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Abstract. In this paper, the uncertainty property is represented by Z-number as 
the coefficients and variables of the fuzzy equation. This modification for the 
fuzzy equation is suitable for nonlinear system modeling with uncertain parame-
ters. Here, we use fuzzy equations as the models for the uncertain nonlinear sys-
tems. The modeling of the uncertain nonlinear systems is to find the coefficients 
of the fuzzy equation. However, it is very difficult to obtain Z-number coeffi-
cients of the fuzzy equations. 
Taking into consideration the modeling case at par with uncertain nonlinear sys-
tems, the implementation of neural network technique is contributed in the com-
plex way of dealing the appropriate coefficients of the fuzzy equations. We use 
the neural network method to approximate Z-number coefficients of the fuzzy 
equations. 

Keywords: Fuzzy Modeling, Z-number, Uncertain Nonlinear System. 

1 Introduction 

An exceptional case of uncertain system modeling at par with fuzzy equation is fuzzy 
polynomial interpolation. Polynomials have been used with fuzzy coefficients in order 
to interpolate uncertain data that are expressed using fuzzy numbers [1]. Interpolation 
methodology has been broadly utilized for function approximation as well as system 
identification [2]. In [3], the fuzzy polynomial interpolation is applied for system mod-
eling. The theory problem associated with polynomial interpolation is researched in [4]. 
It elaborates that the interpolation of the function includes time complexity at par with 
data points. In [5], two-dimensional polynomial interpolation is demonstrated. Smooth 
function approximation has been broadly implemented currently [6]. It yields a model 
by utilizing Lagrange interpolating polynomials at the points of product grids [1,7]. 
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However if it involves uncertainties in the interpolation points, the above suggested 
techniques will not work appropriately. 
The fuzzy equation can be regarded as a generalized form of the fuzzy polynomial. 
Compared with the normal fuzzy systems, the fuzzy equations are more easy to be ap-
plied. There are several approaches to construct the fuzzy equations. [8] used the fuzzy 
number on parametric shapes and replaced the original fuzzy equations with crisp linear 
systems. [9] proposed the homotypic analysis technique. [10] used the Newton meth-
odology. In [11] the solution associated to the fuzzy equations is studied by the fixed 
point technique. The numerical solution associated to the fuzzy equations can be ex-
tracted by iterative technique [12], interpolation technique [13] and the Runge-Kutta 
technique [14]. The neural networks may also be used to solve fuzzy equations. In [15], 
the simple fuzzy quadratic equation is resolved by the neural network method. [16] 
extended the result of [15] to fuzzy polynomial equations. In [17], the solution of dual 
fuzzy equation is obtained by neural networks. A matrix pattern associated with the 
neural learning has been quoted in [18]. The predictor-corrector approach is applied in 
[19]. 
The decisions are carried out based on knowledge. In order to make the decision fruit-
ful, the knowledge acquired must be credible. Z-numbers connect to the reliability of 
knowledge [20]. Many fields related to the analysis of the decisions use the ideas of Z-
numbers. Z-numbers are much less complex to calculate when compared to nonlinear 
system modeling methods. Z-number is abundantly adequate number than the fuzzy 
number. Although Z-numbers are implemented in many literatures, from theoretical 
point of view this approach is not certified completely. There are few structure based 
on the theoretical concept of Z-numbers [21]. [22] gave an inception which results in 
the extension of Z-numbers. [23] proposed a theorem to transfer Z-numbers to the usual 
fuzzy sets. In [20] a novel approach was followed for the conversion of Z-number into 
fuzzy number. 
In this paper, we use fuzzy equations to model the uncertain nonlinear systems, where 
the coefficients and variables are Z-numbers. Z-number is a novel idea that is subjected 
to a higher potential in order to illustrate the information of the human being as well as 
to use in information processing [20]. Z-numbers can be regarded as to answer ques-
tions and carry out the decisions [24]. This paper is one of the first attempts in finding 
the coefficients of fuzzy equations based on Z-numbers. We use the neural network 
method to approximate the coefficients of the fuzzy equations. The standard backprop-
agation method is modified, such that Z-numbers in the fuzzy equations can be trained. 

2 Nonlinear system modeling with fuzzy equations and Z-
numbers 

A general discrete-time nonlinear system can be described as  
௞ାଵݔ  ൌ ҧ௞ݔҧሾ݌ ǡ ௞ሿǡݓ ௞ݏ ൌ  ҧ௞ሿ (1)ݔതሾݍ

 Here we consider ܹ௞ א Ը௨ as the input vector, ݔ௞ א Ը௟ is regarded as an internal state 
vector and ܵ௞ א Ը௠ is the output vector. ݌ and ݍ are noted as generalized nonlinear 
smooth functions ݌ǡ ݍ א ܵ ஶ. Defineܥ ௞ ൌ ሾݏ௞ାଵ் ǡ ௞்ݏ ǡ ǥ ሿ் and ܹ ௞ ൌ ሾ ௞ܹାଵ் ǡ ௞்ܹ ǡ ǥ ሿ். 
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Suppose
డௌడ௫ is non-singular at the instance ݔ௞ ൌ Ͳ, ௞ܹ ൌ Ͳǡ this will create a path to-

wards the following model  

 sk  sk1
T ,sk2

T ,wk
T ,wk1

T ,   
 

(2) 

 
 Where ȳሺήሻ is an nonlinear difference equation exhibiting the plant dynamics, ௞ܹ 
and ܵ ௞ are computable scalar input and output respectively. The nonlinear system 
which is represented by (2) is implied as a NARMA model. The input of the system 
with incorporated nonlinearity is considered to be as  

xk  sk1
T ,sk2

T ,wk
T ,wk1

T ,T
 

 Taking into consideration the nonlinear systems as mentioned in (plant), it can be 
simplified as the following linear-in-parameter model  

௞ݏ  ൌ ෍ ෍ ܾ௜௝݌௜ሺݔ௞ሻݍ௝ሺݕ௞ሻ௠
௝ୀଵ

௡
௜ୀଵ  (3) 

 here ܾ ௜௝ is considered to be the linear parameter, ݌௜ሺݔ௞ሻ and ݍ௝ሺݕ௞ሻ are nonlinear func-
tions. The variables related to these functions are quantifying input and output. 
The modeling of uncertain nonlinear systems can be achieved by utilizing the linear-
in-parameter models linked to fuzzy parameters. We assume the model of the nonlinear 
systems (3) has uncertainties in the ܾ௜௝ ,ݔ௞ and ݕ௞  . These uncertainties are in the sense 
of Z-numbers [25]. 
Definition 1. If ݒ is: 1) normal, there exists ߴ଴ א Ը in such a manner ݒሺߴ଴ሻ ൌ ͳ , 2) 
convex, ݒሺߴߛ ൅ ሺͳ െ ሻߴሻߛ ൒ min൛ݒ൫ߴǡ ሻ൯ൟߠሺݒ ǡ ǡߴ׊ ߠ א Ըǡ ߛ׊ א ሾͲǡͳሿ, 3) upper 
semi-continuous on Ըǡ ሻߴሺݒ ൑ ଴ሻߴሺݒ ൅ ߴ׊ ,ߝ א ܰሺߴ଴ሻǡ ଴ߴ׊ א Ըǡ ߝ׊ ൐ Ͳǡ ܰሺߴ଴ሻis a 
neighborhood, 4) ݒା ൌ ሼߴ א Ըǡ ሻߴሺݒ ൐ Ͳሽ is compact, then ݒ is a fuzzy variable, ݒ ǣܧא ܴ ՜ ሾͲǡͳሿ . 
The fuzzy variable ݒ can be also represented as 

ݒ  ൌ ሺݒǡ  ሻ (4)ݒ
  Where ݒ is the lower-bound variable and ݒ is the upper-bound variable. 
Definition 2. A ܼ -number has two componentsܼ ൌ ሾݒሺߴሻǡ  The secondary .ߴ ሻ is termed as a restriction on a real-valued uncertain variableߴሺݒ ሿ. The primary component݌
component ݌ is a measure of reliability of ݌ . ݒ can be reliability, strength of belief, 
probability or possibility. When ݒሺߴሻ is a fuzzy number and ݌ is the probability distri-
bution of  , ܼ  -number is defined as ܼା -number. When both ݒሺߴሻ and ݌ are fuzzy 
numbers, ܼ  -number is defined as ܼି -number. ܼା -number carries more information than ܼି -number. In this paper, we use the defi-
nition of ܼ ା-number, i.e.,ܼ ൌ ሾݒǡ ሿǡ݌ -is a probability distri ݌ is a fuzzy number and ݒ
bution. 
We use so called membership functions to express the fuzzy number. One of the most 
popular membership function is the triangular function 

 v  Ga,b,c 
a
ba

a    b
c
cb

b    c
otherwisev  0   

 

(5) 
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 and trapezoidal function  

 v  Ga,b,c,d 

a
ba

a    b
d
dc

c    d

1 b    c

otherwisev  0   

 

(6) 

 The probability measure is expressed as 

݌  ൌ න ோߴሻ݀ߴሺ݌ሻߴ௩ሺߤ  (7) 

 where ݌ is the probability density of ߴ and R is the restriction on ݌Ǥ For discrete ܼ -
numbers  

ሻݒሺ݌  ൌ ෍ ௜ሻ௡ߴሺ݌௜ሻߴ௩ሺߤ
௜ୀଵ  (8) 

Definition 3. The fuzzy number ݒ in association to the ߙ -level is illustrated as  

 ሾݒሿఈ ൌ ሼܽ א Ըǣ ሺܽሻݒ ൒ ܽሻሽ 
 

(9) 

 
 Where Ͳ ൏ ߙ ൑ ͳǡ ݒ א   Ǥܧ
Thereforeሾݒሿ଴ ൌ ାݒ ൌ ሼߴ א Ըǡ ሻߴሺݒ ൐ Ͳሽ  Since ߙ א ሾͲǡͳሿǡ ሾݒሿఈ  is a bounded men-
tioned as ݒఈ ൑ ሾݒሿఈ ൑ ሿఈݒఈ is explained as  ሾݒ ఈ andݒ in midst of ݒ level of- ߙ ఈ Theݒ ൌ ሺݒఈ ǡ ఈݒ Ǥ We stateߙ ఈ signify the function ofݒ ఈ andݒ ఈሻݒ ൌ ݀஺ሺߙሻǡ ሻǡߙఈ݀஻ሺݒ ߙ א ሾͲǡͳሿǤ  
Definition 4. The ߙ -level of ܼ  -number ܼ ൌ ሺݒǡ ܲሻ is demonstrated as 

 ሾܼሿఈ ൌ ሺሾܸሿఈ ǡ ሾ݌ሿఈሻ (10) 
 where Ͳ ൏ ߙ ൑ ͳǤ ሾ݌ሿఈ is calculated by the Nguyen's theorem  

p  pv  pv,v  P,P   

 where pv  p|  v  . So ሾܼሿఈcan be expressed as the form ߙ -
level of a fuzzy number  

 ሾܼሿఈ ൌ ቀܼఈ ǡ ܼఈቁ ൌ ሺ൫ݒ௔ǡ ܲ௔൯ǡ ቀݒ௔ ǡ ܲ௔ቁሻ 

 
(11) 

 where ݌ఈ ൌ ௜ఈሻǡߴሺ݌ఈݒ ఈ݌ ൌ ௜ሿఈߴ௜ఈሻ ,ሾߴሺ݌ఈݒ ൌ ሺߴ௜ఈ ǡ   . ௜ఈሻߴ

Similar with the fuzzy numbers [26-29], ܼ -numbers are also incorporated with three 
primary operations: ْ ǡٓ and ۨ  . These operations are exhibited by: sum subtract mul-
tiply and division.  The operations in this paper are different definitions with [20]. The ߙ -level of ܼ  -numbers is applied to simplify the operations. 
Let us consider ܼଵ ൌ ሺݒଵǡ ܼ ଵሻ and݌ ଶ ൌ ሺݒଶǡ -ଶሻ be two discrete ܼ -numbers illustrat݌
ing the uncertain variables ߴଵ andߴ  ଶ, σ ଵ௞ሻ௡௞ୀଵߴଵሺ݌ ൌ ͳ , σ ଶ௞ሻ௡௞ୀଵߴଶሺ݌ ൌ ͳ. The op-
erations are defined  

Z12  Z1  Z2  v1  v2,p1  p2  
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 where   ,,  . 
The operations for the fuzzy numbers are defined as [26]  

 

v1  v2  v1
  v2

,v1
  v2



v1  v2  v1
  v2

,v1
  v2



v1  v2 
minv1

v2
,v1

v2
,v1

v2
,v1

v2


maxv1
v2

,v1
v2

,v1
v2

,v1
v2



  

 

(13) 

 For all ݌ଵ כ -ଶ operations, we use convolutions for the discrete probability distribu݌
tions 

p1  p2  
i

p11,ip22,ni   p12
 

 The above definitions satisfy the Hukuhara difference [30-32], 

Z1 H Z2  Z12

Z1  Z2  Z12  
 Here if ܼ ଵ ٓு ܼଶ prevails, the ߙ -level is  

Z1 H Z2  Z1
  Z2

,Z1
  Z2


 

 Obviously, ܼ ଵ ٓு ܼଵ ൌ Ͳ , ܼ ଵ ٓு ܼଵ ് Ͳ . 
Also the above definitions satisfy the generalized Hukuhara difference [33]  

 Z1 gH Z2  Z12 
1 Z1  Z2  Z12

2 Z2  Z1  1Z12

  

 

(14) 

 It is convenient to display that 1) and 2) in combination are genuine if and only if ܼଵଶ 
is a crisp number. With respect to ߙ -level what we got are ሾܼଵ ٚ௚ு ܼଶሿఈ ൌሾmin ቄܼଵఈ െ ܼଶఈ ǡ ܼଵఈ െ ܼଶఈቅ ǡ max ሼܼଵఈ െ ܼଶఈ ǡ ܼଵఈ െ ܼଶఈሽሿ and If ܼ ଵ ٓ௚ு ܼଶ and ܼ ଵ ٓு ܼଶ 

subsist, ܼ ଵ ٓு ܼଶ ൌ ܼଵ ٓ௚ு ܼଶ. The circumstances for the inerrancy of ܼଵଶ ൌܼଵ ٓ௚ு ܼଶ א   are ܧ

 

ͳሻ ൝ ܼଵଶఈ ൌ ܼଵఈ െ ܼଶఈ  ܽ݊݀ ܼଵଶఈ ൌ ܼଵఈ െ ܼଶఈ݄ݐ݅ݓ ܼଵଶఈ ଵଶఈܼ ݃݊݅ݏܽ݁ݎܿ݊݅  ଵଶఈܼ݃݊݅ݏܽ݁ݎܿ݁݀  ൑ ܼଵଶఈ  ʹሻ ൝ ܼଵଶఈ ൌ ܼଵఈ െ ܼଶఈ ܽ݊݀ ܼଵଶఈ ൌ ܼଵఈ െ ܼଶఈ ݄ݐ݅ݓ ܼଵଶఈ ଵଶఈܼ ݃݊݅ݏܽ݁ݎܿ݊݅  ǡ݃݊݅ݏܽ݁ݎܿ݁݀  ܼଵଶఈ ൑ ܼଵଶఈ
 (15) 

 where ߙ׊ א ሾͲǡͳሿ  
If ܼ is a triangular function, the absolute value of Z –number ݒ  ൌ ሺݒǡ  ሻ is݌

 ȁܼሺߴሻȁ ൌ ሺȁܽଵȁ ൅ ȁܾଵȁ ൅ ȁܿଵȁǡ ሺȁܽଶȁ݌ ൅ ȁܾଶȁ ൅ ȁܿଶȁሻሻ (16) 
 If ଶ are triangular functions, the supremum metric for Z -numbers ܼଵݒ ଵ andݒ  ൌ
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ሺݒଵǡ ܼ ଵሻ and݌ ଶ ൌ ሺݒଶǡ ሺܼଵǡܦ  ଶሻ is given as݌ ܼଶሻ ൌ ݀ሺݒଵǡ ଶሻݒ ൅ ݀ሺ݌ଵǡ  ଶሻ݌
 in this case ݀ሺήǡήሻ is the supremum metrics considering fuzzy sets [26]. ܦሺܼଵǡ ܼଶሻ is 
incorporated with the following possessions:  

DZ1  Z,Z2  Z  DZ1,Z2

DZ2,Z1  DZ1,Z2

DZ1,kZ2  ||DZ1,Z2

DZ1,Z2  DZ1,Z  DZ,Z2  
 where א Ը , ܼ ൌ ሺݒǡ  .is triangle function ݒ ሻ is ܼ -number and݌
Definition 5. Let ܼ෨ denotes the space of ܼ -numbers. The ߙ െ level of ܼ  -number valued 
function ܩǣ ሾͲǡ ܽሿ ՜ ෨ܼ is ܩሺݒǡ ሻߙ ൌ ሾܩሺݒǡ ሻǡߙ ǡݒሺܩ  ሻሿߙ
 where א ෨ܼ , for each ߙ א ሾͲǡͳሿ . 
With the definition of Generalized Hukuhara difference, the gH-derivative of ܩ at ݒ଴ 
is expressed as  

 
ݐ݀݀ ଴ሻݒሺܩ ൌ lim௛՜଴ ͳ݄ ሾܩሺݒ଴ ൅ ݄ሻ ٓ௚ு  ଴ሻሿ (16)ݒሺܩ

 
 In (17), ܩሺݒ଴ ൅ ݄ሻ and ܩሺݒ଴ሻ exhibits similar style with ܼଵ and ܼ ଶ respectively in-
cluded in (14). 
Now we utilize the fuzzy equation (3) to model the uncertain nonlinear system (1). 
Modeling with fuzzy equation (or fuzzy polynomial ) can be regarded as fuzzy interpo-
lation. In this paper, we utilize the fuzzy equation (1) to model the uncertain nonlinear 
system (1), in such a manner that the output related to the plant ݏ௞ can approach to the 
desired output ݏ௞כ ,  

 minௐೖ ԡݏ௞ െ  ԡ (18)כ௞ݏ

This modeling object can be regarded as to detect ܾ௜ǡ௝ for the following fuzzy equation 

 sk
  

i1

n


j1

m

bij pixqjy   
 

(19) 

 where ݔ௥ ൌ ሾݏ௞ିଵ் ǡ ௞ିଶ்ݏ ǡ ǥ ǡ ௞்ݓ ǡ ௞ିଵ்ݓ ǡ ǥ ሿ் Ǥ  
3 Z-number parameter estimation with neural networks 

We design a neural network to represent the fuzzy equation (3), see Fig. 1. The inputs 
to the neural network are ݔ௞ and ݕ௞ , the output is Z-number ܼ௞ Ǥ The main idea is to 
detect appropriate weight of neural network ܾ௜ǡ௝ in such a manner that the output of 
the neural network ܼ௞ converges to the desired output ݏ௞כ .  
The input Z-numbers ݔ௞ and ݕ௞ are first applied to ߙ -level as in (11) 
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ሾݔ௞ሿఈ ൌ ሺݔ௞ఈ ǡ ௞ሿఈݕ௞ఈሻሾݔ ൌ ሺݕ௞ఈ ǡ  ௞ఈሻ (20)ݕ

 Then in the first hidden units we have 

 
ሾȰ௜ሿఈ ൌ ሺ݌௜൫ݔ௞ఈ൯ǡ ݅       ௞ఈ൯ݔ௜൫݌ ൌ ͳǡ ǥ ǡ ݊ሻൣȰ௝൧ఈ ൌ ሺݍ௝ ቀݕ௞ఈቁ ǡ ݆       ௞ఈ൯ݕ௝൫ݍ ൌ ͳǡ ǥ ǡ ݉ሻ (21) 

 and in the second hidden units we have  

 
ൣȰ௜ǡ௝൧ఈ ൌ ሼσ Ȱ௜ ఈȰ௝ఈ௜ǡ௝אே ൅ σ Ȱ௜ ఈȰ௝ఈ௜ǡ௝אை ൅ σ Ȱ௜ఈ௜ǡ௝אொ Ȱ௝ఈ ǡ  σ Ȱ௜ ఈȰ௝ఈ௜ǡ௝אேᇲ ൅ σ Ȱ௜ఈȰ௝ ఈ௜ǡ௝אைᇲ ൅ σ Ȱ௜ఈȰ௝ఈ௜ǡ௝אொᇲ ሽ  (22) 

 

 where ܰ ൌ ሼ݅ǡ ݆ ቚȰ௜ఈ ൒ Ͳǡ Ȱ௝ ఈ ൒ Ͳሽ ,ܱ ൌ ሼ݅ǡ ݆ ቚȰ௜ఈ ൏ Ͳǡ Ȱ௝ఈ ൏ Ͳሽ  , ܳ ൌ ሼ݅ǡ ݆ ቚȰ௜ఈ ൏Ͳǡ Ȱ௝ఈ ൒ Ͳሽ , ܰ ᇱ ൌ ݅ǡ ݆ ቚȰ௜ఈ ൒ Ͳǡ Ȱ௝ఈ ൒ Ͳሽ  , ܱᇱ ൌ ݅ǡ ݆ ቚȰ௜ఈ ൏ Ͳǡ Ȱ௝ఈ ൏ Ͳሽǡ  ܳᇱ ൌ݅ǡ ݆ ቚȰ௜ఈ ൏ Ͳǡ Ȱ௝ఈ ൏ Ͳሽ . 
The neural network output is  

 
ሾs௞ሿఈ ൌ ሼσ Ȱ௜ǡ௝ఈb௜ǡ௝ఈ௜ǡ௝אே ൅ σ Ȱ௜ǡ௝ఈb௜ǡ௝ఈ௜ǡ௝אை ൅ σ Ȱ௜ǡ௝ఈ௜ǡ௝אொ ܾ௜ǡ௝ఈ ǡ  σ Ȱ௜ǡ௝ఈb௜ǡ௝ఈ௜ǡ௝אேᇲ ൅ σ Ȱ௜ǡ௝ఈb௜ǡ௝ఈ௜ǡ௝אைᇲ ൅ σ Ȱ௜ǡ௝ఈb௜ǡ௝ఈ௜ǡ௝אொᇲ ሽ  (23) 

 where ܰ ൌ ሼ݅ǡ ݆ ቚȰ௜ǡ௝ఈ ൒ Ͳǡ b௜ǡ௝ఈ ൒ Ͳሽ ,ܱ ൌ ሼ݅ǡ ݆ ቚȰ௜ǡ௝ఈ ൏ Ͳǡ b௜ǡ௝ఈ ൏ Ͳሽ  , ܳ ൌሼ݅ǡ ݆ ቚȰ௜ǡ௝ఈ ൏ Ͳǡ b௜ǡ௝ఈ ൒ Ͳሽ , ܰ ᇱ ൌ ሼ݅ǡ ݆ ቚȰ௜ǡ௝ఈ ൒ Ͳǡ b௜ǡ௝ఈ ൒ Ͳሽ  , ܱᇱ ൌ ሼ݅ǡ ݆ ቚȰ௜ǡ௝ఈ ൏Ͳǡ b௜ǡ௝ఈ ൏ Ͳሽǡ  ܳᇱ ൌ ሼ݅ǡ ݆ ቚȰ௜ǡ௝ఈ ൏ Ͳǡ b௜ǡ௝ఈ ൏ Ͳሽ. 
 

 
Fig. 1. Fuzzy equation in the form of neural network.  

 
In order to train the weights, we need to define a cost function for the fuzzy numbers. 
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The error of the training is  ݁௞ ൌ כ௞ݏ െ  ௞ݏ
 

 where ሾݏ௞כሿఈ ൌ ቀݏ௞כ ఈ ǡ כ௞ݏ ఈቁ ǡ ሾݏ௞ ሿఈ ൌ ൬ݏ௞ ఈ ǡ ௞ݏ ఈ൰ ǡ ሾ݁௞ ሿఈ ൌ ሺ݁௞ ఈ ǡ ݁௞ ఈሻ  The cost 

function is defined as 

 

ȯ௞ ൌ ȯఈ ൅ ȯఈ
 ȯఈ ൌ ͳʹ ሺݏ௞כఈ െ כ௞ݏ ఈሻଶ ȯఈ ൌ ͳʹ ሺݏ௞כ ఈ െ  ఈሻଶכ௞ݏ

(24) 

 ȯ௞ is considered to be a scalar function. It is quite obvious,ȯ௞ ՜ Ͳ means ሾݏ௞ሿఈ ՜ሾݏ௞כሿఈ  
The vital positiveness lies within the least mean square (24) is that it has a self-correct-
ing feature that makes it suitable to function for arbitrarily vast duration without shifting 
from its constraints. The mentioned gradient algorithm is subjected to cumulative series 
of errors and is convenient for long runs in absence of an additional error rectification 
procedure. It is more robust in statistics, identification and signal processing [34]. 
Now we use gradient method to train Z-number weight ܾ௜ǡ௝ ൌ ሺܾ௜ǡ௝ǡ ܾ௜ǡ௝ሻ . We compute డ஌ೖడ௕೔ǡೕ and  

డ஌ೖడ௕೔ǡೕ as  

 డ஌ೖడ௕೔ǡೕ ൌ డ஌ೖഀడୱೖഀ డୱೖഀడୠ೔ೕഀ డୠ೔ೕഀడୠ೔ೕഀ ൅ డ஌ೖഀడୱೖഀ డୱೖഀడୠ೔ೕഀ డୠ೔ೕഀడୠ೔ೕഀ  ൌ െ ቀݏ௞כఈെݏ௞ ఈቁ σ Ȱ௜ǡ௝ఈȞ௜ǡ௝אே െ ൬ݏ௞כఈ െ ௞ݏ ఈ൰ ሺσ Ȱ௜ǡ௝ఈ௜ǡ௝אைᇲ ൅ σ Ȱ௜ǡ௝ఈ௜ǡ௝אைᇲ ሻȞ  

 
 

 where 
and  ߲ȯ௞߲ܾ௜ǡ௝ ൌ ߲ȯ௞ఈ߲s௞ఈ ߲s௞ఈ߲b௜௝ ఈ ߲b௜௝ ఈ߲b௜௝ ఈ ൅ ߲ȯ௞ఈ߲s௞ఈ ߲s௞ఈ߲b௜௝ ఈ ߲b௜௝ఈ߲b௜௝ఈ 

ൌ െ ቀݏ௞כఈെݏ௞ ఈቁ ሺσ Ȱ௜ǡ௝ఈ௜ǡ௝אை ൅ σ Ȱ௜ǡ௝ఈ௜ǡ௝אொ ሻȞଵ െ ൬ݏ௞כ ఈ െ ௞ݏ ఈ൰ σ Ȱ௜ǡ௝ఈȞଵ௜ǡ௝אேᇲ   

 where 
The coefficient ܾ௜ǡ௝ is updated as 

 

ܾ௜ǡ௝ሺ݇ ൅ ͳሻ ൌ ܾ௜ǡ௝ሺ݇ሻ െ ߟ ߲ȯ௞߲ܾ௜ǡ௝ܾ௜ǡ௝ሺ݇ ൅ ͳሻ ൌ ܾ௜ǡ௝ሺ݇ሻ െ ߟ ߲ȯ௞߲ܾ௜ǡ௝
 

 

(25) 

 where ߟ is the training rate ߟ ൐ ͲǤ For the requirement of increasing the training pro-
cess, the adding of the momentum term is mentioned as  
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ܾ௜ǡ௝ሺ݇ ൅ ͳሻ ൌ ܾ௜ǡ௝ሺ݇ሻ െ ߟ ߲ȯ௞߲ܾ௜ǡ௝ ൅ ȯሾܾ௜ǡ௝ሺ݇ሻ െ ܾ௜ǡ௝ሺk െ ͳሻሿ
ܾ௜ǡ௝ሺ݇ ൅ ͳሻ ൌ ܾ௜ǡ௝ሺ݇ሻ െ ߟ ߲ȯ௞߲ܾ௜ǡ௝ ൅ ȯሾܾ௜ǡ௝ሺ݇ሻ െ ܾ௜ǡ௝ሺ݇ െ ͳሻሿ (25) 

 where ߛ ൐ Ͳ  
Learning algorithm 
1) Step 1: Choose the training rates  ߟ ൐ Ͳ , ߛ ൐ Ͳ and the stop criterion ȯ ൐ ͲǤ  The 

initial Z-number vector ܤ ൌ ሺܾଵǡଵǡ ǥ ǡ ܾ௡ǡ௠ሻ is selected randomly. The initial learn-
ing iteration is ݇ ൌ ͳ the initial learning error ȯ ൌ Ͳ. 

2) Repeat the following steps for  ߙ ൌ ଵǡߙ ǥ ǡ  ௠ , until all training data are appliedߙ

a) Forward calculation: Calculate the ߙ -level of Z-number output ݏ௞ sk  with the  ߙ -level of Z-number input vectors ሺݔ௞ ǡ  ௞ሻǡ and Z-number connection weightݕ
B. 

b) Back-propagation: Adjust Z-number parameters ܾ௜ǡ௝  ǡ ݅ ൌ ͳǡ ǥ ǡ ݊ǡ ݆ ൌ ͳǡ ǥ ǡ ݉ǡ 
by using the cost function for the ߙ -level of Z-number output ݏ௞ ǡsk ,  and Z-
number target output ݏ௞כ   . 

c) Stop criterion: calculate the cycle error ȯ௞ ǡ ȯ ൌ ȯ ൅ ȯ௞ Ǥ ݇ ൌ ݇ ൅ ͳ  If  ȯ ൐ ȯ 
let ȯ ൌ Ͳǡ a new training cycle is initiated. Go to (a). 

Conclusion 

In this paper, the classical fuzzy equation is modified such that its coefficients and var-
iables are Z-numbers. However, the parameters of the fuzzy equations cannot be ob-
tained directly. We use the neural network method to approximate Z-number coeffi-
cients of the fuzzy equations. The neural model is constructed with the structure of 
fuzzy equations. With modified backpropagation method, the neural network is trained. 
Further work is to study the stability of training algorithms. 
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