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Abstract

The function of waste control in all living organisms is one of the vital importance. Almost universally, terrestrial tetra-
pods have a urinary bladder with a storage function. It is well documented that many marine and aerial species do not 
have an organ of such a function, or have one with very depressed storage functionality. Bladder morphology indicates 
it has evolved from a thin-walled structure used for osmoregulatory purposes, as it is currently used in many marine 
animals. It is hypothesised that the storage function of the urinary bladder allows for an evolutionary selective advan-
tage in reducing the likelihood of successful predation. Random walks simulating predator and prey movements with 
simplified scent trails were utilised to represent various stages of the hunt: Detection and pursuit. A final evolutionary 
model is proposed in order to display the advantages over inter-generational time scales and illustrates how a bladder 
may evolve from an osmoregulatory organ to one of the storage. Data sets were generated for each case and analysed 
indicating the viability of such advantages. From the highly consistent results, three distinct characteristics of having 
a storage function in the urinary bladder are suggested: reduced scent trail detection rate; increased prey–predator 
separation (upon scent trail detection); and a reduced probability of successful capture upon scent detection by the 
predator. Furthered by the evolutionary model indicating such characteristics are conserved and augmented over many 
generations, it is concluded that prey–predator interactions provide a large selective pressure in the evolution of the 
urinary bladder and its storage function.

Keywords Urinary bladder · Evolutionary biology · Early terrestrial tetrapods · Monté Carlo simulation

1 Introduction

The urinary bladder in mammals and other terrestrial ani-
mals is a muscular distensible organ that holds urine under 
low pressure and can be emptied under voluntary control. 
How can this organ evolve from a thin-walled structure in 
fish that is involved with electrolyte and water exchange? 
Teleost fish have a confluence of their ureters that forms 
a thin-walled urinary bladder. In salt water, fish lose most 
(90%) of their nitrogenous waste via their gills [1]. In fresh 
water, there is a demand for more urinary excretion of 

nitrogenous waste. Under brackish water conditions, fish 
that survive have even less ability to exchange ammonia 
across their gills, and excretion via the kidneys and urinary 
tract becomes a greater importance.

Teleost fish have a pronephros and mesonephros, but 
no metanephros. The electrolyte reabsorption and secre-
tion and water reabsorption are limited compared to 
animals that have a metanephros and loop of Henle. The 
lower urinary tract and bladder in fresh water fish is a thin-
walled organ that is involved in electrolyte exchange, not 
a storage organ. For example, rainbow trout bladders are 

 * Maxine McCarthy, maxinemccarthy7@gmail.com | Department of  Physics and  Astronomy, The University of  Sheffield, Sheffield, 1

South Yorkshire S10 2TN, UK. 2Department of Pediatric Urolugy, Birmingham Childrens Hospital, Birmingham, West Midlands B4 6NH, UK.

http://crossmark.crossref.org/dialog/?doi=10.1007/s42452-019-1692-9&domain=pdf


Vol:.(1234567890)

Research Article SN Applied Sciences (2019) 1:1727 | https://doi.org/10.1007/s42452-019-1692-9

capable of water and sodium reabsorption [2]. Mudskip-
pers (amphibious gobioids, e.g. Periophthalminae of the 
family Oxudercinae) are a living example of amphibious 
fish that can spend several days out of water. They may 
represent an example of co-evolution that might be simi-
lar to the first amphibious animals to attempt to live on 
land, but are not living fossils [3] . They also might repre-
sent a morphological model for the ancestors of the first 
tetrapods. The mudskipper is even capable of producing 
urea when air-breathing [4].

Urinary bladders are found in many different animals 
and, it has been suggested, may have evolved twice [5].

There is an evolutionary argument for the development 
of a storage function in the urinary bladder that has been 
suggested by several authors [5] . If an animal crawled 
onto land and left a continuous scent trail, then this could 
be easily followed by a predator. By storing urine and dis-
cretely passing it in an intermittent fashion, the scent trail 
would be harder to follow, and the animal (prey) has a 
selective survival advantage.

Agent-based modelling is a way of describing emergent 
phenomena based on individual components of a com-
plex system. An early example of this is Thomas Schelling’s 
‘Dynamic Models of Segregation’ [6]. These techniques 
have then been used in areas such as population dynam-
ics, for example ‘Aphid Population Dynamics of Agricul-
tural Landscapes: An Agent-Based Simulation Model’ [7]. 
More recently, agent-based modelling has been used to 
describe the emergence of the evolution of grammar by 
Luc Steels [8].

In this study, agent-based modelling was used in 
order to test the hypothesis that there is a selective 
advantage to the evolution of a bladder with urinary 
storage capacity in prey. By considering continuous and 
discontinuous scent trails of individual prey and preda-
tors (the agents) in random walks on a two-dimensional 
grid, hunts were simulated in two phases: detection 
and pursuit. That is, the scent marker is left by the prey 
first on every location it visits—continuous then with 
a defined separation between the prey leaving a scent 
marker—discontinuous. The first simulation (Sect. 2.1.1 
‘Detection of Prey’) was a simple model where the prey 
and predator each had a random walk and if the preda-
tors walk intercepted the preys walk, then the prey was 
detected. The duration of prey survival was taken to be 
the number of steps that the agent had taken before 
being detected. In the second simulation (Sect. 2.1.2 
‘Pursuit of Prey’), a Monté Carlo simulation [9] was run to 
model the pursuit phase of the hunt. This was achieved 
by using the diffusion equation in order to model scent 
propagation and therefore define the pungency of 

a scent marker, and combining this with the distance 
between the predator and prey a probability was worked 
out that the prey would be caught. Then, if a random 
number is generated that is greater than this probability, 
the prey has been caught. This was used to give simula-
tion 1 as an approximate minimum bound for the selec-
tive advantage of having a urinary bladder with storage 
capacity, simplifying the methodology of the third simu-
lation (2.1.3 ‘Evolution’). Using the detection of the prey, 
as in simulation 1, as a metric for the hunt, simulation 3 
had 100 prey in each generation. Each prey was assigned 
a probability of leaving a scent marker on each step. The 
top ten longest surviving prey were then used to infer 
the probability of leaving a scent marker for the next 
generation, with the top survivor and bottom survivors 
probabilities randomly mutated either up or down.

Simulation 1 demonstrated a huge survival advan-
tage in a discontinuous scent trail (Sect. 3.1). Simula-
tion 2 displayed that having a discontinuous scent trail 
greatly magnified this advantage during the pursuit 
phase (Sect. 3.2). This resulted in the use of simulation 1 
as a minimum bound of the survival of the prey agents 
in simulation 3. In simulation 3, survival of the fittest 
prey related strongly to inheritance of the probability 
of leaving a discontinuous scent trail (bladder storage 
capacity). Over a thousand generations, the random 
mutation of only two of the prey was coupled with the 
selective pressure of predation, was enough to give the 
emergence of storage capacity in the urinary bladder 
(Sect. 3.3). This is discussed further in Sect.  3, before 
concluding in Sect. 4 that there is a huge in-silico selec-
tive advantage that in this agent-based model, there is 
a huge selective advantage to the evolution of urinary 
bladder storage capacity.

2  Methodology

All simulations were ran on Python 3.6.5 through Spyder 
3.3.6 on a Dell Inspiron 13 7000 with an Intel 8th Gen. Core 
i5 processor.

2.1  The model

To test this hypothesis, predator and prey movements are 
simulated with random walks over an n × n lattice of the 
form in Fig. 1. Each step is given by the addition of S, such 
that

(1)
S ∈ {(−1,−1), (−1, 0), (0,−1), (0, 0), (1, 0), (0, 1), (1, 1)},
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to the previous lattice position (x, y). For visual clarity, this 
can be represented by the matrix

where each arrow denotes a unit step in that direction, 
and the ⊙ denotes the step, S = (0, 0) . That is, S is a two-
dimensional Moore neighbourhood.

Each step is generated from the set,

by generating a random number from {1, 2, 3} for an index 
to call an element of this set. This is done for both the x and 
y dimensions individually and then added to the previous 
location.

The lattice is modelled as a flat torus, and hence, for 
each new step it follows the algorithm

where j, k are randomly generated.
The following three simulations were produced using 

this model.

2.1.1  Simulation 1—detection of prey

Starting positions were randomly generated on the lattice 
for the predator and the prey. N is defined as the number 
of steps taken before leaving a scent marker. When there is 
no bladder storage function, the scent trail is continuous, 
with a scent marker being left on every step by the prey, 
N = 1 . The prey will then ‘mark’ a location on the lattice for 
the ith step if and only if

(2)M ∶=

⎛
⎜
⎜
⎝

M11 M12 M13

M21 M22 M23

M31 M32 M33

⎞
⎟
⎟
⎠
=

⎛
⎜
⎜
⎝

↖ ↑ ↗

← ⊙ →

↙ ↓ ↘

⎞
⎟
⎟
⎠
,

(3)m ∶= {−1, 0, 1},

(4)
(xi+1 mod (n + 1), yi+1 mod (n + 1))

= (xi , yi) +Mjk ,

(5)imod (N) = 0.

The mark is referred to as a scent marker or scent mark. The 
number of steps from initial ‘spawn’ until the predator inter-
cepts a scent marker of the prey are counted, this is the 
metric used to quantify the length of survival of the prey. 
This was done for lattices with n =∈ {10, 20, 30,… , 100} 
with intervals of 10 in order to display the dependence of 
the step number on lattice size and for N ∈ {1, 2, 3,… , 50} 
with integer intervals. For each case, the simulation was 
run 104 times.

2.1.2  Simulation 2—pursuit of prey

In order to fully model the hunt, there are two processes: 
detection of the preys’ scent trail and following the scent 
trail to the prey (the pursuit).

Simulation 1 is run (as described above); then, giving 
a probability to a successful or failed continual pursuit by 
the predator of the prey, this section of the hunt is referred 
to as the pursuit. In this case, the predator has caught the 
prey only when arriving at the preys’ location. To allow 
this, the prey increases speed once a scent mark has been 
found, by the ratio

where k > 1 and constant.1

For the case with N = 1 , the probability of capture is 
proposed to be,

This is chosen because the predator can either follow the 
scent trail in the correct direction to the prey upon detec-
tion, or go the wrong way along the scent trail. Assuming 
each direction has an equal probability, and as the scent 
trail is continuous, any other direction of the predator 
upon scent detection is assumed to not occur.

For N > 1 (a discontinuous scent trail), scent propaga-
tion is now considered to allow the predator to pursue the 
prey. Observe that scent will propagate from each scent 
marker radially. Letting the scent have density � , from 
the diffusion equation (assuming propagation of scent is 
homogeneous and is at thermal equilibrium, that is, the 
scent has the same pressure and density as the surround-
ing atmosphere, and the density of the system is invariant),

(6)k ∶=

vpredator

vprey

(7)P
c
=

1

2
.

(8)S
c
∝

1

x
,

n

n

Fig. 1  Lattice layout for flat torus used to model plane of prey and 
predator movements. Each square denotes a single lattice point, as 
referred above

1 In the simulations, k was set to be k = 2.
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where S
c
 is the scent propagation and x is the radial dis-

tance from the scent marker (see "Appendix 2" for deriva-
tion). See Fig. 2 for a visual representation of scent propa-
gation. To reduce complexity in the counting, and prevent 
a recursive algorithm, it is assumed that given the predator 
finding a scent marker, the next closest scent is a distance 
of x = N from the previous scent marker left by the prey.

From this, the number of steps from the prey to the 
predator is found using

where � is the number of steps between predator and prey, 

�
t
 is the total number of steps so far, and �

c
 is the number 

of steps on the scent trail, at the predators arrival on the 
scent marker.

In the model, each further step of the predator is 
assumed to take the same amount of time and the preda-
tor is assumed to then follow an approximate path that 
nearly follows that of the prey; being that the random 
walk of the predator and prey is unbiased, and they are 
positioned on a flat torus; the expectation value of the dis-
tance from their respective starting positions is zero, and 
hence, the average value of the spatial separation of the 
predator and prey must be less then the size of the edge 
of the lattice. To smooth out the random walk of the prey 
for the predator to follow the number of steps separating 

(9)� = �
t
− �

c

the predator and prey is divided by a constant2 such that 
� ↦ � � =

�

K
 . As such, the number of extra steps required 

by the predator to reach the position of the prey after � ′ 
steps is given by

Once the predator has reached this location, the prey has 
walked an extra �

′

k
 steps, which will then take the predator 

an extra 1
k

� �

k
=

� �

k2
 steps.

Proposition 1 The total number of extra steps required for 

capture of the prey is given by

Proof Assume, the ath, a + 1th iteration of the predators 
pursuit results in

extra steps, respectively.
At any point, the extra steps required get to the new 

preys new location are given by the distance between the 
predator and prey over the predator speed, k. As such, the 

a + 1th iteration results in a step number of

Hence, summing for all a ∈ ℕ , by the induction hypothesis 
the total number of steps required is the geometric series

, and hence, the total number of extra steps required is

as required in (11).   ◻

Therefore, from (7), (8), and (11), probability of capture 
once the predator is at a scent marker is given by

Using a Monté Carlo algorithm [9] , a pseudorandom num-
ber, p, is generated such that p ∈ [0, 1] . If p < Pc , then a 

(10)
� ′

k
.

(11)� �
k

k − 1
.

(12)
� �

ka
,
� �

ka+1

(13)
1

k

� �

ka
=

� �

ka+1
.

(14)� �
∞
∑

a=0

1

ka
,

(15)
� �

1

1 −

(

1

k

) = � �
k

k − 1
,

(16)Pc =

⎧
⎪⎨⎪⎩

1

2
for N = 1

1

2

�
1

N

� 𝜁�k

k−1

for N > 1, k > 1.

Fig. 2  Visual display of scent propagation from scent markers left 
by the prey. The bolder the colour, the stronger the scent

2 In the simulations, K was set to 20.
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successful hunt is observed. As with simulation 1, this was 
repeated 104 times.

2.1.3  Simulation 3—evolution

Here, a simplified simulation of evolution is proposed. 
The algorithm is not dissimilar to the machine learning 
algorithms first described by John McCarthy [10]. As with 
the first simulation, the number of steps taken by the prey 
before the predator intersects a scent mark was the metric 
to quantify the length of survival by the prey.

100 prey are each initially set to have the number of 
steps between ‘voiding’/leaving scent as 0, by giving the 
probability of leaving a scent marker on every step, p

sc
 , as 

100%. This is achieved by equating an upper bound, A, and 
lower bound, B, as 100%, for the scent marking probability 
interval, P

sc
 , such that

and

For each new generation, A and B are generated by taking 
the range, R, of p

sc of the top ten longest surviving prey. 
Denoting the largest p

sc of top 10 by p
sct

 , and lowest p
sc of 

the top 10 p
scb

 . The upper bound and lower bound then 
become

where �
A
,�

B
 are generated by taking a random r ∈ R , such 

that

where c is an arbitrary constant defined by a pseudoran-
dom number generator bounded above by 0.01. To pre-
vent values of A, B being negative or more than 100%, the 
maximum and minimum values of A, B are capped at 0% 
and 100%.

The progeny is then generated to have a probability of 
leaving a scent marker on each step with new A, B for some 
randomly generated

The following algorithm is followed to allow each animal 
in the ith generation to have a random,

(17)Psc ∶= [A, B],

(18)p
sc
∈ P

sc
.

(19)
A
new

= p
scb

± �A

B
new

= p
sct

± �B

(20)

�
A
=

{

c if r = 0

r if r ≠ 0,

�
B
=

{

c if r = 0

r if r ≠ 0,

(21)p
sc
∈ P

sc
.

In summary, the algorithm follows: Step 1, prey is mod-
elled as with simulation 1, each with a continuous scent 
trail (no bladder); step 2, the next generation of prey is pro-
duced, with probability of scent marking from top ten sur-
viving prey of the previous generation, but the probability 
of scent marking may be altered to a random extent; step 
3, prey is modelled as with simulation 1 (again); step 4, top 
ten longest surviving preys’ probability of scent marking 
is recorded and then back to the second step. This is com-
pletely repeated over 1000 generations 200 times, each 
time taking the mean value of p

sc
 . The selective advantage 

of urinary storage might be seen by the storage capac-
ity measured in ‘storage-steps’ before a deposit of urine is 
made, in the ith generation.

3  Results and discussion

For each simulation, the n × n lattice was of the form as 
shown in Fig. 1. Each square denotes a lattice point. Fig-
ure 3 illustrates the random walks of the predator and prey.

3.1  Simulation 1—detection of prey

From the 104 repetitions for each lattice size, data were 
generated and plotted using the method of least squares. 

(22)psci ∈ Psci = [pscbi−1
± �Ai

, pscti−1
± �Bi

].

Fig. 3  Example of random walk for n = 100,N = 1 simulation. Black 
represents the predators walk, the grey is the prey
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For n = 50 , the results are displayed in Fig. 4. All other 
results are in "Appendix 1". For all lattice sizes, the mean 
step number is summarised in Fig. 5a, b.

The greater the number of scent marks left by the 
prey, the more likely the predator will intercept one. 
However, given the possibility of the prey leaving a 
scent marker where one has been left already, only the 
steps left by the prey for each location on the lattice 

are counted once. Because the number of steps by the 
predator will equal the number of steps by the prey, it is 
assumed that there is a linear relationship between the 
uniquely located scent markers and the number of steps 
by the predator. Conversely, the greater the number of 
unmarked locations on the lattice, the less likely a suc-
cessful hunt will be observed. As the area of the lattice 
increases, the greater this area will be for a given step 
number during the simulation. As such, it is assumed 
there is an inverse relationship between the area of the 
lattice and successful detection by the predator. Each 
iteration gives both the prey and predator a step, so 
the area is divided by 2. Using the same argument, the 
separation between the scent markers is assumed to be 
inversely related to the probability of capture.

Therefore, it is suggested that for a given step num-
ber, the probability of successful detection is

where � is the number of uniquely located scent markers 
left by the prey, a is the area of the lattice, and N is the 
scent separation. Summing over � , a and N in order to find 
the probability density function of P

c
(� , a,N) . Approximat-

ing by the integral

solving,

Subbing in n2 = a , and letting the coefficient of propor-
tionality be denoted � ′,

(23)
pc ∝

�
(

a

2

)

N

(24)
P
c
≈ ∫

�
(

a

2

)

N

d� da dN

(25)P
c
=

�
2

2
ln

(

a

2

)

ln(N) + C .

(a)

(b)

(c)

Fig. 4  a Results plotted for simulation 1 for n = 50 with fit found via 
method of least squares, following Eq.  (26), with the correspond-
ing constants found in Table  1. All other figures for lattice size 
{10, 20,… , 100} ⧵ {50} are in Fig.  7. b–c Visualizations of all fitted 
plots from all lattice sizes. b shows all the fitted plots on the same 
axis as the plots for all lattice sizes, while c displays the surface 
found by plotting the fitted plots against the lattice size

Table 1  Constants, � ′,� , found 
via method of least squares for 
(26) and each n simulated

n �
′ �

10 28.65 − 32.20

20 74.48 − 109.69

30 137.67 − 203.10

40 202.42 − 296.77

50 295.38 − 474.10

60 367.30 − 542.35

70 466.06 − 706.64

80 575.94 − 887.09

90 707.68 − 1143.96

100 840.39 − 1362.99
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where � denotes the constants associated with the func-
tion (see "Appendix 3" for more).

Data were fitted by the method of least squares. See 
Table 1 for the constants found for � ′,�.

For each function of the form (26), with constants 
defined by Table  1, has n as a constant. As such, the 
equation

where f (n), f (� �,N,�) are considered orthogonal functions. 
This is visualised in Fig. 4 as the red line, demonstrating an 
extremely good fit between (26) and the data generated.

3.2  Simulation 2—pursuit of prey

From simulation 1, the lattice size can be considered 
as an orthogonal function to the mean step number, 
as such only one lattice size was used for simulation 2. 
In order to reduce computational time but also reduce 
effects from a smaller lattice, a 50 × 50 lattice was cho-
sen. 104 repetitions were performed as described in 
Sect. 1.

From the results illustrated in Fig. 5a, the number of 
steps required for successful detection and pursuit of 
the prey increases progressively. Initially, as the discrete 
scent marker separation increases there is positive cur-
vature to the mean step number and the step separation. 
The complete hunt gets progressively longer, particu-
larly after N = 5 ( ≈800 steps) to N = 10 ( ≈ 2800 steps), 
when the effect accelerates. This is because at N ≥ 10 , 
the proportion of unsuccessful (beyond the survival 
limit) hunts progressively increases (blue, Fig. 5b). This 

(26)P
c
= � �

ln

(

N +
n

2

)

+ �

(27)Pc = f (n)f (� �,N,�),

(a)

(b)

(c)

(d)

Fig. 5  a Display of the mean step number required for success-
ful hunt or exceeding the survival limit for both the detection and 
pursuit phases (blue), and the steps separating the prey and preda-
tor upon detection of the preys’ scent markers (orange). b Propor-
tion of successfully completed hunts by the prey before exceed-
ing the maximum hunt duration (the survival limit) of 10000 steps 
(orange), composite with the number of failed hunts via exceeding 
the survival limit (blue). It is noted that for low discrete separation, 
there are a proportion of hunts that exceed the step limit; the pro-
portion here is too small to observe. c Mean number of intercep-
tions of scent markers by the predator required before exceeding 
the survival limit or successful hunt. Note the reduction in the num-
ber of scent interceptions correlates with an overall reduction in 
scent interceptions by the predator. d Overall mean probability of 
successful capture given a scent interception by the predator, error 
bars are present, but too small to make out clearly

▸
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progressive increase is also observed in Fig. 5c for the 
same discrete scent separation, and reason. Figure 5c 
displays the mean number of times a predator is likely 
to intercept a scent marker, before a successful hunt is 
observed, this begins to reduce, because the proportion 
of terminated hunts begins to dominate, and therefore, 
the number of interception of scent markers before ter-
mination decreases. Figure 5d summarises the overall 
probability of capture upon scent detection. For N = 1 , 
probability of capture is 1

2
 , as described in Sect. 1. For 

N = 5 the probability of successful capture is ≈ 0.2 , and 
for N = 20 is approximately 0.1.

3.3  Simulation 3—evolution

Similarly, to with simulation 2, a single lattice size was 
chosen. As the same metric for simulation 1 was used, it 

was assumed the lattice size effects will be minimal, with 
a 10 × 10 lattice chosen in order to maximise the number 
of possible repeats.

Figure 6 shows a mean of 200 generations to get a dis-
crete scent separation of N = 2 ( 1

2
 chance of scent marker 

being left per step). Another ≈ 100 generations are needed 
for a discrete scent separation of N− = 3 (1 / 3 probabil-
ity of a scent marker being left), to get to a discrete scent 
separation of N = 4 , and another approximately 50 gen-
erations are needed. As such, once the spontaneous emer-
gence of a bladder is observed, the storage function of the 
bladder rapidly increases.

Figure 6a shows the spontaneous formation of an organ 
with bladder capacity very quickly emerges. In order to 
display that this is converged to, rather than immediately 
appears, Fig. 6b displays the logarithm of this value. Each 
distinct path can be considered a different evolution of 
the bladder, with the wide range of paths taken by each 
distinct evolutionary route being a display of convergent 
evolution.

3.4  Discussion

This is the first simulated model attempting to show the 
survival advantages of having a urinary bladder acting as 
a storage organ, with a discontinuous (urine) scent trail. 
Furthermore, in a simulation of natural selection a blad-
der and its storage capacity (increasing number of steps 
between scent trail) developed. This was from a combi-
nation of selective pressures of a predator detecting a 
scent trail, an ability for the best survivors to be selected, 
and for their bladder capacity to be reproduced in their 
descendants, with a small element of random mutation. 
This recapitulates natural selection and shows the benefit 
of a bladder as a storage organ.

From simulation 1, the lattice size is considered, geo-
metrically, as an orthogonal function to the mean step 
number, as in Fig. 4c. This allows the use of a single-sized 
lattice for simulations 2 and 3. Combining the results of 
simulations 1 and 2, there are three main advantages of 
having a bladder and one with increased capacity: lower 
scent detection rate; increased distance to capture prey 
upon scent detection; and reduced probability of correct 
path choice upon scent detection. Simulation 2 displays 
that extra advantages arise in the pursuit phase of hunt, 
more than simulation 1 illustrates (of an order ≈ 100 ). 
Therefore, only using the metric of simulation 1 for simu-
lation 3 gives an approximate (but very probable) lower 
bound for displaying the evolutionary advantages of hav-
ing a bladder.

(a)

(b)

Fig. 6  200 repeats of simulation 3—the evolution stage, done over 
1000 generations for 100 prey in each. Each different path denotes 
a different repeat of the simulation. a denotes probability of leav-
ing a scent marker, with probability of scent marking of 100% 
denoting no discrete scent separation, 50% denotes 1 discrete sep-
aration, etc. b Natural logarithm of the probability of scent mark-
ing, normalised to unity. Logarithm used to illustrate convergence 
to the evolution of the bladder, and the rate of change of N 
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In Fig. 5a from simulation 2, it is observed that the 
value of the step number separating the prey and preda-
tor upon detection begins to decrease. This is because it 
was assumed that each scent marker is placed exactly at 
the distance of the relevant discrete scent separation, as 
such the index for �

c
 (only scent markers were recorded 

for the purposes of the simulation) was multiplied by the 
respective value of N. This, of course, is a massive simplifi-
cation (and increase) of the actual values that would have 
been observed in the simulations. As such, the mean step 
separation upon detection reduces at high N.

The idea of using an individual agent to describe the 
actions of one object in a system, and the resultant emer-
gent effects, had its first known use in the Von Neumann 
Machine—a self-replicating machine used to describe 
cellular automata [11]. The next notable use was in John 
Conway’s ‘Game of Life’, in which simple rules allowed the 
emergence of both unpredictable and highly complex 
emergent phenomena [12]. This generated significant 
interest in using the method to simulate complex systems, 
and early examples include quantifying the prisoners 
dilemma [13], with the first known biological use in Craig 
Reynolds’ modelling of flocks of large groups of birds [14]. 
In evolutionary biology, this has been used frequently, for 
example ‘The Evolution of Bacteriocin Production in Bacte-
rial Biofilms’ [15] where biological observations were recre-
ated in-silico and in the evolution of the parasitic Chaga’s 
disease [16] which used a three-dimensional Moore neigh-
bourhood in a similar fashion to the two-dimensional one 
used here. This is build up of emergent behaviour from 
actions of the individual agent and therefore allows a sim-
ple model to describe large-scale properties of a system. 
This gives an intuitive way to then define the two phases 
of the hunt that are considered here, as well as the long-
term effects of predator–prey relations in reinforcing cer-
tain biological attributes—the evolution of the storage 
function of the urinary bladder, for example.

Monté Carlo algorithms are widely used in computa-
tional statistical physics. Their simple nature coupled with 
their ability to model emergent systems lends themselves 
to methods in computational biology. In De Vladen and 
Barton’s 2011 review of statistical methods in evolution-
ary biology and ecology [17], examples of applying such 
methods in biological systems follow a similar method-
ology to that presented in the second simulation used 
in this study. In Szymura and Barton’s 1986 work [18] on 
the clines of fire-bellied toads, small parameter space 
changes are made, effectively forming a random walk in 

a six-parameter space, further bounded by a Monté Carlo 
step, allowing prediction of these clines. This is similar 
to the probability step used in the second simulation. 
While more rigour is laid out in Beaumont’s 2010 work on 
approximate Bayesian computation in evolution and ecol-
ogy [19], it is possible to see how this work falls into a sub-
set of the more general arguments made in Beaumont’s 
article and therefore greater insight into the analysis of 
the data produced by this study.

Olfactory hunters follow scent clues such as urine [20]. 
This correlates with the detection of the urine scent trail 
left by the prey in this study. Predator strategies can be 
categorised by ambush hunting (predator waits for prey) 
or pursuit strategies which consist of three stages: The 
stalk, attack, and subdue as described by Elliot et al in the 
African Lion [21]. Our study considers a pursuit predator, 
with no separation of the stalk, attack, and subdue with 
the whole process described as the pursuit.

If there is a selective pressure and advantage of having 
a urinary bladder for a land animal, what happens if this 
animal becomes airborne, develops flight? It would be pre-
dicted that animals which did this would no longer need 
a large bladder, and that the weight penalty of this would 
lead them to ‘lose’ this. Flying would by its nature lead to 
the scent trail deposited being unable to be followed by 
a land-borne predator. It is interesting to note that birds 
do not have a urinary bladder but a cloaca. Furthermore, 
a flightless bird might be expected to have a selective 
advantage in regaining a bladder function, and indeed, 
this is exactly what the ostrich has done [22] . Bladder 
capacity in bats is not widely described in the literature, 
but vampire bats start producing urine within in minutes 
of starting feeding to shed weight for flight [23]. Similarly, 
what happens to bladder storage function when tetrapods 
become aquatic once more and no longer have a selec-
tive advantage by avoiding leaving a scent trail? Bladder 
capacity in cetaceans has indeed been described by John 
Hunter as an order of magnitude smaller than land mam-
mals [24].

However, this is clearly a simplified model with a num-
ber of limitations. In all three simulations, a discrete space 
is used to model the prey and predator movements, con-
fining the possible set of random walks, and this could 
be improved upon by allowing a continuous space such 
as a subspace of ℝ2 .   Similarly in all simulations a flat 
torus is used in order to not constrain prey and preda-
tor path directions with boundary conditions. This may 
have unconsidered effects on the results. The results of 
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simulation 2 also rely on a few non-ideal approximations, 
specifically relating to the pursuit phase of the chase 
and scent propagation. With perfectly homogeneous 
scent propagation assumed, weather and topographical 
effects on the pursuit phase are not considered, and it 
was assumed such effects would increase difficulty for the 
predator and prey in equal measure, although it would be 
interesting to see how such effects alter the results, espe-
cially given the importance of geography on evolution 
of tetrapods [25, 26]. Finally, in all simulations, no other 
senses (e.g. sight and hearing) are modelled by the pred-
ator and no evasive action, using any other senses, was 
made by the prey; it is not theorised as to the effects this 
would have on the data collected, as it is. It does, however, 
recapitulate a possible evolutionary process that has led 
to the urinary bladder acting as a storage organ for tetra-
pod land animals. Similarly, the negative impact of simply 
increasing progressively bladder capacity (and sustaining 
a weight penalty as a result) has not been addressed in 
this simplified model.

Simulation 3 is a highly simplified model. It shows, from a 
simple mathematical simulation, related to risk of detection, 
pursuit, and capture of prey by a predator, a selective advan-
tage of having a bladder and a bladder capacity resulting 
in a discrete and interrupted scent trail is present. A combi-
nation of selective pressures, hereditary transmission over 
generations, and a small degree of variability from random 
mutation result in the natural selection of ‘bladder capac-
ity’. It should also be noted that no evolutionary mechanism 

was modelled for the predator, unlike the prey. In the natu-
ral world, there would be an arms race between the preda-
tor and prey, likely to result in counter adaptations for the 
predator, for changes in the prey. This arms race has been 
described as a ‘red queen race’ [27–29].

4  Conclusion

This is the first study to use a simulation to model the 
development of the urinary bladder as a storage organ. 
This study indicates there are a number of distinct selec-
tive advantages to urine storage. Furthermore, when 
a multi-generational model is run with a combination 
of inheritance and a small degree of random variation, 
increasing bladder storage capacity in prey is indeed 
naturally selected. It is therefore concluded the selective 
pressure of predation is important to the emergence of the 
storage function of urinary bladders in terrestrial animals.
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(a) (b)

(c) (d)

(e) (f)

Fig. 7  Results plotted for simulation 1, for all n used in simulation, with fit found via method of least squares, following Eq. (26), with the cor-
responding constants found in Table 1. This shows the mean steps required for detection as the discrete separation increases go up
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Appendix 1: More results from simulation 1

See Fig. 7a–j.

Appendix 2: Propagation of scent

The system is assumed to be homogeneous, at thermal 
equilibrium, and the scent is assumed to be spherically 
symmetric (and as with real life, three-space is considered 
for scent propagation). As such the diffusion equation sim-
plifies to

hence

(28)∇2
�(x) = 0

integrating, x2�
x
� =const. and

as required in (8).

Appendix 3: Fit for data in simulation 1—
detection of prey

From (25),
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Fig. 7  (continued)
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where � = C and � �
= �

2.

References

 1. Smith HW (1929) The excretion of ammonia and urea by the 
gills of fish. J Biol Chem 81(3):727–742

 2. Beyenbach KW, Kirschner LB (1975) Kidney and urinary blad-
der functions of the rainbow trout in Mg and Na excretion. Am 
J Physiol 229(2):389–393

 3. Kutschera U, Elliott JM (2013) Do mudskippers and lungfishes 
elucidate the early evolution of four-limbed vertebrates? Evol 
Educ Outreach 6(3):8

 4. Gregory RB (1977) Synthesis and total excretion of waste 
nitrogen by fish of the periophthalmus (mudskipper) and 
scartelaos families. Comp Biochem Physiol Part A Physiol 
57(1):33–36

 5. Bentley PJ (1979) The vertebrate urinary bladder: osmoregula-
tory and other uses. Yale J Biol Med 52(6):563–568

 6. Schelling Thomas C (1971) Dynamic models of segregation. J 
Math Sociol 1(2):143–186

 7. Evans A, Morgan D, Parry H (2004) Aphid population dynamics 
in agricultural landscapes: an agent-based simulation model. In: 
2010 international congress on environmental modeling and 
software. International Environmental Modeling and Software 
Society (iEMSs), Osnabruck, Germany

 8. Luc Steels (2016) Agent-based models for the emergence and 
evolution of grammar. Philos Trans R Soc B 371(1701):20150447

 9. Metropolis N, Ulam S (1949) The Monté Carlo method. J Am Stat 
Assoc 44(247):335–341

 10. McCarthy J (1963) Programs with common sense. Defense Tech-
nical Information Center, pp 300–307

 11. von Neumann John, Burks Arthur W (1966) Theory of self-repro-
ducing automata. University of Illinois Press, Champaign

 12. Gardner M (1970) Mathematical Games - the fantastic com-
binations of John Conway’s new solitaire game “life”. Sci Am 
223(4):120–123

 13. Axelrod Robert (1997) The complexity of cooperation: agent-
based models of competition and collaboration. Princeton Uni-
versity Press, Princeton

(31)

P
c
=

�2

2
ln

(

a

2

)

lnN + C

=
�2

2
ln

(

n2

2

)

lnN + C

= �2 ln

(

n

2
+ N

)

+ C

= � � ln

(

n

2
+ N

)

+ �,

 14. Reynolds Craig W (1987) Flocks, herds, and schools: A distributed 
behavioral model. In: Proceedings of the 14th annual confer-
ence on computer graphics and interactive techniques (SIG-
GRAPH’87), vol 21(4), pp 25–34. ACM.

 15. Galvão V, Miranda J (2010) A three-dimensional multi-agent-
based model for the evolution of Chagas’ disease. Biosystems 
100(3):225–230

 16. Vanni B, Nadell Carey D, Xavier JB (2011) The evolution 
of bacteriocin production in bacterial biofilms. Am Nat 
178(6):E162–E173

 17. De Vladar Harold P, Barton Nicholas H (2011) The contribution 
of statistical physics to evolutionary biology. Trends Ecol Evol 
26(8):424–432

 18. Szymura J, Barton NH (1986) Genetic analysis of a hybrid zone 
between the fire-bellied toads, Bombina bombina and Bom-
bina variegata, near Cracow in southern Poland. Evolution 
40:1141–1159

 19. Beaumont MA (2010) Approximate Bayesian computation in 
evolution and ecology. Annu Rev Ecol Evol Syst 41:379–406

 20. Conover MR (2007) Predator-prey dynamics: the role of olfac-
tion, 1st edn. CRC Press, Boca Raton ISBN-13: 978-0849392702

 21. Elliott JP et al (1977) Prey capture by the African lion. Can J Zool 
55(11):1811–1828

 22. Skadhauge E, Erlwanger KH, Ruziwa SD, Dantzer V, Elbrønd 
VS, Chamunorwa JP (2003) Does the ostrich (Struthio came-
lus) coprodeum have the electrophysiological properties and 
microstructure of other birds? Comp Biochem Physiol Part A 
Mol Integr Physiol 134(4):749–755

 23. McFarland WN (1965) Urine flow and composition in the vam-
pire bat. Am Zool 5:662–667

 24. Hunter J (2015) The works of John Hunter FRS. Cambridge Uni-
versity Press, Cambridge, p 53

 25. Close Roger A, Benson Roger BJ, Upchurch Paul, Butler Richard 
J (2017) Controlling for the species-area effect supports con-
strained long-term Mesozoic terrestrial vertebrate diversifica-
tion, Nature Communications. Advanced online publication 
8(15381)

 26. Whittaker RJ, Fernandez-Palacios JM (2006) Island biogeography 
: ecology, evolution, and conservation, 2nd edn. Oxford Univer-
sity Press, Oxford, pp 167–248

 27. Ruppert EE, Ruppert RS, Fox RD (2004) Barnes invertebrate zool-
ogy (7th ed.). Brooks/Cole

 28. Brockhurst MA, Chapman T, King KC, Mank JE, Paterson S, Hurst 
GDD (2014) Running with the Red Queen: the role of biotic con-
flicts in evolution. Proc R Soc B 281:20141382

 29. Dawkins R, Krebs JR (1979) Arms races between and within Spe-
cies. Proc R Soc Lond Ser B Biol Sci 205(1161):489–511. https ://
doi.org/10.1098/rspb.1979.0081

Publisher’s Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1098/rspb.1979.0081
https://doi.org/10.1098/rspb.1979.0081

	The evolution of the urinary bladder as a storage organ: scent trails and selective pressure of the first land animals in a computational simulation
	Abstract
	1 Introduction
	2 Methodology
	2.1 The model
	2.1.1 Simulation 1—detection of prey
	2.1.2 Simulation 2—pursuit of prey
	2.1.3 Simulation 3—evolution


	3 Results and discussion
	3.1 Simulation 1—detection of prey
	3.2 Simulation 2—pursuit of prey
	3.3 Simulation 3—evolution
	3.4 Discussion

	4 Conclusion
	Acknowledgements 
	References


