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Abstract. In this paper, the uncertainty property is represented by Z-number as
the coefficients and variables of the fuzzy equation. This modificdtip the
fuzzy equation is suitable for nonlinear system modeling witleriaic parame-
ters. Here, we use fuzzy equations as the models for the uncertaireapsiis-
tems. The modeling of the uncertain nonlinear systems is to find theceoetf
of the fuzzy equation. However, it is very difficult to obtain Znier coeffi-
cients of the fuzzy equations.

Taking into consideration the modeling case at par with uncertalmaar sys-
tems, the implementation of neural network technique is contributed iorte c
plex way of dealing the appropriate coefficients of the fuzzy teansm We use
the neural network method to approximate Z-number coefficientiseofuzzy
equations.

Keywords: Fuzzy ModelingZ-numbey Uncertain Nonlinear System.

1 I ntroduction

An exceptional case of uncertain system modeling at par with fuzatiequs fuzzy
polynomial interpolation. Polynomials have been used with fuzzy coefficieotsler
to interpolate uncertain data that are expressed using fuzzy numbénseipolation
methodology has been broadly utilized for function approximationeisas system
identification [2]. In [3], the fuzzy polynomial interpolation is applied $gstem mod-
eling. The theory problem associated with polynomial interpolation is reseandi4éd
It elaborates that the interpolation of the function includes time complexity wiithar
data points. In [5], two-dimensional polynomial interpolation is destrated. Smooth
function approximation has been broadly implemented currentlyt[geltls a model
by utilizing Lagrange interpolating polynomials at the points of pcodrids [1,7].



However if it involves uncertainties in the interpolation points, the alaggested
techniques will not work appropriately.

The fuzzy equation can be regarded as a generalized form of the fuynprpdall.
Compared with the normal fuzzy systems, the fuzzy equations are rsgrodze ap-
plied. There are several approaches to construct the fuzzy equationsd&eisuzzy
number on parametric shapes and replaced the original fuzzy equations itineas
systems. [9] proposed the homotypic analysis technid@uged the Newton meth-
odology. In [L1] the solution associated to the fuzzy equations is studied by the fixed
point technique. The numerical solution associated to the fuzzy equatiobs exn
tracted by iterative techniqué ], interpolation techniquelf3] and the Runge-Kutta
technique 14]. The neural networks may also be used to solve fuzzy equdtidd$],

the simple fuzzy quadratic equation is resolved by the neural network dn§tiép
extended the result o1§] to fuzzy polynomial equations. I17], the solution of dual
fuzzy equation is obtained by neural networks. A matrix pattern assowidtethe
neural learning has been quotedi8][ The predictor-corrector approach is applied in
[19].

The decisions are carried out based on knowledge. In order to makeithendiait-

ful, the knowledge acquired must be credible. Z-numbers connect to the rgliabilit
knowledge 20]. Many fields related to the analysis of the decisions use the ifi&as o
numbers. Z-numbers are much less complex to calculate when comparetirteanon
system modeling methods. Z-number is abundantly adequate numabethe fuzzy
number. Although Z-numbers are implemented in many literaturas, theoretical
point of view this approach is not certified completely. There are fiewtare based
on the theoretical concept of Z-numbe24][ [22] gave an inception which results in
the extension of Z-number23] proposed a theorem to transfer Z-numbers to the usual
fuzzy sets. In20] a novel approach was followed for the conversion of Z-number in
fuzzy number.

In this paper, we use fuzzy equations to model the uncertain norgiystams, where
the coefficients and variables are Z-numbers. Z-number is a neeethidt is subjected
to a higher potential in order to illustrate the information of the humany laesi well as
to use in information processing(]. Z-numbers can be regarded as to answer ques-
tions and carry out the decisiorZ]. This paper is one of the first attempts in finding
the coefficients of fuzzy equations based on Z-numbers. We use tfs network
method to approximate the coefficients of the fuzzy equations. The stduaddquop-
agation method is modified, such that Z-numbers in the fuzzy egsa@anbe trained.

2 Nonlinear system modeling with fuzzy equationsand Z-
numbers

A general discrete-time nonlinear system can be described as

Xi+1 = PLX, Wiel, s = q[ %] (1)
Here we considdw, € R* as the input vectok, € R' is regarded as an internal state
vector andS, € R™ is the output vectop andq are noted as generalized nonlinear
smooth functiong,q € C*. Define S, = [sf,,,st, .17 andW, = (W[, W], ..]".



Suppos%f_; is non-singular at the instangg = 0, W, = 0, this will create a path to-
wards the following model

Sk = QLS. S o Wi Wi_g, -] ()

WhereQ(-) is an nonlinear difference equation exhibiting the plant dynaiigs,
andS, are computable scalar input and output respectively. The nonlinear system
which is represented by (2) is implied as a NARMA model. The inputecyhtem
with incorporated nonlinearity is considered to be as

I R & T T T
Xe = [Se1)Sear s Wies Wi q,0+°]

Taking into consideration the nonlinear systems as mentionekaim)(pt can be
simplified as the following lineain-parameter model
n m

Sk = Z Z bijpi (xk)q]' ) (3

i=1 j=1
hereb;; is considered to be the linear parameigiy, ) andq;(y,) are nonlinear func-
tions. The variables related to these functions are quantifying input and output.
The modeling of uncertain nonlinear systems can be achieved byngtitie linear-
in-parameter models linked to fuzzy parameters. We assume the model aflthearo
systems (3) has uncertainties in the,x, andy, . These uncertainties are in the sense
of Z-numbers 25].
Definition 1. If v is: 1) normal, there exist} € R in such a manner(9,) =1, 2)
convex,w(yd + (1 —y)9) = min{v(9,v(6))}, V9,0 € R, vy € [0,1], 3) upper
semi-continuous ofR, v(I) < v(IJ,) + €, VI € N(Iy), VI, € R, Ve > 0, N(9)is a
neighborhood, 4y* = {9 € R, v(9) > 0} is compact, them is a fuzzy variabley €
E:R - [0,1].
The fuzzy variables can be also represented as

v= () (4)
Wherev is the lower-bound variable amds the upper-bound variable.
Definition 2. A Z -number has two componefts: [v(¥9), p]. The primary component
v(9) is termed as a restriction on a real-valued uncertain vardablée secondary
componentp is a measure of reliability af . p can be reliability, strength of belief,
probability or possibility. Whem(9) is a fuzzy number angl is the probability distri-
bution of ,Z -number is defined a&* -number. When botlr(9) andp are fuzzy
numbersZ -number is defined &~ -number.
Z* -number carries more information than -number. In this paper, we use the defi-
nition of Z*-number, i.eZ = [v,p], v is a fuzzy number ang is a probability distri-
bution.
We use so called membership functions to express the fuzzy numiecof @e most
popular membership function is the triangular function
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and trapezoidal function

S-a <9<
e as<gd<sb

p=Gabcd) =< 2L c<9 < dotherwisgr, =0 (6)

1 b<9<c

The probability measure is expressed as

p=| m@p@as )

wherep is the probability density af and R is the restriction gn For discreteZ -
numbers

p() = ) 1P ®)
i=1
Definition 3. The fuzzy numbev in association to the -level is illustrated as

[v]* = {a € R:v(a) = a)} 9)

Where0 < a < 1,v €E.
Therefordv]® = v+ = {9 € R, v(¥) > 0} Sincea € [0,1], [v]* is a bounded men-
tioned az® < [v]* < 7” Thea -level ofv in midst ofv® andv” is explained as
[v]% = (v%,5%)

v® andv” signify the function ofr. We stater® = d,(a),v"dg(a), a € [0,1].
Definition 4. Thea -level of Z -numberZ = (v, P) is demonstrated as

[Z]* = (V1% [P]®) (10)
where0 < a < 1. [p]“ is calculated by the Nguyen's theorem

[A“ = (1) = A, V]) =[P, F]

where([U%) = {A(9)|9 € [VN*} . So[Z]%can be expressed as thenfiar -
level of a fuzzy number

21 = (27") = ((v* P*), (. P")) (11)

wherep® = pp(8;%), 5" = ¥“p(B; ) [9:]° = &5 ) -

Similar with the fuzzy numbers [2B9], Z -numbers are also incorporated with three
primary operationd,© and® . These operations are exhibited by: sum subtract mul-
tiply and division. The operations in this paper are different defiratiith [20]. The

a -level ofZ -numbers is applied to simplify the operations.

Let us consideE; = (v, p;) andZ, = (v,,p,) be two discret& -numbers illustrat-

ing the uncertain variablel andd,, Y-, p1 (1) =1, X r=1P2.(P2,) = 1. The op-
erations are defined

Zip =2 x L = (W * Vo,01 % )



wherex € {6,6,0} .
The operations for the fuzzy numbers are define@@s [

(1@ rl*=[Kn"+Kr"”M* +1%n]
(Mo rl*=[Kn"-r" N -1Kn (13)
o Bl min{ V3 * 1o, K12, T Vo TR T3}

1 2

mx{ﬁaﬁa,ﬁawalzaﬁa,zawa}

For allp, * p, operations, we use convolutions for the discrete probability distribu-
tions

PLx = Zp1(91,/)l72(92,(m/)) = p12(3)
i
The above definitions satisfy the Hukuhara differe/3e32],

VARSYIWL AP
2 =2 ® 4
Here ifZ, &y Z, prevails, thex -level is

(L onZ]® =2 -2, - 2]

ObVIOUS|y,Z1 eH Zl =0 !Zl eH Zl * 0.
Also the above definitions satisfy the generalized Hukuhara diffef@8te

Va=250 4 (14)
D25 =20 )

It is convenient to display tha) and2) in combination are genuine if and onlyZif,
is a crisp number. With respect t -level what we got ardZ; O,y Z,]* =
[min{2§ — 28,7} — 7, }, max(z§ — 2§,Z; — Z;}] and iZ, Oy Z, andZ, O, Z,
subsist, Z; ©y Z, = Z; O 4y Z,. The circumstances for the inerrancy &f, =
Z1OguZ, EE are

1){ g{g:ﬁ"—ﬁandffz:ff—f:

41 Ognlr = 12 &

with Z§, increasing 7;12 decreasingZ{, < 7;12 (15)
p| =L -LedZp=zi-z
with Zf, increasing sz decreasing, Z{, < 7?2
whereva € [0,1]
If vis a triangular function, the absolute value efrimberZ = (v, p) is
1Z@)| = (lay| + [bs| + le1], p(az| + [b2] + [c2)) (16)
If v, andv, are triangular functions, the supremum metric for Z -numbers



(vl' pl) andZ2 = (172, pz) |S glven as

D(Z1,Z3) = d(vy,v2) + d(p1,p2)
in this cased(-,") is the supremum metrics considering fuzzy se&. [D(Z,,Z,) is
incorporated with the following possessions:

D2+ Z225+2) = D4,2)
X2, 24) = K4, 2)

Xz, k2) = |X 4, 22)
Xz, 25) < 4,0+ X2 %)

wheree R , Z = (v,p) is Z -number and’ is triangle function.
Definition 5. LetZ denotes the spacedfnumbers. The — level ofZ -number valued
functionG: [0,a] » Z is
G(v,a) = [G(v,a),G(v,a)]
wheree Z , for eachr € [0,1] .
With the definition of Generalized Hukuhara difference, the gH-derivatieatf,
is expressed as

d 1
27 ¢ o) = lim - [G(vo + h) g G(vo)] (16)

In (17), G(vy + h) andG (v,) exhibits similar style wittZ; andZ, respectively in-
cluded in (4).
Now we utilize the fuzzy equation (3) to model the uncertain nonlinearnsydte
Modeling with fuzzy equation (or fuzzy polynomial ) can be regardéazay interpo-
lation. In this paper, we utilize the fuzzy equation (1) to model the uncedalmear
system (1), in such a manner that the output related to thesplaah approach to the
desired outpus;, ,

rrvlviknllsk — sl (18)

This modeling object can be regarded as to détgdor the following fuzzy equation

Se= 2.2 bip(0G W) (19)

=1 /=1
— [T T T T T
wherex, = [Si_1, Sik—2, -» Wi, Wi, -] -

3  Z-number parameter estimation with neural networks

We design a neural network to represent the fuzzy equation (3), seeHig. ibputs
to the neural network avg, andy, , the output is Z-numbéf,.. The main idea is to
detect appropriate weight of neural netwéyk in such a manner that the output of
the neural network,, converges to the desired outpjit

The input Z-numbers, andy, are first applied te -level as in 11)



[0]* = (2, %)

_ (20)
el = O 7)
Then in the first hidden units we have
[(Di]a = (pl(&?)! pl(fg) i = 1; !n)
a a —a . (21)
[0,]° = (q; (y8). ;) j=1..om)
and in the second hidden units we have
a —a—a —a
[‘bi,j] ={2ijen ﬂaga +2ijeo®i P +2ijeo Ea D, 22)
—_—a—a —a
Zi,jEN’ Cbi CD} + Zi,jEO’ ga&a + Zi,jEQ’ ch' ga}

whereN = {i,j |®,% > 0,&,% > 0} 0 = {i,j[®;" < 0,®;" <0} ,Q = {i,j|®" <
0,0, =0},N' =i, |5i“ >0,®;, >0} ,0 = i,j|g“ <0,8;“ <0}, Q' =
ij[®; <0, <0}
The neural network output is
[sk]® = (i jen CIZ'i,ja@a + Yijeo d’_uab_ua + Yijeo &a E}'a'
Yijen' q)—uama + Zijeor Py by + Ly jegr q)—uabia

whereN = {i,j |@; ;% = 0,b;;" > 0},0 = {i,j[®;," < 0,b,;" <0} ,Q =

(23)

J— _ —
{l’] |(I>l-’j“ < O'bi,j > 0} ,N’ = {l,] |cDi,j > O!bi,j > 0} ,01 — {l,] |q)i,ja <
0,b;;% < 0}, Q' = {i,j [®;;" < 0,b;;“ < 0}.

Ske

Fig. 1. Fuzzy equation in the form of neural network.

In order to train the weights, we need to define a cost functionddu#izy numbers.



The error of the training is
€y = Si — Sk

JR— —Q —a
where[s;]% = (s;“, 57 ), s 1% = (sk “ S ),[ek ]“ = (ex e, ) The cost
function is defined as
Y =Y +Y
a 1 * _*a 2
Yo=5(s —sc) (24)

— 1 —
Yi=oG s

Y, is considered to be a scalar function. It is quite obviQus, 0 means[s;]* —

[ ]”

The vital positiveness lies within the least mean squadeq that it has a self-correct-
ing feature that makes it suitable to function for arbitrarily vast durafitiout shifting
from its constraints. The mentioned gradient algorithm is subjecteohiolative series
of errors and is convenient for long runs in absence of an addiéoalrectification
procedure. It is more robust in statistics, identification and signal progd84in

Now we use gradient method to train Z-number welght= (bi_]-,F_]-) . We compute

oy
k& and —=£ as
6bi,j 6bi'j

a — a
v _ Y 95 9By~ oy " a5® 9bij
am - aS_k“ abij“ ab,»]-“ aﬁ“ abij“ abij“

—_—x

* a _*a =a
=- (S_k“—SL )Zi,jeN ®,; ;T — <Sk — Sk ) Qi jeo’ &a + Yijeor Pij T

where
and

Y, 0% 05" aby; N oY, 05" by
am aS_k“ ab—ija ab—ija aga ab—ija ab—ija
. a —a —a ¢ —a
=- (S_R‘X—SL ) Qijeo iy +Xijeo Ea)ﬁ - <Sk = Sg )Zi,jeN’ D;; I
where
The coefficienth; ; is updated as

Yy
byj(k +1) = b;;(k) —TIWM
_ — Yy (25)
bi_j(k + 1) = bl-](k) e
Lj
wheren is the training ratg > 0. For the requirement of increasing the training pro-
cess, the adding of the momentum term is mentioned as



Y,
by (k +1) = by (k) = 0o+ Y[by; (k) = by (k= 1]
- - LJ
aY. (25)
bi(k + 1) = by (k) = 1 —==+Y[by;(k) = by (k = 1]
i,j

wherey > 0
Learning algorithm

1) Step 1: Choose the training ratgs> 0 , y > 0 and the stop criteriori > 0. The
initial Z-number vectoB = (by 4, ..., by ) is Selected randomly. The initial learn-
ing iteration isk = 1 the initial learning erro¥ = 0.
2) Repeat the following steps far = a4, ..., a,, , until all training data are applied
a) Forward calculation: Calculate thae-level of Z-number output, Sk with the
a -level of Z-number input vectofg;, y,), and Z-number connection weight
B.
b) Back-propagation: Adjust Z-number parametgrs,i = 1,..,n,j = 1,..,m,
by using the cost function for the-level of Z-number output,, Sk, and Z-
number target output; .
c) Stop criterion: calculate the cycle erfg, Y =Y+ Y.k =k+1 If Y>Y
letY = 0, a new training cycle is initiated. Go to (a).
Conclusion

In this paper, the classical fuzzy equation is modified such that its coefficiehtatan
iables are Z-numbers. However, the parameters of the fuzzy equations cammfst b
tained directly. We use the neural network method to approximate Zemwubffi-
cients of the fuzzy equations. The neural model is constructed with the =rattu
fuzzy equations. With modified backpropagation method, the neetwabrk is trained.
Further work is to study the stability of training algorithms.
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