(a∪b) ◦|ι
a∪b
a | = ∂Tf ◦ ena∪b ◦|ι

a∪b
a | = ∂Tf ◦ ιa∪b

a ◦ ena =

= ι
[∂Tf ]

<ω(a∪b)

[∂Tf ]<ω(a) ◦ ∂Tf ◦ ena = ι
[∂Tf ]

<ω(a∪b)

[∂Tf ]<ω(a) ◦ en[∂Tf ]<ω(a) .

The equation with b at the place of a is established in the same way. �

To get a normal prae-dilator (cf. Definitions 2.2 and 2.10) we need the following:

Definition 4.8 (RCA0). For each n we define a function supp∂Tn : ∂Tn → [n]<ω

by induction on the build-up of terms, setting

supp∂Tn (µm) = {m},

supp∂Tn (ξ〈a, σ〉) =
⋃

t∈a supp
∂T
n (t).

To define a family of functions µ∂T
n : n → ∂Tn we put

µ∂T
n (m) = µm

for all numbers m < n.

Let us verify that ∂T = (∂T, supp∂T , µ∂T ) has the expected property:

Proposition 4.9 (RCA0). If T is a normal prae-dilator, then so is ∂T .

Proof. From Lemma 4.5 we know that ∂Tn is a linear order for any number n.
Lemma 4.7 tells us that f 7→ ∂Tf maps morphisms to morphisms. A straightforward
induction over the build-up of terms establishes the functoriality of ∂T and the
naturality of supp∂T . By another induction one can prove the implication

supp∂Tn (s) ⊆ a → s ∈ rng(∂Tιa◦ena
),

where ιa : a →֒ n denotes the inclusion of a given a ⊆ n. For a = supp∂Tn (s)
this amounts to the support condition from clause (ii) of Definition 2.2. We have
thus established that ∂T is a coded prae-dilator. The functions µ∂T

n : n → ∂Tn

clearly form a natural family of embeddings. In view of Definitions 4.3 and 4.8
a straightforward induction on the build-up of s shows

s <∂Tn
µT
n (m) ⇔ supp∂Tn (s) <fin m.

According to Definition 2.10 this means that ∂T is normal. �
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Our next goal is to turn ∂T into an upper derivative of T . According to Defini-
tion 2.22 we need to construct a morphism ξT : T ◦∂T ⇒ T of normal prae-dilators.
Concerning the notion of composition, Definitions 2.15 and 2.4 tell us that any ele-
ment of (T ◦ ∂T )n = DT (∂Tn) has the form 〈a, σ〉, where a ⊆ ∂Tn is finite and
σ ∈ T|a| satisfies supp

T
|a|(σ) = |a|. In view of Definition 4.1 this justifies the follow-

ing construction:

Definition 4.10 (RCA0). For each n we define a function ξTn : (T ◦ ∂T )n → ∂Tn

by setting

ξTn (〈a, σ〉) =

{

µm if 〈a, σ〉 = 〈{µm}, µT
1 (0)〉 with m < n,

ξ〈a, σ〉 if 〈a, σ〉 has a different form.

The following result is important as it implies the implication (1)⇒(2) from the
introduction of this paper.

Proposition 4.11 (RCA0). If T is a normal prae-dilator, then (∂T, ξT ) is an
upper derivative of T .

Proof. In view of Definition 2.22 we must establish that ξT : T ◦ ∂T ⇒ ∂T is a
morphism of normal prae-dilators, as characterized by Definition 2.20. Let us first
show that each function ξTn : (T ◦ ∂T )n → ∂Tn is an embedding. To make the
results from Section 2 applicable we observe that Definition 2.12 yields

〈{µm}, µT
1 (0)〉 = DµT

∂Tn
(µm).

To see that s <DT (∂Tn) t implies ξTn (s) <∂Tn
ξTn (t) we now distinguish cases ac-

cording to the form of s and t. First assume that we have

s = 〈{µm}, µT
1 (0)〉 = DµT

∂Tn
(µm) <DT (∂Tn) D

µT

∂Tn
(µk) = 〈{µk}, µ

T
1 (0)〉 = t.

From Proposition 2.13 we know that DµT

∂Tn
is an embedding. Thus we indeed get

ξTn (s) = µm <∂Tn
µk = ξTn (t).

Now consider the case

s = 〈a, σ〉 <DT (∂Tn) D
µT

∂Tn
(µk) = 〈{µk}, µ

T
1 (0)〉 = t,

where 〈a, σ〉 is not of the form 〈{µm}, µT
1 (0)〉. By Proposition 2.13 we get a <fin

∂Tn
µk.

Invoking Definition 4.3 we can conclude

ξTn (s) = ξ〈a, σ〉 <∂Tn
µk = ξTn (t).

The case where we have s = 〈{µm}, µT
1 (0)〉 and t = 〈b, τ〉 is of a different form

is treated analogously (infer µm ≤fin
∂Tn

b from the fact that b <fin
∂Tn

µm must fail).
Finally we consider the case where we have

s = 〈a, σ〉 <DT (∂Tn) 〈b, τ〉 = t

and neither s nor t is of the form 〈{µm}, µT
1 (0)〉 with m < n. By Definition 2.4 we

get T|ιa∪b
a |(σ) <T|a∪b|

T|ιa∪b
b

|(τ). In view of Definition 4.3 this yields

ξTn (s) = ξ〈a, σ〉 <∂Tn
ξ〈b, τ〉 = ξTn (t).

Let us now show that ξT is natural: Given a strictly increasing function f : n → k,
we invoke Definitions 2.15 and 2.4 to obtain

ξTk ◦ (T ◦ ∂T )f (〈a, σ〉) = ξTk (〈[∂Tf ]
<ω(a), σ〉).
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First assume 〈a, σ〉 = 〈{µm}, µT
1 (0)〉. Using Definition 4.6 we compute

ξTk ◦ (T ◦ ∂T )f (〈a, σ〉) = ξTk (〈{µf(m)}, µ
T
1 (0)〉) = µf(m) =

= ∂Tf (µm) = ∂Tf ◦ ξTn (〈a, σ〉).

Now assume that 〈a, σ〉 does not have the form 〈{µm}, µT
1 (0)〉. Then 〈[∂Tf ]

<ω(a), σ〉
does not have this form either. Again by Definition 4.6 we get

ξTk ◦ (T ◦ ∂T )f (〈a, σ〉) = ξ〈[∂Tf ]
<ω(a), σ〉 = ∂Tf (ξ〈a, σ〉) = ∂Tf ◦ ξTn (〈a, σ〉).

To conclude that ξT : T ◦ ∂T ⇒ T is a morphism of normal prae-dilators we must
show ξT ◦ µT◦∂T = µ∂T (cf. Definition 2.20). By Definition 2.17 we indeed get

ξTn ◦ µT◦∂T
n (m) = ξTn (〈{µ

∂T
n (m)}, µT

1 (0)〉) = ξTn (〈{µm}, µT
1 (0)〉) = µm = µ∂T

n (m)

for all numbers m < n. �

In the construction of ∂T we have only added terms that were needed as values
of ξ : T ◦ ∂T ⇒ ∂T . The resulting minimality of ∂T leads to the following:

Theorem 4.12 (RCA0). Assume that T is a normal prae-dilator. Then (∂T, ξT )
is a derivative of T .

Proof. The previous proposition tells us that (∂T, ξT ) is an upper derivative. In
view of Definition 2.28 we assume that S and ξ′ : T ◦S ⇒ S form an upper derivative
of T as well. We must show that there is a unique morphism ν : ∂T ⇒ S of upper
derivatives. Let us begin with existence: Note that the normality of S is witnessed
by a natural family of embeddings µS

n : n → Sn. Also recall that (T ◦S)n = DT (Sn)
consists of pairs 〈b, σ〉, where b ⊆ Sn is finite and σ ∈ T|b| satisfies supp

T
|b|(σ) = |b|.

For each n we define νn : ∂Tn → Sn by recursion over the build-up of terms, setting

νn(µm) = µS
n(m),

νn(ξ〈a, σ〉) = ξ′n(〈[νn]
<ω(a), σ〉).

It is not immediately clear that the second clause produces values in Sn: To see
that ξ〈a, σ〉 implies 〈[νn]

<ω(a), σ〉 ∈ DT (Sn) we need |[νn]
<ω(a)| = |a|, which relies

on the fact that νn is order preserving and hence injective. This suggests to verify

r ∈ ∂Tn → νn(r) ∈ Sn,

s <∂Tn
t → νn(s) <Sn

νn(t)

by simultaneous induction on L∂T
n (r) resp. L∂T

n (s)+L∂T
n (t). To establish that νn is

order preserving one needs to consider different possibilities for the form of s and t.
The first interesting case is

s = ξ〈a, σ〉 <∂Tn
µm = t.

According to Definition 4.3 we have a <fin
∂Tn

µm, so that the induction hypothesis

yields [νn]
<ω(a) <fin

Sn
µS
n(m). By Definition 2.10 we get suppSn(νn(r)) <fin m for

all r ∈ a. Using Lemma 2.19 and Definition 2.15 we obtain

suppSn(ξ
′
n(〈[νn]

<ω(a), σ〉)) = suppT◦S
n (〈[νn]

<ω(a), σ〉) =
⋃

r∈a

suppSn(νn(r)) <
fin m.

By the other direction of Definition 2.10 this implies

νn(s) = ξ′n(〈[νn]
<ω(a), σ〉) <Sn

µS
n(m) = νn(t),
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as desired. Let us next consider the case where

s = µm <∂Tn
ξ〈b, τ〉 = t

holds because of µm ≤fin
∂Tn

b. Similarly to the above one can deduce that the

statements suppSn(νn(t)) <
fin m and νn(t) <Sn

µS
n(m) = νn(s) must fail. In order

to conclude νn(s) <Sn
νn(t) we shall now establish νn(s) 6= νn(t). According to

Definition 2.17 the normality of T ◦ S is witnessed by the functions

m 7→ µT◦S
n (m) = 〈{µS

n(m)}, µT
1 (0)〉.

Since ξ′ is a morphism of normal prae-dilators we get

νn(s) = µS
n(m) = ξ′n ◦ µT◦S

n (m) = ξ′n(〈{µ
S
n(m)}, µT

1 (0)〉).

Invoking the injectivity of the embedding ξ′n we learn that νn(s) = νn(t) would
imply 〈{νn(µm)}, µT

1 (0)〉 = 〈[νn]
<ω(b), τ〉. By induction hypothesis νn is injective

on b ∪ {µm}. Hence νn(s) = νn(t) would even yield t = ξ〈{µm}, µT
1 (0)〉. This

possibility, however, has been excluded in Definition 4.1. Finally we assume that

s = ξ〈a, σ〉 <∂Tn
ξ〈b, τ〉 = t.

holds because of T|ιa∪b
a |(σ) <T|a∪b|

T|ιa∪b
b

|(τ). The induction hypothesis ensures

that νn is order preserving on a ∪ b. As in the proof of Lemma 4.7 one can show
∣

∣

∣
ι
[νn]

<ω(a∪b)
[νn]<ω(a)

∣

∣

∣
= |ιa∪b

a | and
∣

∣

∣
ι
[νn]

<ω(a∪b)
[νn]<ω(b)

∣

∣

∣
= |ιa∪b

b |.

Invoking Definition 2.4 one then obtains 〈[νn]
<ω(a), σ〉 <DT (Sn) 〈[νn]

<ω(b), τ〉.

Since ξ′n is an embedding of (T ◦ S)n = DT (Sn) into Sn this implies

νn(s) = ξ′n(〈[νn]
<ω(a), σ〉) <Sn

ξ′n(〈[νn]
<ω(b), τ〉) = νn(t).

So far we have established that each function νn is an embedding of ∂Tn into Sn.
To conclude that these embeddings form a morphism of prae-dilators we must show
that they are natural: Given a strictly increasing function f : n → k, we establish
νk ◦ ∂Tf (s) = Sf ◦ νn(s) by induction on the build-up of s. In the case of s = µm

we invoke the naturality of µS to get

νk ◦ ∂Tf (µm) = νk(µf(m)) = µS
k (f(m)) = Sf (µ

S
n(m)) = Sf ◦ νn(m).

Let us now establish the induction step for s = ξ〈a, σ〉. In view of Definitions 2.15
and 2.4 the induction hypothesis yields

(T ◦ S)f (〈[νn]
<ω(a), σ〉) = 〈[Sf ]

<ω ◦ [νn]
<ω(a), σ〉 = 〈[νk]

<ω ◦ [∂Tf ]
<ω(a), σ〉.

Together with the naturality of ξ′ : T ◦ S ⇒ S we get

νk ◦ ∂Tf (ξ〈a, σ〉) = νk(ξ〈[∂Tf ]
<ω(a), σ〉) = ξ′k(〈[νk]

<ω ◦ [∂Tf ]
<ω(a), σ〉) =

= ξ′k((T ◦ S)f (〈[νn]
<ω(a), σ〉)) = Sf (ξ

′
n(〈[νn]

<ω(a), σ〉)) = Sf ◦ νn(ξ〈a, σ〉),

as required. Next we observe

νn ◦ µ∂T
n (m) = νn(µm) = µS

n(m),

which shows that ν is a morphism of normal prae-dilators. To conclude that we
have a morphism of upper derivatives we need to establish ν ◦ ξT = ξ′ ◦T (ν). First
observe that Definitions 2.25 and 2.4 yield

T (ν)n(〈a, σ〉) = DT (νn)(〈a, σ〉) = 〈[νn]
<ω(a), σ〉.
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If 〈a, σ〉 ∈ (T ◦ ∂T )n is not of the form 〈{µm}, µT
1 (0)〉, then we obtain

νn ◦ ξTn (〈a, σ〉) = νn(ξ〈a, σ〉) = ξ′n(〈[νn]
<ω(a), σ〉) = ξ′n ◦ T (ν)n(〈a, σ〉).

In the remaining case Definition 4.10 yields

νn ◦ ξTn (〈{µm}, µT
1 (0)〉) = νn(µm) = µS

n(m).

Invoking Definition 2.17 and the fact that ξ′ : T ◦ S ⇒ S is a morphism of normal
prae-dilators we also get

ξ′n ◦ T (ν)n(〈{µm}, µT
1 (0)〉) = ξ′n(〈{νn(µm)}, µT

1 (0)〉) =

= ξ′n(〈{µ
S
n(m)}, µT

1 (0)〉) = ξ′n ◦ µT◦S
n (m) = µS

n(m).

To complete the proof we must show that ν is unique: Given an arbitrary morphism
ν′ : ∂T ⇒ S of upper derivatives, we establish ν′(s) = ν(s) by induction on the
build-up of s. In the case of s = µm we invoke Definition 4.8 and the assumption
that ν′ is a morphism of normal prae-dilators to get

ν′n(µm) = ν′n ◦ µ∂T
n (m) = µS

n(m) = νn(µm).

Given a term s = ξ〈a, σ〉, we observe that the induction hypothesis implies

T (ν′)n(〈a, σ〉) = DT (ν′n)(〈a, σ〉) = 〈[ν′n]
<ω(a), σ〉 = 〈[νn]

<ω(a), σ〉.

Together with the assumption that ν′ is a morphism of upper derivatives we obtain

ν′n(ξ〈a, σ〉) = ν′n◦ξ
T
n (〈a, σ〉) = ξ′n◦T (ν

′)n(〈a, σ〉) = ξ′n(〈[νn]
<ω(a), σ〉) = νn(ξ〈a, σ〉),

as required. �

We have described a construction that yields a derivative ∂T of a given normal
prae-dilator T . Since derivatives are essentially unique, the construction of ∂T can
be exploited to prove general properties of derivatives. The following result estab-
lishes some of the assumptions from Theorem 2.29. The remaining assumption,
which states that X 7→ DS

X preserves well-foundedness, will be considered in the
next section (in view of Corollary 3.13 this will require a stronger base theory).

Theorem 4.13 (RCA0). Consider a normal prae-dilator T . If (S, ξ) is a deriv-
ative of T , then ξ : T ◦ S ⇒ S is a natural isomorphism. Furthermore

n Sn Sn

µS
n

IdSn

ξn◦D
µT

Sn

is an equalizer diagram for every number n.

Proof. The definition of derivative ensures that ξ is a natural transformation. To
conclude that it is a natural isomorphism we show that ξn : (T ◦ S)n → Sn is
surjective for each n. Since both (S, ξ) and (∂T, ξT ) are derivatives of T , there is an
isomorphism ν : S ⇒ ∂T of upper derivatives (cf. the remark after Definition 2.28).
In view of Definitions 2.27 and 2.25 we have

νn ◦ ξn = ξTn ◦ T (ν)n = ξTn ◦DT (νn).

Now νn is bijective, and it is straightforward to infer that the same holds forDT (νn).
So it suffices to show that ξTn is surjective. Aiming at the latter, we first observe
that Definitions 4.8 and 2.20 yield

µm = µ∂T
n (m) = ξTn ◦ µT◦∂T

n (m) ∈ rng(ξTn ).
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It remains to consider an element ξ〈a, σ〉 ∈ ∂Tn. In view of Definitions 4.1, 2.4
and 2.15 we have 〈a, σ〉 ∈ DT (∂Tn) = (T ◦ ∂T )n. Thus we get

ξ〈a, σ〉 = ξTn (〈a, σ〉) ∈ rng(ξTn ),

which completes the proof that ξ is a natural isomorphism. After the statement
of Theorem 2.29 above we have observed that the given equalizer diagram is auto-

matically commutative. To establish that µS
n is an equalizer of ξn ◦ DµT

Sn
and the

identity we must show that

ξn ◦DµT

Sn
(s) = s ⇒ s ∈ rng(µS

n)

holds for any element s ∈ Sn. To reduce the claim to the special case with (∂T, ξT )
at the place of (S, ξ) we apply νn to both sides of the antecedent. Using the

naturality of DµT

, which is provided by Lemma 2.13, this yields

νn(s) = νn ◦ ξn ◦DµT

Sn
(s) = ξTn ◦DT (νn) ◦D

µT

Sn
(s) = ξTn ◦DµT

∂Tn
◦ νn(s).

Assuming the special case of the desired implication, we obtain νn(s) ∈ rng(µ∂T
n ),

say νn(s) = µ∂T
n (m). Since ν is a morphism of normal prae-dilators, this implies

νn ◦ µS
n(m) = µ∂T

n (m) = νn(s).

Invoking the injectivity of νn we see s = µS
n(m) ∈ rng(µS

n), which is the conclusion
of the general case. It remains to establish the special case for ∂T . Aiming at the
contrapositive of the desired implication, let us assume that s ∈ ∂Tn is not of the
form µS

n(m) = µm. Then Definitions 2.12 and 4.10 yield

ξTn ◦DµT

∂Tn
(s) = ξTn (〈{s}, µ

T
1 (0)〉) = ξ〈{s}, µT

1 (0)〉.

The term on the right cannot be equal to s, which it contains as a proper subterm
(one can also appeal to the fact that s is shorter in the sense of Definition 4.2). �

To conclude this section we show that the conditions from the previous theorem
do not suffice to characterize derivatives on the categorical level:

Example 4.14. Define a normal dilator T by setting Tn = {0, . . . , n− 1}, Tf = f ,
suppTn (m) = {m} and µT

n (m) = m. Furthermore, consider the sets

Sn = Z+ n = {p̂ | p ∈ Z} ∪ {m | 0 ≤ m < n}

with the expected ordering (i. e. such that p̂ <Sn
q̂ <Sn

m <Sn
k holds for all p < q

from Z and all m < k from {0, . . . , n− 1}). To turn S into a prae-dilator we set

Sf (σ) =

{

f(m) if σ = m ∈ {0, . . . , n− 1},

σ if σ = p̂ with p ∈ Z,

suppSn(σ) =

{

{m} if σ = m ∈ {0, . . . , n− 1},

∅ if σ = p̂ with p ∈ Z.

Let us point out that S is not a dilator, sinceDS
n
∼= Sn is ill-founded (cf. Lemma 2.6).

Be that as it may, we obtain a normal prae-dilator by setting

µS
n(m) = m ∈ {0, . . . , n− 1} ⊆ Sn.

Since all supports with respect to T are singletons we have

(T ◦ S)n = DT (Sn) = {〈{σ}, 0〉 |σ ∈ Sn}.
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Thus we can define ξ : T ◦ S ⇒ S by setting

ξn(〈{σ}, 0〉) =

{

m if σ = m ∈ {0, . . . , n− 1},

p̂+ 1 if σ = p̂ with p ∈ Z.

One can check that (S, ξ) is an upper derivative of T . It is easy to see that ξ is an
isomorphism, as p 7→ p + 1 is an automorphism of Z. Furthermore, the diagram
from Theorem 4.13 defines an equalizer: Assume that we have

σ = ξn ◦DµT

Sn
(σ) = ξn(〈{σ}, µ

T
1 (0)〉) = ξn(〈{σ}, 0〉).

In view of p 6= p+ 1 we cannot have σ = p̂ with p ∈ Z. Thus we must have σ = m
for some number m ∈ {0, . . . , n− 1}. It follows that

σ = m = µS
n(m)

lies in the range of µS
n , as required for the equalizer condition. Thus S and ξ satisfy

the conclusion of the previous theorem. Nevertheless they do not form a derivative
of T . Otherwise we would get a morphism S ⇒ ∂T of upper derivatives. This is
impossible since Sn = Z+ n is infinite while ∂Tn is finite: In view of T1 = {µT

1 (0)}
Definition 4.1 yields ∂Tn = {µm | 0 ≤ m < n}.

5. From Π1
1-bar induction to preservation of well-foundedness

In this section we use Π1
1-bar induction to prove the following: If T is a normal

dilator, then X 7→ D∂T
X preserves well-foundedness, so that ∂T is a normal dilator

as well. This establishes the implication (3)⇒(1) from the introduction. Together
with the results of the previous sections we learn that (1), (2) and (3) are equivalent
over ACA0. Invoking Theorems 2.29 and 4.13 we will also be able to conclude the
following: If (S, ξ) is a derivative of a normal dilator T , then α 7→ otp(DS

α) is the
derivative (in the usual sense) of the normal function α 7→ otp(DT

α ).
The construction from the previous section yields a derivative ∂T of a given

normal prae-dilator T . To assess whether ∂T is a dilator we must consider the
orders D∂T

X (cf. Definitions 2.4 and 2.7). These will be approximated as follows:

Definition 5.1 (RCA0). Consider a normal prae-dilator T , as well as a linear
order X = (X,<X). We set

∂T x
X = {〈a, s〉 ∈ D∂T

X | a <fin
X x}

for any element x ∈ X.

To distinguish the expressions ∂T x
X and ∂Tn (cf. Definition 4.1) it suffices to

observe that the latter has no superscript (note that we have ∂Tm
n ⊆ D∂T

n rather
than ∂Tm

n ⊆ ∂Tn in case X = n = {0, . . . , n − 1}). We will argue by induction
on x to show that the suborders ∂T x

X ⊆ D∂T
X are well-founded. Assuming that X

is non-empty and has no maximal element, we clearly have

D∂T
X =

⋃

x∈X

∂T x
X .

In general, the union (or direct limit) of compatible well-orders does not need to
be well-founded itself. On the other hand it is straightforward to see that an order
is well-founded if it is the union of well-founded initial segments. In the present
situation we can combine Propositions 4.9 and 2.13 to get the following:
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Lemma 5.2 (RCA0). Consider a normal prae-dilator T and a linear order X.
For any x ∈ X we have

∂T x
X = D∂T

X ↾Dµ∂T

X (x) = {σ ∈ D∂T
X |σ <D∂T

X
Dµ∂T

X (x)}.

In particular ∂T x
X is an initial segment of D∂T

X .

The assumption that T and hence ∂T is normal is crucial for the previous lemma
and for many of the following results (cf. the remarks before Lemma 2.8, as well
as the discussion of Aczel’s construction at the beginning of Section 4). Assuming
that ∂T y

X is well-founded for every y <X x, the lemma allows us to conclude that
⋃

y<Xx ∂T
y
X is well-founded. To complete the induction step one needs to deduce the

well-foundedness of ∂T x
X . For this purpose we approximate ∂T x

X by distinguishing
terms of different height (cf. Definition 4.1):

Definition 5.3 (RCA0). Let T be a normal prae-dilator. We define a family of

functions ht∂Tn : ∂Tn → N by induction over the build-up of terms, setting

ht∂Tn (µm) = 0,

ht∂Tn (ξ〈a, σ〉) =

{

ht∂Tn (s) + 1 if s is the <∂Tn
-maximal element of a,

1 if a = ∅.

Given an order X and an element x ∈ X, we put

∂T x,k
X =

⋃

y<Xx

∂T y
X ∪ {〈a, s〉 ∈ ∂T x

X | ht∂T|a| (s) ≤ k}

for every number k.

According to Definition 4.6 and Lemma 4.7, any strictly increasing function
f : n → k yields an embedding ∂Tf : ∂Tn → ∂Tk. We will need to know that these
embeddings respect our height functions:

Lemma 5.4 (RCA0). Consider a normal prae-dilator T and a strictly increasing
function f : n → k. We have

ht∂Tk (∂Tf (s)) = ht∂Tn (s)

for any element s ∈ ∂Tn.

Proof. The claim can be verified by a straightforward induction on the build-up
of s. Concerning the case s = ξ〈a, σ〉, we point out that ∂Tf (s

′) is <∂Tk
-maximal

in [∂Tf ]
<ω(a) if s′ is <∂Tn

-maximal in a. �

Yet again, it will be crucial that Definition 5.3 provides an approximation by ini-
tial segments. To show that this is the case we need a partial converse to Lemma 4.4:

Lemma 5.5 (RCA0). If T is a normal prae-dilator, then we have

supp∂Tn (s) ≤fin supp∂Tn (t) and ht∂Tn (s) < ht∂Tn (t) ⇒ s <∂Tn
t

for any number n and arbitrary elements s, t ∈ ∂Tn.

Proof. We establish the claim by induction on L∂T
n (s) + L∂T

n (t), relying on the
length function from Definition 4.2. To prove the induction step we distinguish cases
according to the form of s and t. In any case we assume supp∂Tn (s) ≤fin supp∂Tn (t)

and ht∂Tn (s) < ht∂Tn (t). Let us first consider terms s = µm and t = ξ〈b, τ〉. In this
case we need neither the induction hypothesis nor the assumption about heights:
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In view of Definition 4.8 we have {m} ≤fin supp∂Tn (t), so that supp∂Tn (t) <fin m
must fail. Invoking Definition 2.10 in conjunction with Proposition 4.9 we obtain

s = µm = µ∂T
n (m) ≤∂Tn

t.

Since s and t are different terms we can conclude s <∂Tn
t. Now consider s = ξ〈a, σ〉

and t = µk. Definition 4.3 tells us that s <∂Tn
t is equivalent to a <fin

∂Tn
t. The

latter is trivial if a is empty. Otherwise we consider the maximal element s′ ∈ a.
In view of Definition 4.8 we get supp∂Tn (s′) ≤fin supp∂Tn (t). Clearly we also have

ht∂Tn (s′) < ht∂Tn (t) and L∂T
n (s′) < L∂T

n (s). Thus we obtain s′ <∂Tn
t by induction

hypothesis. Since s′ ∈ a is maximal this establishes a <fin
∂Tn

t, as needed. Finally
we consider s = ξ〈a, σ〉 and t = ξ〈b, τ〉. In the proof of Lemma 4.5 we have seen
that s <∂Tn

t holds if b ≤fin
∂Tn

a fails. In order to refute b ≤fin
∂Tn

a we observe that

ht∂Tn (s) < ht∂Tn (t) implies b 6= ∅. Let t′ ∈ b be maximal with respect to <∂Tn
. To

complete the proof it suffices to establish a <fin
∂Tn

t′. Yet again this is trivial if a is
empty. Otherwise the claim reduces to s′ <∂Tn

t′, where s′ ∈ a is maximal. The
maximality of t′ and Lemma 4.4 ensure that supp∂Tn (r) ≤fin supp∂Tn (t′) holds for
all r ∈ b. In view of Definition 4.8 this yields

supp∂Tn (s′) ≤fin supp∂Tn (s) ≤fin supp∂Tn (t) ≤fin supp∂Tn (t′).

As we also have ht∂Tn (s′) < ht∂Tn (t′), the induction hypothesis yields s′ <∂Tn
t′. �

For our approximations of ∂T x
X we get the following:

Proposition 5.6 (RCA0). Consider a normal prae-dilator T , an order X and an

element x ∈ X. For any number k the order ∂T x,k
X is an initial segment of ∂T x

X .

Proof. Given 〈a, s〉 ∈ ∂T x,k
X and 〈b, t〉 ∈ ∂T x

X , we must show that 〈b, t〉 ≤D∂T
X

〈a, s〉

implies 〈b, t〉 ∈ ∂T x,k
X . If we have 〈a, s〉 ∈ ∂T y

X for some y <X x, then we can

conclude by Lemma 5.2. So we may assume ht∂T|a| (s) ≤ k. Aiming at the contra-

positive of the desired implication, let us assume that 〈b, t〉 ∈ ∂T x,k
X fails. Then we

have ht∂T|b| (t) > k, and b <fin
X y must fail for all y <X x. In view of a <fin

X x we get

a ≤fin
X b and ht∂T|a| (s) < ht∂T|b| (t).

To complete the proof of the contrapositive we must show 〈a, s〉 <D∂T
X

〈b, t〉. In

view of Definition 2.4 this amounts to

∂T|ιa∪b
a |(s) <∂T|a∪b|

∂T|ιa∪b
a |(t).

In order to show this inequality it suffices to establish the assumptions of Lemma 5.5,
which we shall do in the rest of the proof. Recall that supp∂T is natural, that we
have ena∪b ◦|ι

a∪b
a | = ιa∪b

a ◦ena (see the beginning of Section 2), and that 〈a, s〉 ∈ D∂T
X

requires supp∂T|a| (s) = |a| (see Definition 2.4). Combining these facts we obtain

[ena∪b]
<ω(supp∂T|a∪b|(∂T|ιa∪b

a |(s))) = [ena∪b]
<ω ◦ [|ιa∪b

a |]<ω(supp∂T|a| (s)) =

= [ιa∪b
a ]<ω ◦ [ena]

<ω(|a|) = a.

In the same way one can establish

[ena∪b]
<ω(supp∂T|a∪b|(∂T|ιa∪b

b
|(t))) = b.
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Above we have shown a ≤fin
X b. Since ena∪b is order preserving we can now conclude

supp∂T|a∪b|(∂T|ιa∪b
a |(s)) ≤

fin supp∂T|a∪b|(∂T|ιa∪b
b

|(t)),

which is the first of the assumptions needed for Lemma 5.5. Above we have also
seen ht∂T|a| (s) < ht∂T|b| (t). Together with Lemma 5.4 we now get

ht∂T|a∪b|(∂T|ιa∪b
a |(s)) < ht∂T|a∪b|(∂T|ιa∪b

b
|(t)).

This establishes the second assumption of Lemma 5.5 and completes the proof. �

The crucial induction step relies on the assumption that T is a dilator:

Proposition 5.7 (RCA0). Consider a normal dilator T , a linear order X, an

element x ∈ X, and a number k. If ∂T x,k
X is well-founded, then so is ∂T x,k+1

X .

Proof. Assume that ∂T x,k
X is a well-order. As T is a dilator it follows thatDT (∂T x,k

X )

is a well-order as well. In order to conclude that ∂T x,k+1
X is well-founded it suffices

to show that this order can be embedded into DT (∂T x,k
X ). First observe that

DT (∂T x,k
X ) = {〈a, σ〉 ∈ DT (D∂T

X ) | a ⊆ ∂T x,k
X }

is a suborder of DT (D∂T
X ) (apply Lemma 2.8 to the inclusion map ∂T x,k

X →֒ D∂T
X ).

Also recall that ∂T comes with a natural transformation ξT : T ◦ ∂T ⇒ ∂T , which
is an isomorphism by the proof of Theorem 4.13. In view of Definition 2.20 and
Proposition 2.16 we obtain an isomorphism

DξT

X ◦ ζT,∂T
X : DT (D∂T

X ) → D∂T
X .

It suffices to show that ∂T x,k+1
X is contained in the image of DT (∂T x,k

X ) under this
isomorphism, which is equivalent to the assertion that

DξT

X ◦ ζT,∂T
X (σ) ∈ ∂T x,k+1

X ⇒ σ ∈ DT (∂T x,k
X )

holds for any element σ ∈ DT (D∂T
X ). To establish this fact we write

σ = 〈{〈a1, s1〉, . . . , 〈an, sn〉}, τ〉,

such that the pairs 〈aj , sj〉 are displayed in increasing order. If we have n = 0,

then σ ∈ DT (∂T x,k
X ) is immediate. Thus we assume n > 0 for the rest of the proof.

Under this assumption, Proposition 5.6 and Lemma 5.2 imply that σ ∈ DT (∂T x,k
X )

is equivalent to 〈an, sn〉 ∈ ∂T x,k
X . By Proposition 2.16 and Definition 2.20 we have

DξT

X ◦ ζT,∂T
X (σ) = 〈c, ξT|c|(〈{∂T|ι1|(s1), . . . , ∂T|ιn|(sn)}, τ〉)〉,

where ιj : aj →֒ a1 ∪ · · · ∪ an =: c are the inclusions. In view of an ⊆ c we learn

that DξT

X ◦ ζT,∂T
X (σ) ∈ ∂T y

X implies 〈an, sn〉 ∈ ∂T y
X , for any y ∈ X. To complete

the proof it suffices to establish the implication

ht∂T|c| (ξ
T
|c|(〈{∂T|ι1|(s1), . . . , ∂T|ιn|(sn)}, τ〉)) ≤ k + 1 ⇒ ht∂T|an|(sn) ≤ k.

In view of Definition 4.10 we distinguish two cases: First assume that we have

ξT|c|(〈{∂T|ι1|(s1), . . . , ∂T|ιn|(sn)}, τ〉) = ξ〈{∂T|ι1|(s1), . . . , ∂T|ιn|(sn)}, τ〉.

Invoking Definition 2.4 we see that the map 〈aj , sj〉 7→ ∂T|ιj |(sj) is order preserving.
Thus the values ∂T|ιj |(sj) are displayed in increasing order as well. By Lemma 5.4
and our definition of heights we get

ht∂T|an|(sn) = ht∂T|c| (∂T|ιn|(sn)) < ht∂T|c| (ξ
T
|c|(〈{∂T|ι1|(s1), . . . , ∂T|ιn|(sn)}, τ〉)),
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which yields the desired implication. Now assume that we have

ξT|c|(〈{∂T|ι1|(s1), . . . , ∂T|ιn|(sn)}, τ〉) = µm

for some m < |c|. This can only happen if we have ∂T|ιn|(sn) = µm. We then get

ht∂T|an|(sn) = ht∂T|c| (∂T|ιn|(sn)) = 0 ≤ k,

which is the conclusion of the desired implication. �

To deduce the main result of this section we extend the base theory by the
principle of bar induction for Π1

1-formulas (abbreviated Π1

1
-BI).

Theorem 5.8 (RCA0 +Π1

1
-BI). If T is a normal dilator, then so is ∂T .

Proof. From Proposition 4.9 we know that ∂T is a normal prae-dilator. In view
of Definition 2.7 it remains to establish that D∂T

X is well-founded for any well-
order X. It suffices to consider the case where X is a limit order, i. e. a non-empty
order without a maximal element: If X itself does not have this property, then
we replace it by the order X + ω, in which the initial segment X is followed by a
copy of the natural numbers. By Proposition 2.5 the inclusion X →֒ X + ω yields
an embedding of D∂T

X into D∂T
X+ω, so that the former order is well-founded if the

latter is. For the rest of this proof we assume that X is a well-founded limit order.
In view of Definition 5.1 we then have

D∂T
X =

⋃

x∈X

∂T x
X .

Let us argue that D∂T
X is well-founded if ∂T x

X is well-founded for every x ∈ X:
To find a minimal element of a non-empty set Y ⊆ D∂T

X , pick an element x ∈ X
such that Y ∩ ∂T x

X is non-empty. The well-foundedness of ∂T x
X provides a minimal

element σ ∈ Y ∩ ∂T x
X . From Lemma 5.2 we know that ∂T x

X is an initial segment
of D∂T

X . It follows that σ is minimal in the entire set Y , as required. Invoking the
principle of Π1

1-bar induction, we shall now establish the well-foundedness of ∂T x
X

by induction on x ∈ X. In the induction step we argue that Definition 5.3 and
Proposition 5.6 allow us to write

∂T x
X =

⋃

k∈N

∂T x,k
X

as a union of initial segments. Once again it follows that ∂T x
X is well-founded if

∂T x,k
X is well-founded for every number k. We argue by side induction on k to

show that the latter is the case. Note that induction over the natural numbers is
available as a particular instance of bar induction (alternatively one could combine
the main and side induction into a single induction over X×ω). The side induction
step is provided by Proposition 5.7. To complete the proof it is thus enough to
establish the base of the side induction. As a preparation we consider an element
〈a, s〉 ∈ ∂T x

X with ht∂T|a| (s) = 0. In view of Definition 5.3 we must have s = µm for

some number m < |a|. Together with Definitions 2.4 and 4.8 we obtain

|a| = supp∂T|a| (µm) = {m}.

This forces m = 0 and |a| = 1, say a = {z} with z ∈ X. Altogether we get

〈a, s〉 = 〈{z}, µ0〉,
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where 〈a, s〉 ∈ ∂T x
X ensures z <X x. Let us now distinguish two cases: First assume

that x ∈ X is a limit or zero (i. e. for every z <X x there is a y <X x with z <X y).
Then Definition 5.3 yields

∂T x,0
X =

⋃

y<Xx

∂T y
X .

By Lemma 5.2 this is a union of initial segments. The main induction hypothesis
ensures that ∂T y

X is well-founded for every y <X x. It follows that ∂T x,0
X is well-

founded, as required. Now assume that x is the successor of an element z ∈ X, so
that y <X x is equivalent to y ≤X z. In view of the above we obtain

∂T x,0
X = ∂T z

X ∪ {〈{z}, µ0〉}.

Once again the main induction hypothesis tells us that ∂T z
X is well-founded. Since

∂T x,0
X is a finite extension of this order, it must be well-founded itself. We have

thus established the base of the side induction, which completes the proof. �

To shed further light on the previous proof we point out that we have

∂T z
X ∪ {〈{z}, µ0〉} = {σ ∈ D∂T

X |σ ≤D∂T
X

Dµ∂T

X (z)},

due to Definitions 2.12 and 4.8 as well as Lemma 5.2. Together with the conclusions
of the previous sections we obtain the main result of this paper:

Theorem 5.9 (ACA0). The following are equivalent:

(1) If T is a normal dilator, then D∂T
X is well-founded for any well-order X.

(2) Any normal dilator T has an upper derivative (S, ξ) such that X 7→ DS
X

preserves well-foundedness (which means that S is again a normal dilator).
(3) The principle of Π1

1-bar induction is valid.

Note that statements (1) and (2) are each expressed by a single formula, relying
on the formalization of dilators in Section 2. To express (3) by a single formula one
uses a truth definition for Π1

1-sentences.

Proof. The implication (1)⇒(2) follows from Proposition 4.11, which asserts that
(∂T, ξT ) is an upper derivative of T (in fact we have a derivative, by Theorem 4.12).
By Corollary 3.13 we get (2)⇒(3) (note that the proof uses arithmetical compre-
hension, via the Kleene normal form theorem and the characteristic property of the
Kleene-Brouwer order). The implication (3)⇒(1) holds by Theorem 5.8. �

As in the previous section, results about ∂T transfer to arbitrary derivatives:

Corollary 5.10 (RCA0 + Π1

1
-BI). Consider a normal dilator T . If (S, ξ) is a

derivative of T , then X 7→ DS
X preserves well-foundedness.

Proof. By Definition 2.28 and Proposition 4.11 there is a morphism ν : S ⇒ ∂T of
upper derivatives. According to Lemma 2.21 we get an embedding

Dν
X : DS

X → D∂T
X

for each linear order X. Together with Theorem 5.8 it follows that DS
X is well-

founded whenever X is a well-order. �

Working in a sufficiently strong set theory, one can deduce the following uncon-
ditional version of Theorem 2.29. This result provides further justification for our
categorical definition of derivatives:
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Corollary 5.11. Let T be a normal dilator. If (S, ξ) is a derivative of T , then the
function α 7→ otp(DS

α) is the derivative of the normal function α 7→ otp(DT
α ).

Proof. According to Theorem 4.13 and Corollary 5.10 the assumptions of The-
orem 2.29 are satisfied whenever (S, ξ) is a derivative of T . �
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