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Abstract

This paper studies estimation of covariance matrices with conditional sparse structure. We

overcome the challenge of estimating dense matrices using a factor structure, the challenge of

estimating large-dimensional matrices by postulating sparsity on covariance of random noises,

and the challenge of estimating varying matrices by allowing factor loadings to smoothly change.

A kernel-weighted estimation approach combined with generalised shrinkage is proposed. Under

some technical conditions, we derive uniform consistency for the developed estimation method

and obtain convergence rates. Numerical studies including simulation and an empirical application

are presented to examine the finite-sample performance of the developed methodology.
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1 Introduction

Covariance matrix estimation is one of the central problems in high-dimensional statistics and big

data analytics. It has applications in a variety of fields including economics, finance, health science

and social networks. The sample covariance matrix often performs very poorly in finite samples

when the matrix size is large, and becomes singular when the dimension exceeds the sample size,

making it difficult to use in high-dimensional statistical inference. A popular approach in the

literature is to impose certain structural assumptions on the covariance matrix and then modify

the sample covariance matrix. Among the assumptions typically made, the approximate sparsity

assumption is probably the most commonly-used, under which many entries in the covariance

matrix are assumed zero or close to zero. Consequently, various regularization techniques, such

as thresholding or other generalised shrinkage methods, have been introduced; see, for example,

Bickel and Levina (2008a,b), Lam and Fan (2009), Rothman, Levina and Zhu (2009) and Cai and Liu

(2011). For a comprehensive survey of recent developments on estimating large sparse covariance

matrices, we refer to Pourahmadi (2013), Cai, Ren and Zhou (2016) and Fan, Liao and Liu (2016).

The sparsity assumption imposed on the covariance structure is too restrictive or even unreal-

istic for many datasets in economics and finance where the variables are often highly correlated.

For example, co-movement of many macroeconomic variables may be driven by low-dimensional

latent factor processes, and many financial time series data collected in the stock market are usually

determined by common market factors, both resulting in highly correlated variables. To relax

the sparsity assumption for estimating meaningful covariance matrices in these applications, the

following approximate factor model (e.g., Chamberlain and Rothschild, 1983) is often employed:

Xt = BFt + ut = χt + ut, t = 1, · · · , T , (1.1)

where Xt is an N-dimensional vector of stationary variables, B is an N × K matrix of factor

loadings, Ft is a K-dimensional vector of stationary latent factors, ut is an N-dimensional vector of

idiosyncratic errors, and K is the number of latent factors. The factor model postulates that Xt is

decomposed as the common component χt = BFt and the error component ut. Instead of directly

imposing sparsity on the covariance structure of Xt, Fan, Liao and Mincheva (2013) assume that

the error covariance matrix is sparse, giving rise to the so-called conditional sparsity structure

for Xt. They introduce a novel covariance matrix estimation technique by thresholding principal

orthogonal complements.

The large covariance matrix in Fan, Liao and Mincheva (2013) is assumed to be static with

constant entries. This assumption can be invalid when data is collected over a long time span.

Indeed, it is not uncommon that economic or financial time series variables are often subject to

abrupt structural breaks or smooth structural change over a long time period. Hence, in recent

years, there has been increasing interest in estimating large dynamic covariance matrices by allowing
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their entries to vary smoothly with certain index variable(s) or time, see, for example, Chen, Xu

and Wu (2013), Chen and Leng (2016) and Chen, Li and Linton (2019). These papers work under

the sparsity assumption and thus cannot handle the problem of estimating non-sparse covariance

matrices. To model large, dynamic, and non-sparse matrices, we propose to allow the factor

loading matrix B in (1.1) to be time-dependent by writing

Xt = BtFt + ut, t = 1, · · · , T , (1.2)

where Bt is an N× K matrix of time-varying factor loadings, and the remaining components are

the same as those in (1.1). In this paper, we mainly consider the case where each factor loading

is a smooth function of a univariate stationary index variable zt, i.e., Bt = B(zt) = (Bik(zt))N×K.

The factor model (1.2) stimulates two research directions which are closely related. One is to

study structural instabilities in the factor loadings. Towards this, several estimation and detection

methods have been proposed to locate break points and determine break number (e.g., Stock and

Watson, 2009; Breitung and Eickmeier, 2011; Chen, Dolado and Gonzalo, 2014; Cheng, Liao and

Schorfheide, 2016; Barigozzi, Cho and Fryzlewicz, 2018; Ma and Su, 2018). The other direction is to

consider estimating and testing the state-varying factor model (1.2) with factor loadings relying on

a state process (Pelger and Xiong, 2020) or the time-varying factor model (1.2) with Bt defined as

functions of scaled time (Motta, Hafner and von Sachs, 2011; Su and Wang, 2017). In particular,

Pelger and Xiong (2020) give a few examples, showing that the time-dependent factor model (1.2)

allows for a more parsimonious representation of the data than the conventional factor model (1.1).

In practice, it is often important to study how the second-order moment structure of the

variables responds to technological innovation and changes in policy, business circles and economic

conditions. However, to the best of our knowledge, there is virtually no work on estimating the

covariance matrix of Xt defined in (1.2), which is more challenging than only estimating Bt and Ft.

This paper aims to fill this gap. In particular, we propose a kernel-based local estimation method to

estimate the large dynamic covariance matrices with conditional sparsity, extending the Principal

Orthogonal complEment Thresholding (POET) methodology in Fan, Liao and Mincheva (2013)

developed for estimating static covariance matrices. In the proposed estimation procedure, we first

estimate the factors and their loadings by a local version of principal component analysis as in Su

and Wang (2017) and Pelger and Xiong (2020), and then apply the generalised shrinkage method

to estimate the sparse error covariance structure. As the idiosyncratic errors ut are unobservable,

we use their approximation in the large covariance matrix estimation with entries varying over

time. This is substantially different from that in the literature (e.g., Chen and Leng, 2016; Chen, Li

and Linton, 2019), leading to difficulties in the subsequent theoretical justification.

To measure the uniform distance between the estimated covariance matrices and the true ones,

we derive uniform consistency results for the developed matrix estimators under appropriate

matrix norms and regularity conditions, and obtain uniform convergence rates that are comparable
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to those in the existing literature (e.g., Fan, Liao and Mincheva, 2013; Chen and Leng, 2016).

In particular, the uniform consistency results are derived over an expanding set whose size is

divergent to infinity as the sample size increases. As a consequence, the commonly-used compact

support restriction on the index variable (e.g., Chen and Leng, 2016; Chen, Li and Linton, 2019) is

removed in the technical assumptions. This relaxation enhances the applicability of the developed

asymptotic results, but makes their technical proofs much more complicated than those in the

literature. In addition, we extend the ratio criterion introduced by Lam and Yao (2012) and Ahn

and Horenstein (2013) to estimate the number of factors in (1.2), and prove its consistency. An

easy-to-implement method is proposed to select the tuning parameter in the generalised shrinkage

technique, allowing temporal dependence for Xt.

The present paper is partly motivated by the empirical study in constructing minimum variance

portfolio for vast financial time series, where large dynamic covariance matrices and their inverse

(i.e., precision matrices) are often preferred to the static ones (e.g., Guo, Box and Zhang, 2017;

Chen, Li and Linton, 2019; Engle, Ledoit and Wolf, 2019). In this paper, we provide further

empirical evidence to this subject, applying the developed model framework and covariance

matrix estimation methodology to analyse daily returns of 319 companies listed in the S&P 500

index and estimate their dynamic covariance structure conditioning on the CBOE volatility index.

Subsequently, we construct the out-of-sample minimum variance portfolio making use of the

estimated covariance matrix, and compute the standard deviation, the information ratio as well

as the Sharpe ratio, from which we find that our method outperforms that using Fan, Liao and

Mincheva (2013)’s POET method.

The rest of the paper is organised as follows. Section 2 introduces the model setting and kernel-

weighted least squares method with generalised shrinkage to estimate the covariance matrix of

Xt. Section 3 lists some regularity conditions and states the main asymptotic results. Section 4

discusses selection of the factor number and the tuning parameter for shrinkage. Section 5 reports

both simulation and empirical studies. Section 6 concludes the paper. Proofs of the main theorems

are given in Appendix A. The supplemental document contains proofs of some technical lemmas

as well as additional numerical results. Throughout the paper, for a square matrix A, λmax(A)

and λmin(A) denote its maximum and minimum eigenvalues, respectively, and trace{A} denotes

its trace. Define ‖A‖ = λ
1/2
max(A′A), ‖A‖F = trace1/2(A′A), ‖A‖max = maxij |aij| for A = (aij)N×N,

and ‖A‖Σ = 1√
N
‖Σ−1/2AΣ−1/2‖F, where Σ is a given N×N positive definite matrix. Let ∧ and ∨

denote minimum and maximum, respectively; and let an ∝ bn denote that an = cbn for a positive

constant c.
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2 Model and estimation methodology

In this section, we first introduce the model setting and discuss some identification issues, and

then combine kernel-weighted least squares with generalised shrinkage to estimate large dynamic

covariance matrices.

2.1 Model setting

As introduced in Section 1, we let Bt = B(zt) and rewrite the time-dependent factor model (1.2) as

Xt = B(zt)Ft + ut, t = 1, · · · , T , (2.1)

where we allow the univariate index variable zt to be supported on an expanding set. From (2.1),

we readily have

ΣX(z) = B(z)ΣFB(z)
′ + Σu(z) (2.2)

for zt = z, where ΣX(z) and Σu(z) denote the conditional covariance matrices of Xt and ut,

respectively, given zt = z, and

ΣF(z) := E (FtF
′
t|zt = z) = E (FtF

′
t) =: ΣF (2.3)

is assumed to be time-invariant and positive definite. For (2.2), Ft and ut are assumed to be

conditionally uncorrelated (given zt), to be consistent with the literature. When the conditional

covariance matrix ΣF(z) = E (FtF
′
t|zt = z) varies with z, letting F⋆t = Σ

1/2
F Σ

−1/2
F (zt)Ft and B⋆(zt) =

B(zt)Σ
1/2
F (zt)Σ

−1/2
F , we may show that the conditional covariance matrix E (F∗tF

∗′
t |zt = z) is time-

invariant, and (2.1) and (2.2) still hold with B⋆(·) and F⋆t replacing B(·) and Ft, respectively. In

practical implementation, without loss of generality, we may let ΣF = IK, a K× K identity matrix,

as one identification restriction in the following kernel-weighted principal component analysis,

see (2.6). In addition, we assume that Ft and ut have zero-mean conditioning on zt, indicating that

ΣX(z) and Σu(z) in (2.2) equal to their respective conditional second moments.

As in the classic factor model (1.1), the time-varying factor loadings and common factors in

(2.1) are only identified up to a K × K invertible matrix Q(zt) depending on zt, indicating that

K2 restrictions are needed for model identification given zt = z. Similarly to Assumption A.1(ii)

and (iii) in Su and Wang (2017) and Assumptions 3 and 4 in Pelger and Xiong (2020), we impose

full-rank conditional second moment conditions on Ft and B(zt) in order to develop sensible

asymptotic results, see (3.1) and (3.2) in Assumption 2 below. Meanwhile, another identification

issue arises due to the presence of two time series processes zt and Ft in the common component

of model (2.1)1. From (2.3), the conditional covariance matrix E (FtF
′
t|zt = z) does not rely on zt.

1We thank a referee for pointing out this issue.
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Hence, Assumption 1 in Pelger and Xiong (2020) is satisfied, ensuring that the index variable zt

and the factor Ft are separable and the model is identifiable. Section 2.3 of Pelger and Xiong (2020)

provides some further examples to illustrate this identification condition and the relevant factor

model representation.

2.2 Kernel-weighted covariance matrix estimation

Let K(·) be a kernel function and b be a bandwidth which tends to zero as T goes to infinity.

Multiplying both sides of (2.1) by

Kt,b(z) = Kb (zt − z) /

[
1

T

T∑

s=1

Kb (zs − z)

]

with Kb(·) = 1
b
K(·/b), we immediately have the following local approximation:

XtK
1/2
t,b (z) ≈ B(z)FtK

1/2
t,b (z) + utK

1/2
t,b (z) when zt ≈ z. (2.4)

Let Xt(z) = XtK
1/2
t,b (z) and define the kernel-weighted sample covariance matrix:

ΣX(z) =
1

T

T∑

t=1

Xt(z)Xt(z)
′ =

[
1

T

T∑

t=1

XtX
′
tKb (zt − z)

]
/

[
1

T

T∑

t=1

Kb (zt − z)

]
. (2.5)

However, when the dimension N is large, the above kernel-weighted sample covariance matrix

will be ill-conditioned, resulting in poor estimation for ΣX(z). To address this, we next combine a

local principal component analysis with a generalised shrinkage technique to construct meaningful

covariance matrix estimation.

The number of common factors, K, is assumed to be known for the time being and will be deter-

mined by a ratio criterion in Section 4.1 when it is unknown. Let F(z) =
[
F1K

1/2
1,b (z), · · · , FTK

1/2
T ,b(z)

]′
,

B(z) = [B1(z), · · · ,BN(z)]
′ and X(z) = [X1(z), · · · ,XT (z)], where Bi(z) = [Bi1(z), · · · ,BiK(z)]

′. Con-

sider the following identification condition:

1

T
F(z)′F(z) = IK,

1

N
B(z)′B(z) is diagonal. (2.6)

Motivated by (2.4), we define the kernel-weighted local least squares objective function:

T∑

t=1

(Xt − B∗Ft∗)
′
(Xt − B∗Ft∗)Kt,b (z) = ‖X(z) − B∗F′

∗‖
2
F , (2.7)

where B∗ and F∗ are general notation for N× K and T × K matrices, respectively. Making use of
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the identification condition (2.6), given F∗, we estimate B(z) by 1
T

X(z)F∗, and consequently the

objective function in (2.7) becomes

∥∥∥∥X(z) −
1

T
X(z)F∗F′

∗

∥∥∥∥
2

F

= trace {X(z)′X(z)}−
1

T
trace {F′

∗X(z)′X(z)F∗} . (2.8)

From (2.8), minimisation of (2.7) subject to the restriction (2.6) is equivalent to maximisation of

trace {F′
∗X(z)′X(z)F∗} subject to 1

T
F′
∗F∗ = IK. Hence, consider eigen-analysis of the T × T kernel-

weighted matrix X(z)′X(z) as in Su and Wang (2017) and Pelger and Xiong (2020) and let

F̃(z) =
[
F̃1(z), · · · , F̃T (z)

]′

be the K eigenvectors (multiplied by
√
T ) of the matrix X(z)′X(z) corresponding to the K largest

eigenvalues. The factor loading matrix can be estimated as

B̃(z) =
1

T
X(z)F̃(z) =

[
B̃1(z), · · · , B̃N(z)

]′
.

Then, we can approximate the local residuals utK
1/2
t,b (z) by

ũt(z) = [ũ1t(z), · · · , ũNt(z)]
′ with ũit(z) = Xit(z) − B̃i(z)

′F̃t(z),

where Xit(z) is the i-th element in Xt(z). A naive method of estimating Σu(z) is to directly calculate

the sample covariance matrix of ũt(z):

Σ̌u(z) = [σ̌u,ij(z)]N×N =
1

T

T∑

t=1

ũt(z)ũt(z)
′, (2.9)

which is usually unstable when the number N is large. To address this problem, we apply the

generalised shrinkage technique to the off-diagonal elements in Σ̌u(z) (c.f., Chen and Leng, 2016)

and estimate Σu(z) by

Σ̃u(z) = [σ̃u,ij(z)]N×N , σ̃u,ij(z) =

{
σ̌u,ii(z), i = j,

sρ(z) (σ̌u,ij(z)) , i 6= j,
(2.10)

where sρ(·) is a shrinkage function satisfying the following three restrictions: (i) |sρ(w)| 6 |w| for

w ∈ R; (ii) sρ(w) = 0 if |w| 6 ρ; (iii) |sρ(w)−w| 6 ρ, with ρ being a tuning parameter. The shrinkage

function satisfying these three restrictions covers the hard thresholding, soft thresholding and

SCAD function, all of which are commonly used in the literature. Note that the tuning parameter

ρ(z) in (2.10) is allowed to change with z, which is needed in the context of dynamic covariance
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matrix estimation. Combining the above estimates, we finally estimate ΣX(z) by

Σ̃X(z) = B̃(z)B̃(z)′ + Σ̃u(z). (2.11)

Proposition 1 of Appendix A.1 shows the equivalence of the kernel-weighted estimators defined

in (2.10) and (2.11) and the local POET estimators to be defined in Appendix A.1. Hence, the

method developed above can be seen as an extension of Fan, Liao and Mincheva (2013)’s POET

method to the more general dynamic model setting. We focus on the kernel-weighted estimators

in the main text of this paper.

3 Large-sample theory

In this section, we first give some technical assumptions and then state the uniform consistency

results for the kernel-weighted covariance matrix estimator defined in Section 2.2.

3.1 Technical assumptions

We allow temporal dependence on the high-dimensional data by assuming the stationary process

{(Ft, zt,ut) : t > 0} to be α-mixing with the mixing coefficient α(n) → 0 as n → ∞, where

α(n) = sup
A∈F0

−∞,B∈F+∞
n

|P(A)P(B) − P(AB)|

with Ft
s denoting a σ-algebra generated by {(Fi, zi,ui) : s 6 i 6 t}. The α-mixing dependence

condition is mild for a stationary and weakly dependent process and is satisfied by commonly-used

time series models such as the vector ARMA process. We next give some regularity conditions,

which are needed to derive the main asymptotic results.

Assumption 1. (a) The α-mixing coefficient decays to 0 at a geometric rate, i.e., α(n) 6 C0γ
n with

0 < γ < 1 and C0 being a positive constant.

(b) There exists a density function f(z) for the index variable zt, which is twice continuously differen-

tiable for z ∈ R and satisfies that inf|z|6LT
f(z) > aT (f) > 0, where LT may diverge to infinity and

aT (f) may converge to zero as T → ∞. In addition, the joint density function for (z1, zt) exists and

is bounded uniformly over t > 2.

Assumption 2. (a) The factor loading functions Bi(z) are Lipschitz continuous and bounded uniformly

over i = 1, · · · ,N and z ∈ [−LT ,LT ] with LT defined in Assumption 1(b). There exists a K × K
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positive definite matrix ΣB(z) with uniformly bounded eigenvalues, such that

sup
|z|6LT

∥∥∥∥∥
1

N

N∑

i=1

Bi(z)Bi(z)
′ − ΣB(z)

∥∥∥∥∥ = o(1). (3.1)

(b) The kernel-weighted common factors Ft(z) := FtK
1/2
t,b (z) satisfy that

sup
|z|6LT

∥∥∥∥∥
1

T

T∑

t=1

Ft(z)Ft(z)
′ − ΣF

∥∥∥∥∥ = OP

(
a−1
T (f)

(√
log T

Tb
+ b2

))
, (3.2)

and 1
T

∑T
t=1 ‖Ft(z)‖2 = OP (1) uniformly over −LT 6 z 6 LT , where ΣF is defined in (2.3).

(c) The error covariance matrix Σu(z) is positive definite, satisfying that

0 < c 6 inf
|z|6LT

λmin(Σu(z)) 6 sup
|z|6LT

λmax(Σu(z)) 6 c < ∞,

where c and c are two positive constants. The (i, j)-entry of Σu(z), σu,ij(z), is bounded and twice

continuously differentiable uniformly over z ∈ R and 1 6 i, j 6 N.

Assumption 3. (a) There exist constants C1 > 0 and θ1 > 0 such that

max
16i6N

E
[
eθu

2
it

]
6 C1 for 0 < θ 6 θ1, (3.3)

max
16j6K

E
[
eθF

2
jt

]
6 C1 for 0 < θ 6 θ1. (3.4)

(b) Let E(uit|zt, Ft) = 0 a.s. for any i, and there exists a constant C2 > 0 such that

max
16t,s6T

E
[
(u′

sut − E[u′
sut])

4
]
6 C2N

2. (3.5)

In addition,

max
16t,s6T

‖B(zs)
′ut‖2

= OP (N log T) . (3.6)

Assumption 4. (a) The kernel function K(·) is symmetric and Lipschitz continuous, and has a compact

support.

(b) Let the bandwidth b satisfy that b ∝ T−θ2 and T 1−2ιb/{log3
(N∨ T)} → ∞, where θ2 and ι are

two positive constants. In addition, NT exp{−θT ι} = o(1) for some 0 < θ 6 θ1 with θ1 defined in

Assumption 3(a).

(c) Let the tuning parameter in the generalised shrinkage method be chosen as

ρ(z) = M(z)a−1
T (f)ω(T ,N,b) with ω(T ,N,b) =

√
log T

Nb
+

log(N∨ T)

Tb
+ b2,
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where M(z) is a positive function satisfying that 0 < M 6 inf|z|6LT
M(z) 6 sup

|z|6LT
M(z) 6

M < ∞, and M is sufficiently large. In addition, a−1
T (f)ω(T ,N,b) = o(1).

Remark 1. (a) The above technical assumptions are mild and justifiable, although some of them can

be weakened at the cost of more lengthy proofs. The exponential convergence rate for the α-mixing

coefficient in Assumption 1(a) can be replaced by a polynomial rate if the dimension N diverges

at a polynomial rate of the time series length T . Assumption 1(b) imposes some smoothness

conditions on the density function. In particular, we remove the compact support restriction on the

stationary index variable, which is rather restrictive but commonly used in proving the uniform

consistency of the kernel-weighted large covariance matrix estimators (e.g., Chen and Leng, 2016;

Chen, Li and Linton, 2019). Conditions similar to Assumption 1(b) can be found in Hansen (2008)

and Li, Lu and Linton (2012), both of which consider uniform consistency of the low-dimensional

kernel-based nonparametric estimators over an expanding set.

(b) Assumption 2(a) imposes some smoothness conditions on the factor loading functions,

which are not uncommon when the kernel smoothing technique is applied. They are similar to

some smoothness conditions assumed in the literature on time-varying or state-varying factor

models (e.g., Su and Wang, 2017; Pelger and Xiong, 2020). When λmin(ΣB(z)) is bounded away

from zero uniformly over z, from (3.1), we readily have that λmin(B(z)
′B(z)) diverges at a rate N,

indicating that all the factors are pervasive. Assumption 2(b) can be verified by using (2.3) and

applying some classic uniform consistency result to the kernel-weighted factor process under the

α-mixing dependence assumption (e.g., Theorem 8 in Hansen, 2008). The asymptotic properties in

Section 3.2 remain valid if we replace ΣF by ΣF(z) in (3.2). When the main interest lies in estimation

and identification of factors and factor loadings, we need to impose an additional restriction that

the K eigenvalues of ΣB(z)ΣF are distinct for any z. Assumption 2(c) is a natural extension of

Assumption 3.2(ii) in Fan, Liao and Mincheva (2013), ensuring that Σu(z) is well conditioned

uniformly over z.

(c) The moment conditions in (3.3) and (3.4) are similar to those in Bickel and Levina (2008a,b)

and Chen and Leng (2016), and may be replaced by the following weaker conditions:

max
16i6N

E
[
|uit|

2θ
]
< C∗

1 < ∞, max
16j6K

E
[
|Fjt|

2θ
]
< C∗

1 < ∞

for θ > 0 sufficiently large if the dimension N diverges at a polynomial rate of T . Appendix C in

the supplemental document discusses the relevant asymptotic theorems and sketches their proofs

under these weaker moment conditions. The conditions (3.5) and (3.6) in Assumption 3(b) are

sensible and similar to those in the literature (e.g., Bai and Ng, 2002; Fan, Liao and Mincheva, 2013;

Su and Wang, 2017).

(d) Assumptions 4(a)(b) impose some commonly-used conditions on the kernel function and

bandwidth, and the choice of the tuning parameter in Assumption 4(c) ensures the validity
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of the shrinkage method in large covariance matrix estimation. In particular, the condition

NT exp{−θT ι} = o(1) in Assumption 4(b) indicates that the number of variables N is allowed

to diverge at an exponential rate of T . When N diverges at a polynomial rate of T , we readily have

NT exp{−θT ι} = o(1) by choosing ι and θ as any positive constants. Meanwhile, the restriction
T 1−2ιb

log3(N∨T)
→ ∞ is satisfied if 2ι+ θ2 < 1. This indicates that θ2 can be chosen from (0, 1) (by letting

ι be sufficiently small), covering the order of the optimal bandwidth in conventional kernel-based

estimation with univariate index variable.

3.2 Uniform consistency

As introduced in Section 1, we assume that the error covariance matrix is approximately sparse,

i.e., Σu(·) ∈ U(q,mN,M0), where U(q,mN,M0) is defined by

U(q,mN,M0) =

{

Σ(·) = [σij(·)]N×N

∣∣ sup
z∈R

σii(z) 6 M0, sup
z∈R

(
N∑

j=1

|σij(z)|
q

)
6 mN ∀i

}

,

where 0 6 q < 1 and M0 is a positive constant. For the special case of q = 0,

U(0,mN,M0) =

{

Σ(·) = [σij(·)]N×N

∣∣ sup
z∈R

σii(z) 6 M0, sup
z∈R

N∑

j=1

I(σij(z) 6= 0) 6 mN ∀i
}

,

and consequently Σu(·) ∈ U(0,mN,M0), which is called the exact sparsity assumption uniformly

over z. The above definition is similar to that in Chen and Leng (2016) and Chen, Li and Linton

(2019), a natural extension of the classic sparsity assumption used by Bickel and Levina (2008a),

Rothman, Levina and Zhu (2009) and Cai and Liu (2011). The following theorem gives the uniform

consistency (in the operator norm) of Σ̃u(z) defined in (2.10).

Theorem 1. Suppose that Assumptions 1–4 are satisfied and Σu(·) ∈ U(q,mN,L). Then, as both N and

T tend to infinity jointly, we have

sup
|z|6LT

∥∥∥Σ̃u(z) − Σu(z)
∥∥∥ = OP

(
mN [ω(T ,N,b)/aT (f)]

1−q
)

, (3.7)

where aT (f) is defined in Assumption 1(b) and ω(T ,N,b) is defined in Assumption 4(c).

Remark 2. (a) The uniform consistency for Σ̃u(z) is achieved by assuming that

mN [ω(T ,N,b)/aT (f)]
1−q

= o(1)

and letting both N and T tend to infinity simultaneously. The latter is a typical setting in large panel

data analysis (e.g., Bai and Ng, 2002; Fan, Liao and Mincheva, 2013), ensuring that kernel-based
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estimates of the latent factors and factor loading functions are consistent (up to an appropriate

rotation). The uniform consistency result in (3.7) is derived on an expanding set and the lower

bound of the density function aT (f) thus affects the convergence rate. If LT diverges to infinity (as

T increases), aT (f) converges slowly to zero at an appropriate rate, slowing down the convergence

rate. This is similar to the uniform consistency results developed by Hansen (2008) and Li, Lu and

Linton (2012) for the kernel-based estimation in low-dimensional setting.

(b) The order b2 in ω(T ,N,b) is due to the asymptotic bias of the kernel estimation, and can

be removed if we assume that Tb3/ log(N∨ T) → 0 (which is similar to the condition Tb3 → 0 in

Motta, Hafner and von Sachs, 2011). Furthermore, assuming that mN < ∞, q = 0, LT is a positive

constant (independent of T ) and aT (f) = a0 > 0, the uniform convergence rate in (3.7) becomes(
logT

Nb

)1/2

when N/T → 0, and
(

logT

Tb

)1/2

(a typical uniform convergence rate in the kernel-based

nonparametric estimation) when T/N → 0 and N diverges at a polynomial rate of T .

(c) The uniform rate of convergence in (3.7) is slower than those in Chen and Leng (2016)

and Chen, Li and Linton (2019). The additional order logT

Nb
in ω(T ,N,b) is mainly contributed

by the uniform estimation errors for F̃t(z) and B̃i(z), see the proof of Lemma 2 in Appendix B.

Meanwhile, we remove the compact support restriction on the index variable zt, and derive the

uniform consistency result over a wider region than that in Chen and Leng (2016) and Chen, Li

and Linton (2019). This further slows down the uniform convergence rate as discussed in Remark

2(a) above.

We next state the uniform consistency of Σ̃X(z) defined in (2.11). As the first K eigenvalues

are very spiked (diverging at a rate N), the large covariance matrix ΣX(z) cannot be consistently

estimated in the absolute term. Motivated by Fan, Fan and Lv (2008) and Fan, Liao and Mincheva

(2013), we measure the covariance matrix estimate in the relative error and consider

∥∥∥Σ̃X(z) − ΣX(z)
∥∥∥
ΣX(z)

=
1√
N

∥∥∥Σ−1/2
X (z)Σ̃X(z)Σ

−1/2
X (z) − IN

∥∥∥
F

.

The following theorem gives the uniform rates of convergence for Σ̃X(z) in both the relative error

and max norm ‖ · ‖max.

Theorem 2. Suppose that the assumptions of Theorem 1 are satisfied. Then, as both N and T tend to

infinity jointly, we have

sup
|z|6LT

∥∥∥Σ̃X(z) − ΣX(z)
∥∥∥
ΣX(z)

= OP

(
N1/2 [ω(T ,N,b)/aT (f)]

2
+mN [ω(T ,N,b)/aT (f)]

1−q
)

, (3.8)

and

sup
|z|6LT

∥∥∥Σ̃X(z) − ΣX(z)
∥∥∥

max
= OP (ω(T ,N,b)/aT (f)) , (3.9)

where aT (f) is defined in Assumption 1(b) and ω(T ,N,b) is defined in Assumption 4(c).
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Remark 3. (a) As in Theorem 1, both N and T diverge to infinity jointly in the above theorem.

Furthermore, to ensure uniform consistency with a sensible convergence rate in (3.8), we need to

assume that mN [ω(T ,N,b)/aT (f)]
1−q

= o(1) and N1/2 [ω(T ,N,b)/aT (f)]
2
= o(1). The latter holds

if
log T

N1/2ba2
T (f)

= o(1),

√
N log(N∨ T)

Tba2
T (f)

= o(1) and
Nb4

a4
T (f)

= o(1), (3.10)

indicating that N cannot diverge too fast to infinity. Letting the index variable zt ∼ N(0, 1) and

choosing LT =
√

log log T , we may show that aT (f) ∝ (log T)−1. Furthermore, when N = T , the

conditions in (3.10) can be simplified to

log3 T

T 1/2b
= o(1) and Tb4 log4 T = o(1),

which are satisfied if b ∝ T−θ2 as in Assumption 4(b) with 1/4 < θ2 < 1/2.

(b) Assuming that the density function f(z) has a compact support [−L, L] and is strictly larger

than a positive constant, using Theorems 1 and 2 above, we may show that

sup
|z|6L−ǫ

∥∥∥Σ̃u(z) − Σu(z)
∥∥∥ = OP

(
mN [ω(T ,N,b)]1−q

)
, (3.11)

sup
|z|6L−ǫ

∥∥∥Σ̃X(z) − ΣX(z)
∥∥∥
ΣX(z)

= OP

(
N1/2 [ω(T ,N,b)]2 +mN [ω(T ,N,b)]1−q

)
, (3.12)

sup
|z|6L−ǫ

∥∥∥Σ̃X(z) − ΣX(z)
∥∥∥

max
= OP (ω(T ,N,b)) (3.13)

for any small ǫ > 0. It is well known that the local constant kernel estimation may perform poorly

in the boundary region of the index variable zt, due to the so-called boundary effect. This is the

main reason for us to state the uniform consistency results (3.11)–(3.13) over |z| 6 L− ǫ rather than

|z| 6 L. Following Su and Wang (2017), we may replace the conventional kernel weight Kb(·) in

the local principal component analysis by a boundary-adjusted kernel defined as in Li and Racine

(2007) to remove the boundary effect. Other boundary correction techniques include the reflection

and transformation methods (e.g., Fan and Yao, 2003).

In some practical applications such as the dynamic optimal portfolio allocation, we need to

take inverse of the estimated large covariance matrix and study its asymptotic property. The

following theorem tackles this issue, showing the asymptotic invertibility of Σ̃X(z) and providing

the uniform convergence rate for its inverse.

Theorem 3. Suppose that the assumptions of Theorem 1 are satisfied and mN [ω(T ,N,b)/aT (f)]
1−q

=

o(1). Then, Σ̃X(z) is non-singular with probability approaching 1, and

sup
|z|6LT

∥∥∥Σ̃
−1

X (z) − Σ−1
X (z)

∥∥∥ = OP

(
mN [ω(T ,N,b)/aT (f)]

1−q
)

(3.14)
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as both N and T tend to infinity jointly.

Remark 4. (a) A key step to derive the uniform consistency results stated in Theorems 1–3 above

is to prove the uniform convergence for the estimated factors and factor loadings. In fact, in the

proof of Lemma 2 available in the supplemental document, we show that

sup
|z|6LT

1

T

T∑

t=1

∥∥∥F̃t(z) − H(z)Ft(z)
∥∥∥

2

= OP

(
a−2
T (f)

(
log T

Nb
+

1

T
+ b2

))
(3.15)

and

max
16i6N

sup
|z|6LT

∥∥∥B̃i(z) −
[
H−1(z)

]′
Bi(z)

∥∥∥ = OP (ω(T ,N,b)/aT (f)) , (3.16)

where F̃t(z) and B̃i(z) are defined in Section 2.2 and H(z) is a z-dependent K× K rotation matrix

to be defined in the proof of Lemma 2. These results are of independent interest, complementing

those developed by Su and Wang (2017) and Pelger and Xiong (2020).

(b) Although we mainly derive the limit results for the case when zt is random in the present

paper, similar uniform consistency results hold for the fixed design case when zt = t/T (e.g.,

Robinson, 1989). In fact, the latter is analogous to the random design setting with zt uniformly

distributed over [0, 1]. Some regularity conditions need to be slightly modified. For example, the

smoothness condition on density function in Assumption 1(b) can be removed; and the condition

E(uit|zt, Ft) = 0 a.s. and (3.6) in Assumption 3(b) should be replaced by E(uit|Ft) = 0 a.s., and

max
16t6T

sup
06z61

‖B(z)′ut‖2
= OP (N log T) ,

respectively. By modifying the proofs in Appendices A.3 and B accordingly, we can get the uniform

consistency results (3.11)–(3.13) by replacing |z| 6 L− ǫ by ǫ 6 z 6 1 − ǫ.

4 Practical issues in estimation

In this section we discuss two practical issues for implementing the developed kernel estima-

tion methodology: selection of the factor number K and choice of the tuning parameter in the

generalised shrinkage.

4.1 Selection of the factor number

The number of unobservable factors is often un-specified in practice, and needs to be estimated

before implementing the estimation methodology introduced in Section 2.2. Towards this, we

propose a simple modification of the ratio criterion in Lam and Yao (2012) and Ahn and Horenstein
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(2013). Other selection criteria such as the information criterion (c.f., Bai and Ng, 2002; Fan, Liao

and Mincheva, 2013) may also be applicable (with some modifications). Let λk,z be the k-th largest

eigenvalue of the kernel-weighted sample covariance matrix ΣX(z) defined in (2.5). At a given

point z, we estimate the number K by

K̂(z) = argmin
16k6K̄

λk+1,z

λk,z

, (4.1)

where K̄ is a pre-specified positive integer (which is independent of z) and 0/0 = 1. In practical

implementation, we set λk,z/N as 0 if its absolute value is smaller than ǫ1 which is a pre-specified

small positive number (say, 0.01). Consequently, we have

λk+1,z

λk,z

=
λk+1,z/N

λk,z/N
= 0/0 = 1, (4.2)

when neither
∣∣λk+1,z/N

∣∣ nor
∣∣λk,z/N

∣∣ exceeds ǫ1. Then, we take maximum of K̂(z) over z ∈ Z with

Z being a subset of {z : |z| 6 LT }, i.e.,

K̂ = max
z∈Z

K̂(z). (4.3)

In practice, when the index variable has a compact support, we may choose Z as an equidistant

grid of points which lie in the interior of the support (to circumvent the boundary effect in kernel

estimation). Note that slight over-identification of the factor number usually does not affect

consistency or convergence rates of the subsequent estimation (e.g., Fan, Liao and Mincheva, 2013;

Moon and Weidner, 2015). The following theorem shows that K̂(z) converges to the true value K

uniformly over |z| 6 LT , indicating that K̂ is a consistent estimation.

Theorem 4. Suppose that the assumptions of Theorem 1 are satisfied, mN [ω(T ,N,b)/aT (f)]
1−q

= o(1)

and K > 1. Then, as both N and T tend to infinity jointly, K̂(z) = K with probability approaching one

uniformly over |z| 6 LT , and thus P
(
K̂ = K

)
→ 1.

The simulation studies in Section 5.1 below show that the ratio criterion performs well in finite

samples. However, a disadvantage of the ratio criterion is that it would select at least one common

factor and could not work in the setting with zero factor. To address this problem, we may replace

“1 6 k 6 K̄” in (4.1) by “0 6 k 6 K̄” and define a mock eigenvalue λ0,z = λ(N, T) ·N with λ(N, T)

satisfying that

λ(N, T) → 0 and
λ(N, T)aT (f)

ν(T ,N,b) + b2
→ ∞,

where ν(T ,N,b) =
√

log(N∨T)

Tb
. Following Ahn and Horenstein (2013)’s suggestion, we can choose

λ(N, T) = 1/ log(N∧ T) when aT (f) is bounded away from zero.
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4.2 Choice of the variable tuning parameter

It is well known that shrinkage estimation of the large covariance matrix in finite samples is

sensitive to the choice of the tuning parameter. In the proposed estimation procedure, we allow

the tuning parameter to vary with the index variable, as in Chen and Leng (2016). As the high-

dimensional data in our paper may be serially correlated over time, we cannot directly adopt

the tuning parameter selection rule in Chen and Leng (2016) where only independent data are

considered. Instead, we use the following selection criterion proposed by Chen, Li and Linton

(2019) which accounts for temporal dependence.

1. For each given z, we divide the full sample into ⌊T/(2M0)⌋ groups, where ⌊·⌋ denotes

the floor function. Specifically, the m-th group contains the observations indexed by t =

(m − 1) · M0 + 1, (m − 1) · M0 + 2, · · · ,m · M0 + ⌊T/2⌋, where m = 1, · · · , ⌊T/(2M0)⌋, and

the sample size of each group is ⌊T/2⌋+M0. For each group, we further split the data into

two sub-samples of size T1 = ⌊T
2
(1 − 1/ log(T/2))⌋ and T2 = ⌊T/2⌋ − T1 by leaving out M0

observations in-between them.

2. For the m-th group, we obtain Σ̃u,m(z|ρ) using (2.10) from the first sub-sample with the

tuning parameter set as ρ, and Σ̌u,m(z) using the naive covariance matrix estimation (without

applying the shrinkage technique) from the second sub-sample. We then choose the variable

tuning parameter to minimise

⌊T/(2M0)⌋∑

m=1

∥∥∥Σ̃u,m(z|ρ) − Σ̌u,m(z)
∥∥∥

2

F

with respect to ρ ∈ [ρ1, ρ2], where

ρ1 = ǫ2 + inf
{

ρ∗ > 0 | λmin

(
Σ̃u,m(z|ρ)

)
> 0, ∀ρ > ρ∗

}

,

ǫ2 is a sufficiently small positive constant and ρ2 is a sufficiently large positive constant.

The tuning parameter chosen above is allowed to vary with z. The motivation of leaving out M0

observations between the first and second sub-samples in each group is to make the correlation

between these two sub-samples weak or negligible. As in Chen, Li and Linton (2019), we choose

M0 = 10 in the numerical studies. The definition of ρ1 in Step 2 is similar to that in (4.1) of Fan,

Liao and Mincheva (2013), ensuring that Σ̃u,m(z|ρ) is positive definite in finite samples as long as

ρ > ρ1. The numerical studies in Section 5 show that the proposed tuning parameter selection has

reliable performance when T is as small as 200.
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5 Numerical studies

In this section, we provide numerical studies including simulation and an empirical example to

examine the performance of the proposed covariance matrix estimation method in finite samples.

The supplemental document contains additional numerical results.

5.1 Monte-Carlo simulation

We use the time-dependent factor model (2.1) to generate data in simulation. The factor load-

ing functions are defined by B(z) = [B1(z), · · · ,BN(z)]
′, where Bi(z) = [Bi1(z), · · · ,BiK(z)]

′ with

Bij(z) = ζijHj−1(z), ζij
i.i.d.
∼ N(0, 1), Hj(z) takes the polynomial form, i.e., Hj(z) = zj. Note that

ζij’s are generated once only using “set.seed(42)” in R and are then fixed over replications in the

simulation study. Hence, each entry of B(z) can be regarded as a deterministic function of z, con-

sistent with our model design and Assumption 2(a). The index observations zt are independently

generated from the uniform distribution U(0, 1). For the factors Ft = (Ft1, Ft2, · · · , FtK)
′, we let

Ft1 ≡ 1 and generate Ft = (Ft2, · · · , FtK)
′ by

Ft = 0.3Ft−1 + νt, νt

i.i.d.
∼ N (0K−1, IK−1) ,

where 0k is a k-dimensional null vector. The number of factors is set as K = 6.

The idiosyncratic errors ut are independently generated from N (0N,Σu(zt)). To save the space,

we only consider the following structure: Σu(z) = [σu,ij(z)]N×N with

σu,ij(z) = exp(z/2) {I(i = j) + [φ(z) + 0.1] · I(|i− j| = 1) + φ(z) · I(|i− j| = 2)} ,

where φ(·) is the density of the standard normal distribution and I(A) is the indicator function

for the event A. The online supplementary appendix reports the simulation results for alternative

forms of Σu(z).

Four shrinkage functions are considered when we apply the generalised shrinkage to the large

covariance matrix estimation in the simulation: hard thresholding, soft thresholding, SCAD and

adaptive LASSO. The sample size is T = 200, 300, and the dimension of Xt is N = 200, 300, 400.

We repeat each simulation setting 100 times2. The bandwidth b in the kernel-based estimation

is chosen via the rule of thumb (i.e., b = 1.059T−1/5)3. As in Chen, Li and Linton (2019), we use

K(w) = 1√
2π

exp(−w2/2) as the kernel function. For each dataset generated, we first select the

2As mentioned in Fan, Liao and Mincheva (2013) and Chen, Li and Linton (2019), simulation for the large covariance
matrix estimation is extremely time consuming. In view of the number of replications in Fan, Liao and Mincheva
(2013) and Chen, Li and Linton (2019), we adopt 100 replications in this study.

3Additional simulation results with different bandwidth values are reported in Appendix D.2 of the supplemental
document. Overall, the developed estimation method performs stably over these different bandwidth values.
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number of factors using the ratio criterion proposed in Section 4.1, and then choose the tuning

parameter of each shrinkage function as in Section 4.2.

As the index variable zt has a compact support [0, 1], when implementing the ratio criterion,

we estimate K̂(zi) at nine grid points zi = 0.1, 0.2, · · · , 0.9, select the tuning parameter ǫ1 = 0.01,

and then take maximum of K̂(zi) over the grid points. Define the frequency of accurately selecting

the true factor number over 100 replications as R(K) = 1
100

∑100
r=1 I(K̂r = K), where K̂r stands for

the estimated factor number in the r-th replication. Table 1 below shows that the developed ratio

criterion can very accurately estimate the number of factor in finite samples.

Table 1: The values of R(K).

T \N 200 300 400
200 0.96 0.97 1
300 1 1 1

To measure the accuracy of covariance matrix estimation, we compute the medians of spectral

and Frobenius losses defined as follows:

MSLu = Median{▽Su
(zi); i = 1, · · · , 9}, ▽Su

(z) =
∥∥∥Σ̃u(z) − Σu(z)

∥∥∥ ,

MFLu = Median{▽Fu
(zi); i = 1, · · · , 9}, ▽Fu

(z) =
∥∥∥Σ̃u(z) − Σu(z)

∥∥∥
F

,

MSLX = Median{▽∗
SX
(zi); i = 1, · · · , 9}, ▽

∗
SX
(z) =

∥∥∥Σ−1/2
X (z)Σ̃X(z)Σ

−1/2
X (z) − IN

∥∥∥ ,

MFLX = Median{▽∗
FX
(zi); i = 1, · · · , 9}, ▽

∗
FX
(z) =

∥∥∥Σ−1/2
X (z)Σ̃X(z)Σ

−1/2
X (z) − IN

∥∥∥
F

,

where zi = i/10 for i = 1, · · · , 9. As discussed in Section 3.2, we examine the relative error

Σ
−1/2
X (z)Σ̃X(z)Σ

−1/2
X (z) − IN when measuring the accuracy of Σ̃X(z) (with spiked eigenvalues).

Table 2 reports the medians and standard deviations (in parentheses) of MSLu, MFLu, MSLX and

MFLX over the 100 replications. The MSLu value decreases as the sample size T goes up but

remains stable as the dimension N increases, which should be expected. Regarding the relative

estimation errors for ΣX(z), both the MSLX and MFLX values increase as the dimension N increases.

This justifies the normalisation rate of
√
N in the definition of ‖ ·‖ΣX(z). In addition, all the standard

deviations are relatively small, indicating stability of the proposed method in finite samples.

Appendix D in the supplemental document further examines the performance of the proposed

covariance matrix estimation method in the over-fitting scenario with data generated by a conven-

tional factor model with constant factor loadings, and compares with the performance of Fan, Liao

and Mincheva (2013)’s POET method. It also examines how the signal-to-noise ratio affects the

factor number selection and assesses the numerical performance of our method when the factor

loadings contain noises.
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Table 2: Accuracy of the covariance matrix estimation. The MSLu, MFLu, MSLX and MFLX values
are reported for N ∈ {200, 300, 400} and T ∈ {200, 300} by using four different thresholding rules
(i.e., soft, hard, scad, and alasso).

T = 200 T = 300
soft hard scad alasso soft hard scad alasso

N = 200 MSLu 1.89 2.20 1.89 2.02 1.54 2.15 1.79 1.66
(0.08) (0.02) (0.08) (0.07) (0.11) (0.04) (0.11) (0.09)

MFLu 10.79 14.81 10.79 11.71 8.37 14.58 10.29 8.59
(0.22) (0.03) (0.30) (0.32) (0.76) (0.24) (0.68) (0.26)

MSLX 24.10 24.65 24.09 24.20 21.60 22.75 21.87 21.67
(4.39) (4.39) (4.40) (4.40) (3.75) (4.03) (3.75) (3.78)

MFLX 37.93 43.21 37.90 39.09 32.99 41.12 35.69 33.31
(4.08) (3.72) (4.12) (4.06) (4.48) (4.04) (4.37) (4.37)

N = 300 MSLu 1.86 2.19 1.87 2.00 1.74 2.16 1.76 1.57
(0.07) (0.02) (0.09) (0.06) (0.09) (0.02) (0.06) (0.08)

MFLu 12.76 18.13 13.04 13.78 12.19 17.89 12.31 9.84
(0.38) (0.04) (0.89) (0.26) (0.70) (0.22) (0.22) (0.27)

MSLX 34.58 35.36 34.62 34.74 31.45 32.42 31.56 31.05
(7.90) (8.01) (7.94) (7.92) (5.24) (5.41) (5.28) (5.18)

MFLX 51.98 58.62 52.19 53.26 48.91 56.05 49.06 45.83
(8.06) (7.41) (8.17) (7.90) (5.69) (4.96) (5.56) (5.84)

N = 400 MSLu 1.88 2.19 1.97 2.00 1.76 2.16 1.76 1.58
(0.09) (0.02) (0.12) (0.06) (0.06) (0.02) (0.06) (0.09)

MFLu 15.27 20.93 16.33 15.69 14.08 20.72 14.02 11.10
(1.20) (0.05) (1.46) (0.46) (0.19) (0.08) (0.20) (0.85)

MSLX 40.00 40.58 40.13 40.07 34.93 35.60 34.92 34.55
(9.27) (9.25) (9.27) (9.26) (6.68) (6.71) (6.68) (6.67)

MFLX 59.99 67.46 61.59 61.03 54.86 63.37 54.77 51.03
(9.39) (8.33) (9.38) (9.04) (6.39) (5.72) (6.39) (6.84)
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5.2 An empirical study

We next apply the developed model and estimation methodology to construction of minimum

variance portfolios using daily returns of S&P 500 stocks collected from https://www.kaggle.

com. We collect the data over the time period between 2 January 2008 and 31 December 2018. After

removing the companies which have missing stock returns during the whole time period, we end

up with 319 stocks (N = 319). As in Pelger and Xiong (2020), we use the log-normalised CBOE

volatility index (VIX) available at http://www.cboe.com as the index variable zt in model (2.1).

Similarly to Chen, Li and Linton (2019) and Engle, Ledoit and Wolf (2019), we assume no

transaction cost and allow short-sales in construction of the minimum variance portfolio. Define

min
w

w′Σ̃X(z)w subject to w′1N = 1, (5.1)

where 1N is an N-dimensional vector of ones and Σ̃X(z) is defined as in (2.11). The analytic solution

to the above minimisation problem is

w∗(z) =
Σ̃

−1

X (z)1N

1′
NΣ̃

−1

X (z)1N

. (5.2)

Our main interest lies in the out-of-sample numerical performance of the minimum variance

portfolio using the proposed large dynamic covariance matrix estimation. For each trading

day t in the out-sample, we estimate ΣX(zt) with the sample information on the most recent

252 × 2 trading days available in the collected data set before t by fixing the number of factors as

1, 2, 3, 4, respectively4, and subsequently construct the minimum variance portfolio. We use the

rolling-window based calculation as in Chen, Li and Linton (2019). For each rolling-window, we

re-estimate the dynamic covariance matrix and select the tuning parameter involved as in Section

4.2. Alternatively, one may conduct the calculation using the expanding window as in Pelger and

Xiong (2020), which would be more time-consuming.

With all the out-of-sample global minimum variance portfolio returns obtained, we compute

their standard deviation (STD), the information ratio (IR) defined as the ratio of average return

to STD, and the Sharpe ratio (SR) defined as the mean of returns minus risk-free rate normalised

by STD. For the purpose of comparison, we also consider Fan, Liao and Mincheva (2013)’s POET

method. The results are summarised in Table 3. As pointed out by Engle, Ledoit and Wolf (2019),

in the context of constructing minimum variance portfolio, the primary measure for evaluating

the performance should be the STD measurement. High SR and IR are desirable but may be

of secondary importance when the main aim is to assess the performance of covariance matrix

estimation. From Table 3, the out-of-sample performance of the minimum variance portfolio with

4Due to constraints of time and computational power, we no longer explore the cases with more factors.
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covariance matrices estimated by the kernel-weighted and POET methods improves as the factor

number increases (from 2 to 4). Overall, based on all the three criteria, the kernel-weighted method

outperforms the POET method for each given number of factors (in particular, when the number is

between 2 and 4). The POET method often needs to include at least one more factor to beat the

proposed kernel-weighted method.

Table 3: Out-of-sample performance of the minimum variance portfolio with covariance matrices
estimated by the kernel-weighted and POET methods. The STD, IR, and SR are computed with the
factor number fixed as 1, 2, 3 and 4.

Kernel-weighted method POET
No. of Factors STD IR SR STD IR SR
1 0.0078 0.0733 0.0615 0.0081 0.0750 0.0637
2 0.0079 0.0636 0.0520 0.0083 0.0594 0.0484
3 0.0066 0.0880 0.0740 0.0070 0.0729 0.0598
4 0.0063 0.0905 0.0760 0.0066 0.0851 0.0712

6 Conclusions

In the present paper, we have considered the problem of estimating covariance matrices of high-

dimensional inter-correlated variables generated from an approximate factor model with factor

loadings varying smoothly with an index variable. We have presented assumptions compatible

with these features of data, provided new uniform consistency results for our estimation method,

discussed the implementation of our approach, and illustrated its performance via synthesised

and real data.

For future work, the idea of the paper can be extended in several directions. First, we may

consider estimating the dynamic covariance matrix of Xt defined in (2.1) with multiple index

variables when the dimension of zt is larger than one. This arises, for example, when one chooses

to use Fama-French three factors as index variables to describe the dynamic covariance structure

of stocks (e.g., Chen, Li and Linton, 2019). In this setting, the developed nonparametric covariance

matrix estimation method needs to be substantially modified and some additional model restric-

tions (such as the additive model structure) should be imposed on the factor loading functions to

avoid the so-called “curse of dimensionality” problem. Other possible extensions include semi-

parametric estimation of the large dynamic covariance matrix with conditional sparsity (where

some entries vary over time but others have constant values), and formally testing the constancy

of the time-dependent factor loadings. For the latter, we conjecture that the quadratic form test

statistic developed by Su and Wang (2017) may be applicable with modifications needed in the

relevant theoretical justification.
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Supplement

The online supplementary document contains proofs of some technical lemmas and additional

numerical results.

Appendix A: Proofs of the mathematical results

In Appendix A.1, we introduce a local version of the POET estimation technique and prove its equivalence

to that defined in Section 2.2. In Appendix A.2, we state some technical lemmas whose proofs are given in

Appendix B of the supplemental document. In Appendix A.3, we provide the detailed proofs of the main

theoretical results.

Appendix A.1: Local POET

Let ΣX(z) be the kernel-weighted sample covariance matrix defined in (2.5). With eigen-analysis on ΣX(z),

we obtain
(
λk,z,ηk,z

)
, k = 1, · · · ,N, as pairs of eigenvalues and normalised eigenvectors, where the

eigenvalues are arranged in a decreasing order. By the spectral decomposition of ΣX(z), we have

ΣX(z) =

K∑

k=1

λk,zηk,zη
′
k,z + Σu(z), Σu(z) =

N∑

k=K+1

λk,zηk,zη
′
k,z. (A.1)

Let σu,ij(z) be the (i, j)-th entry of Σu(z). As in Section 2.2, we can apply the generalised shrinkage technique

to Σu(z), forcing very small off-diagonal entries σu,ij(z) to be zero. Define

Σ̂u(z) =
(
σ̂u,ij(z)

)
N×N

, σ̂u,ij(z) =

{
σu,ii(z), i = j,

sρ(z)
(
σu,ij(z)

)
, i 6= j,

(A.2)
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where sρ(z)(·) is a shrinkage function with ρ(z) being a variable tuning parameter. Consequently, we

estimate ΣX(z) by

Σ̂X(z) =

K∑

k=1

λk,zηk,zη
′
k,z + Σ̂u(z), (A.3)

which is an extension of Fan, Liao and Mincheva (2013)’s POET method to the dynamic model setting.

Proposition 1 below is similar to Theorem 1 in Fan, Liao and Mincheva (2013), showing the equivalence of

the above local POET estimators and those defined in (2.10) and (2.11).

Proposition 1. Suppose that the shrinkage function and the variable tuning parameter used in (2.10) are the same as

those in (A.2). Then we have Σ̂u(z) = Σ̃u(z) and Σ̂X(z) = Σ̃X(z) for any z.

Proof. The proof is similar to the proof of Theorem 1 in Fan, Liao and Mincheva (2013). As B̃(z) = 1
T X(z)F̃(z)

and 1
T F̃(z)′F̃(z) = IK, the sample covariance matrix of ũt(z) can be written as

Σ̌u(z) =
1

T

T∑

t=1

[
Xt(z) − B̃(z)F̃t(z)

] [
Xt(z) − B̃(z)F̃t(z)

]′

=
1

T

T∑

t=1

Xt(z)Xt(z)
′ − B̃(z)B̃(z)′. (A.4)

On the other hand, combining (2.5) and (A.1), we readily have that

1

T

T∑

t=1

Xt(z)Xt(z)
′ =

K∑

k=1

λk,zηk,zη
′
k,z + Σu(z). (A.5)

By (A.4) and (A.5), it suffices to show

B̃(z)B̃(z)′ =
K∑

k=1

λk,zηk,zη
′
k,z. (A.6)

In order to prove (A.6), we next switch the role of the (varying-coefficient) factor loadings and com-

mon factors in the kernel-weighted least squares objective function in (2.7) and consider the following

identification condition:
1

N
B(z)′B(z) = IK,

1

T
F(z)′F(z) is diagonal.

Consequently, we can obtain the following solution to the kernel-weighted local least squares objective

function: B̂(z) = [B̂1(z), · · · , B̂K(z)] = [η1,z, · · · ,ηK,z], the K eigenvectors (multiplied by
√
N) of the matrix

X(z)X(z)′ corresponding to the first K largest eigenvalues, and F̂(z) = 1
NX(z)′B̂(z). Furthermore, we may

show that B̂(z)F̂(z)′ = B̃(z)F̃(z)′ and 1
T F̂(z)′F̂(z) = diag{λ1,z, · · · , λK,z}. Hence, we have

B̃(z)B̃(z)′ =
1

T
B̃(z)F̃(z)′F̃(z)B̃(z)′ =

1

T
B̂(z)F̂(z)′F̂(z)B̂(z)′ =

K∑

k=1

λk,zηk,zη
′
k,z,

completing the proof of (A.6). �
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Appendix A.2: Some technical lemmas

In order to prove the main asymptotic results, we need the following technical lemmas. Their proofs are

available in Appendix B of the supplemental document.

Lemma 1. Suppose that Assumptions 1, 3 and 4(a)(b) are satisfied. Then, we have

max
16t6T

sup
|z|6LT

1

N

T∑

s=1

∣∣E
[
us(z)

′ut(z)
]∣∣ = O

(
a−1
T (f)

)
, (A.7)

where ut(z) = utK
1/2
t,b (z), LT and aT (f) are defined in Assumption 1(b).

Lemma 2. Suppose that Assumptions 1, 2(a)(b), 3 and 4(a)(b) are satisfied and ω(T ,N,b)/aT (f) = o(1), where

ω(T ,N,b) is defined in Assumption 4(c). Then, we have

max
16i6N

sup
|z|6LT

1

T

T∑

t=1

[ũit(z) − uit(z)]
2
= OP

(
[ω(T ,N,b)/aT (f)]

2
)

, (A.8)

where ũit(z) is defined in Section 2.2 and uit(z) is the i-th element of ut(z).

Lemma 3. Suppose that Assumptions 1, 2(c), 4(a)(b) and (3.3) are satisfied and ν(T ,N,b) + b2 = o (aT (f)), where

ν(T ,N,b) =

√
log(N∨T)

Tb . Then, we have

max
16i,j6N

sup
|z|6LT

∣∣∣∣∣
1

T

T∑

t=1

uit(z)ujt(z) − σu,ij(z)

∣∣∣∣∣ = OP

(
a−1
T (f)

(
ν(T ,N,b) + b2

))
. (A.9)

Lemma 4. Suppose that Assumptions 1–3 and 4(a)(b) are satisfied and ω(T ,N,b)/aT (f) = o(1). Then, we have

max
16i,j6N

sup
|z|6LT

∣∣σ̌u,ij(z) − σu,ij(z)
∣∣ = OP (ω(T ,N,b)/aT (f)) , (A.10)

where σ̌u,ij(z) is defined in (2.9).

Appendix A.3: Proofs of the main asymptotic theorems

With the technical lemmas given in Appendix A.2, we next provide the detailed proof of the main asymptotic

results.

Proof of Theorem 1. By the definition of Σ̃u(z) and the property of the shrinkage function sρ(z)(·), we have

sup
|z|6LT

||Σ̃u(z) − Σu(z)||

6 sup
|z|6LT

max
16i6N

N∑

j=1

∣∣σ̃u,ij(z) − σu,ij(z)
∣∣
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= sup
|z|6LT

max
16i6N

N∑

j=1

∣∣sρ(z)
(
σ̌u,ij(z)

)
I(σ̌u,ij(z) > ρ(z)) − σu,ij(z)

∣∣

= sup
|z|6LT

max
16i6N

N∑

j=1

∣∣sρ(z)
(
σ̌u,ij(z)

)
I(σ̌u,ij(z) > ρ(z)) − σu,ij(z)I(σ̌u,ij(z) > ρ(z))−

σu,ij(z)I(σ̌u,ij(z) 6 ρ(z))
∣∣

6 sup
|z|6LT

max
16i6N

N∑

j=1

∣∣sρ(z)
(
σ̌u,ij(z)

)
− σ̌u,ij(z)

∣∣ I(σ̌u,ij(z) > ρ(z)) +

sup
|z|6LT

max
16i6N

N∑

j=1

∣∣σ̌u,ij(z) − σu,ij(z)
∣∣ I(σ̌u,ij(z) > ρ(z)) +

sup
|z|6LT

max
16i6N

N∑

j=1

∣∣σu,ij(z)
∣∣ I(σ̌u,ij(z) 6 ρ(z))

=: Π1 + Π2 + Π3.

Define the event

B(C) =

{

max
16i,j6N

sup
|z|6LT

∣∣σ̌u,ij(z) − σu,ij(z)
∣∣ 6 CωL(T ,N,b)

}

where C is a positive constant and ωL(T ,N,b) = ω(T ,N,b)/aT (f). For any small ε > 0, by (A.10) in Lemma

4, we may find a sufficiently large constant Cε such that

P (B(Cε)) > 1 − ε. (A.11)

Note that

Π1 6 sup
|z|6LT

ρ(z)


 max

16i6N

N∑

j=1

I
(
σ̌u,ij(z) > ρ(z)

)



and

Π2 6 CεωL(T ,N,b)


 sup
|z|6LT

max
16i6N

N∑

j=1

I
(
σ̌u,ij(z) > ρ(z)

)



conditional on the event B(Cε). By the reverse triangle inequality,

∣∣σ̌u,ij(z)
∣∣ 6

∣∣σu,ij(z)
∣∣+ CεωL(T ,N,b)

on B(Cε). Letting M = 2Cε in Assumption 4(c), as Σu(·) ∈ U(q,mN,L), we readily have that

Π1 + Π2 6 ωL(T ,N,b)(M+ Cε)


 sup
|z|6LT

max
16i6N

N∑

j=1

I(σ̌u,ij(z) > MωL(T ,N,b))



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6 ωL(T ,N,b)(M+ Cε)


 sup
|z|6LT

max
16i6N

N∑

j=1

I(σu,ij(z) > CεωL(T ,N,b))




= OP (ωL(T ,N,b))


 sup
|z|6LT

max
16i6N

N∑

j=1

|σu,ij(z)|
q

[CεωL(T ,N,b)]q




= OP

(
mN [ωL(T ,N,b)]1−q

)
= OP

(
mN [ω(T ,N,b)/aT (f)]

1−q
)

. (A.12)

on the event B(Cε), where M is defined in Assumption 4(c).

By the triangle inequality, the events
{
|σ̌u,ij(z)| 6 ρ(z)

}
and B(Cε) imply

{
|σu,ij(z)| 6

(
M+ Cε

)
ωL(T ,N,b)

}
.

Then, for Π3, we may show that

Π3 6 sup
|z|6LT

max
16i6N

N∑

j=1

|σu,ij(z)|I
(
|σu,ij(z)| 6

(
M+ Cε

)
ωL(T ,N,b)

)

6
(
M+ Cε

)1−q
[ωL(T ,N,b)]1−q sup

|z|6LT

max
16i6N

N∑

j=1

|σu,ij(z)|
q

= O
(
mN [ω(T ,N,b)/aT (f)]

1−q
)

. (A.13)

By (A.12) and (A.13), and letting ε → 0 in (A.11), we prove (3.7) in Theorem 1. �

Proof of Theorem 2. Throughout the proof, we let M be a generic positive constant whose value may

change from line to line, and define

ΣX,T (z) = B(z)ΣF,T (z)B(z)
′ + Σu(z) with ΣF,T (z) =

1

T

T∑

t=1

Ft(z)Ft(z)
′,

where Ft(z) is defined in Assumption 2(b). Note that

sup
|z|6LT

∥∥∥Σ̃X(z) − ΣX(z)
∥∥∥

2

ΣX(z)
6 M sup

|z|6LT

[∥∥∥Σ̃X(z) − ΣX,T (z)
∥∥∥

2

ΣX(z)
+ ‖ΣX,T (z) − ΣX(z)‖2

ΣX(z)

]
. (A.14)

In addition, since all the eigenvalues of ΣX(z) are bounded away from 0, for any N×N matrix A,

‖A‖2
ΣX(z)

=
1

N
‖Σ−1/2

X (z)AΣ
−1/2
X (z)‖2

F 6
M

N
‖A‖2

F. (A.15)

We start with the first term on the right hand side of (A.14). By the definitions of Σ̃X(z) and ΣX,T (z), we

readily have that

sup
|z|6LT

∥∥∥Σ̃X(z) − ΣX,T (z)
∥∥∥

2

ΣX(z)
6 M sup

|z|6LT

[∥∥∥B̃(z)B̃(z)′ − B(z)ΣF,T (z)B(z)
′
∥∥∥

2

ΣX(z)
+
∥∥∥Σ̃u(z) − Σu(z)

∥∥∥
2

ΣX(z)

]
.
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By (A.15) and Theorem 1, we can prove that

sup
|z|6LT

∥∥∥Σ̃u(z) − Σu(z)
∥∥∥

2

ΣX(z)
= OP

(
1

N
sup

|z|6LT

∥∥∥Σ̃u(z) − Σu(z)
∥∥∥

2

F

)

= OP

(
sup

|z|6LT

∥∥∥Σ̃u(z) − Σu(z)
∥∥∥

2
)

= OP

(
m2

N [ωL(T ,N,b)]2−2q
)

, (A.16)

where ωL(T ,N,b) = ω(T ,N,b)/aT (f) as in the proof of Theorem 1.

Letting ∆B(z) = B̃(z) − BH(z) with BH(z) = B(z)H−1(z) and H(z) defined in the proof of Lemma 2 in

Appendix B, we have

sup
|z|6LT

∥∥∥B̃(z)B̃(z)′ − B(z)ΣF,T (z)B(z)
′
∥∥∥

2

ΣX(z)

6 M sup
|z|6LT

[∥∥∆B(z)∆B(z)
′∥∥2

ΣX(z)
+
∥∥BH(z)∆B(z)

′∥∥2

ΣX(z)
+
∥∥BH(z)BH(z)′ − B(z)ΣF,T (z)B(z)

′∥∥2

ΣX(z)

]
.

By (A.15) and (S.21) in the proof of Lemma 2, we may show that

sup
|z|6LT

∥∥∆B(z)∆B(z)
′∥∥2

ΣX(z)
6 M sup

|z|6LT

1

N
‖∆B(z)‖4

F

6 MN sup
|z|6LT

max
16i6N

∥∥∥B̃i(z) −
[
H−1(z)

]′
Bi(z)

∥∥∥
4

= OP

(
N [ωL(T ,N,b)]4

)
. (A.17)

By Assumptions 2(a)(c) and using the argument in the proof of Theorem 2 in Fan, Fan and Lv (2008), we

have

sup
|z|6LT

∥∥∥B(z)′Σ−1
X (z)B(z)

∥∥∥ = O(1). (A.18)

By (A.18), (S.21) and following the proof of Lemma 13 in Fan, Liao and Mincheva (2013), we have

sup
|z|6LT

∥∥BH(z)∆B(z)
′∥∥2

ΣX(z)
=

1

N
sup

|z|6LT

trace
{

H−1(z)∆B(z)
′Σ−1

X (z)∆B(z)
[
H−1(z)

]′
B(z)′Σ−1

X (z)B(z)
}

6
M

N
sup

|z|6LT

∥∥H−1(z)
∥∥2 ‖∆B(z)‖2

F = OP

(
[ωL(T ,N,b)]2

)
. (A.19)

Similarly to the proof of (A.19) above, using (S.15) in the proof of Lemma 2, we can also prove that

sup
|z|6LT

∥∥BH(z)BH(z)′ − B(z)ΣF,T (z)B(z)
′∥∥2

ΣX(z)

= sup
|z|6LT

∥∥∥∥∥BH(z)

[
1

T

T∑

t=1

F̃t(z)F̃t(z)
′ −

1

T

T∑

t=1

H(z)Ft(z)Ft(z)
′H(z)′

]
BH(z)′

∥∥∥∥∥

2

ΣX(z)
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6
M

N
sup

|z|6LT

∥∥∥∥∥
1

T

T∑

t=1

F̃t(z)F̃t(z)
′ −

1

T

T∑

t=1

H(z)Ft(z)Ft(z)
′H(z)′

∥∥∥∥∥

2

F

·
∥∥H−1(z)

∥∥4

= OP

(
1

N
[ωL(T ,N,b)]2

)
. (A.20)

With (A.17), (A.19) and (A.20), we have

sup
|z|6LT

∥∥∥B̃(z)B̃(z)′ − B(z)ΣF,T (z)B(z)
′
∥∥∥

2

ΣX(z)
= OP

(
N [ωL(T ,N,b)]4 + [ωL(T ,N,b)]2

)
, (A.21)

which, together with (A.16), indicates that

sup
|z|6LT

∥∥∥Σ̃X(z) − ΣX,T (z)
∥∥∥

2

ΣX(z)
= OP

(
N [ω(T ,N,b)/aT (f)]

4
+m2

N [ω(T ,N,b)/aT (f)]
2−2q

)
. (A.22)

On the other hand, by (3.2) in Assumption 2(b), following the proof of (A.20), we have

sup
|z|6LT

‖ΣX,T (z) − ΣX(z)‖2
ΣX(z)

= OP


 1

Na2
T (f)

(√
log T

Tb
+ b2

)2



= oP

(
N [ω(T ,N,b)/aT (f)]

4
+m2

N [ω(T ,N,b)/aT (f)]
2−2q

)
,

which, together with (A.4) and (A.22), leads to (3.8).

We next turn to the proof of (3.9). Note that

sup
|z|6LT

∥∥∥Σ̃X(z) − ΣX(z)
∥∥∥

max
6 sup

|z|6LT

∥∥∥Σ̃X(z) − ΣX,T (z)
∥∥∥

max
+ sup

|z|6LT

‖ΣX,T (z) − ΣX(z)‖max ,

where

sup
|z|6LT

∥∥∥Σ̃X(z) − ΣX,T (z)
∥∥∥

max
6 sup

|z|6LT

[∥∥∥Σ̃u(z) − Σu(z)
∥∥∥

max
+
∥∥∥B̃(z)B̃(z)′ − B(z)ΣF,T (z)B(z)

′
∥∥∥

max

]
.

Using Lemma 4, the property of
∣∣sρ(z)(w) −w

∣∣ 6 ρ(z) and Assumption 4(c), we have

sup
|z|6LT

∥∥∥Σ̃u(z) − Σu(z)
∥∥∥

max

= sup
|z|6LT

max
16i,j6N

∣∣σ̃u,ij(z) − σu,ij(z)
∣∣

6 sup
|z|6LT

max
16i,j6N

[∣∣sρ(z)(σ̌u,ij(z)) − σ̌u,ij(z)
∣∣+
∣∣σ̌u,ij(z) − σu,ij(z)

∣∣]

= OP (ωL(T ,N,b)) . (A.23)

On the other hand, by (S.21) in the proof of Lemma 2, similarly to the proof of (A.21), we have

sup
|z|6LT

∥∥∥B̃(z)B̃(z)′ − B(z)ΣF,T (z)B(z)
′
∥∥∥

max
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= sup
|z|6LT

max
16i,j6N

∣∣∣B̃i(z)
′B̃j(z) − Bi(z)

′ΣF,T (z)Bj(z)
∣∣∣

6 sup
|z|6LT

max
16i,j6N

{ ∣∣∆B,i(z)
′∆B,j(z)

∣∣+
∣∣∆B,i(z)

′[H−1(z)]′Bj(z)
∣∣+
∣∣Bi(z)

′H−1(z)∆B,j(z)
∣∣+

∣∣Bi(z)
′H−1(z)[H−1(z)]′Bj(z) − Bi(z)

′ΣF,T (z)Bj(z)
∣∣
}

= OP (ωL(T ,N,b)) , (A.24)

where ∆B,i(z) = B̃i(z) −
[
H−1(z)

]′
Bi(z). By (A.23), (A.24) and noting that

sup
|z|6LT

‖ΣX,T (z) − ΣX(z)‖max = OP

(
a−1
T (f)

(√
log T

Tb
+ b2

))

from Assumptions 2(a)(b), we prove (3.9). The proof of Theorem 2 has been completed. �

Proof of Theorem 3. By the triangle inequality, we readily have that

∥∥∥Σ̃
−1

X (z) − Σ−1
X (z)

∥∥∥ 6

∥∥∥Σ̃
−1

X (z) − Σ−1
X,T (z)

∥∥∥+
∥∥∥Σ−1

X,T (z) − Σ−1
X (z)

∥∥∥ , (A.25)

where ΣX,T (z) is defined as in the proof of Theorem 2.

By (2.2) and the Sherman-Morrison-Woodbury formula, we have

Σ−1
X (z) = Σ−1

u (z) − Σ−1
u (z)B(z)Σ

1/2
F

[
IK + Σ

1/2
F B(z)′Σ−1

u (z)B(z)Σ
1/2
F

]−1
Σ

1/2
F B(z)′Σ−1

u (z)

= Σ−1
u (z) − Σ−1

u (z)B(z)
[
Σ−1
F + B(z)′Σ−1

u (z)B(z)
]−1

B(z)′Σ−1
u (z),

and similarly

Σ−1
X,T (z) = Σ−1

u (z) − Σ−1
u (z)B(z)

[
Σ−1
F,T (z) + B(z)′Σ−1

u (z)B(z)
]−1

B(z)′Σ−1
u (z),

where ΣF,T (z) =
1
T

∑T
t=1 Ft(z)Ft(z)

′. Then, it is easy to show that

Σ−1
X,T (z) − Σ−1

X (z) = −Σ−1
u (z)B(z)ΩT (z)B(z)

′Σ−1
u (z) (A.26)

with

ΩT (z) =
[
Σ−1
F,T (z) + B(z)′Σ−1

u (z)B(z)
]−1

−
[
Σ−1
F + B(z)′Σ−1

u (z)B(z)
]−1

=: Ω−1
T ,∗(z) −Ω−1

∗ (z).

Note that

∥∥∥Ω−1
T ,∗(z) −Ω−1

∗ (z)
∥∥∥ =

∥∥∥Ω−1
T ,∗(z) [Ω∗(z) −ΩT ,∗(z)]Ω

−1
∗ (z)

∥∥∥

6

[∥∥∥Ω−1
T ,∗(z) −Ω−1

∗ (z)
∥∥∥+

∥∥∥Ω−1
∗ (z)

∥∥∥
]
‖Ω∗(z) −ΩT ,∗(z)‖

∥∥∥Ω−1
∗ (z)

∥∥∥ ,
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leading to

‖ΩT (z)‖ =
∥∥∥Ω−1

T ,∗(z) −Ω−1
∗ (z)

∥∥∥ 6

‖ΩT ,∗(z) −Ω∗(z)‖
∥∥∥Ω−1

∗ (z)
∥∥∥

2

1 − ‖ΩT ,∗(z) −Ω∗(z)‖
∥∥∥Ω−1

∗ (z)
∥∥∥

. (A.27)

By (3.2) in Assumption 2(b), we have

sup
|z|6LT

‖ΩT ,∗(z) −Ω(z)‖ = OP

(
a−1
T (f)

(√
log T

Tb
+ b2

))
.

Meanwhile, by Assumption 2, we can prove that
∥∥∥Ω−1

∗ (z)
∥∥∥ = O(1/N) and

∥∥∥Σ−1
u (z)B(z)

∥∥∥ = O(N1/2)

uniformly over |z| 6 LT . Then, by (A.26) and (A.27), we have

sup
|z|6LT

∥∥∥Σ−1
X,T (z) − Σ−1

X (z)
∥∥∥ = OP

(
1

NaT (f)

(√
log T

Tb
+ b2

))
= oP

(
mN [ωL(T ,N,b)]1−q

)
, (A.28)

where ωL(T ,N,b) = ω(T ,N,b)/aT (f).

We next derive the asymptotic order of
∥∥∥Σ̃

−1

X (z) − Σ−1
X,T (z)

∥∥∥. By the Sherman-Morrison-Woodbury

formula again, we have

Σ̃
−1

X (z) = Σ̃
−1

u (z) − Σ̃
−1

u (z)B̃(z)
[
IK + B̃(z)′Σ̃

−1

u (z)B̃(z)
]−1

B̃(z)′Σ̃
−1

u (z),

Σ−1
X,T (z) = Σ−1

u (z) − Σ−1
u (z)BH(z)

[
Σ−1
F,H(z) + BH(z)′Σ−1

u (z)BH(z)
]−1

BH(z)′Σ−1
u (z),

where BH(z) = B(z)H−1(z) as in the proof of Theorem 2 and ΣF,H(z) = H(z)ΣF,T (z)H(z)′. By some standard

arguments, we may show that

Σ̃
−1

X (z) − Σ−1
X,T (z) = −

6∑

r=1

Λr(z),

where

Λ1(z) = Σ−1
u (z) − Σ̃

−1

u (z),

Λ2(z) =
[
Σ̃
−1

u (z) − Σ−1
u (z)

]
B̃(z)

[
IK + B̃(z)′Σ̃

−1

u (z)B̃(z)
]−1

B̃(z)′Σ̃
−1

u (z),

Λ3(z) = Σ−1
u (z)B̃(z)

[
IK + B̃(z)′Σ̃

−1

u (z)B̃(z)
]−1

B̃(z)′
[
Σ̃
−1

u (z) − Σ−1
u (z)

]
,

Λ4(z) = Σ−1
u (z)

[
B̃(z) − BH(z)

] [
IK + B̃(z)′Σ̃

−1

u (z)B̃(z)
]−1

B̃(z)′Σ−1
u (z),

Λ5(z) = Σ−1
u (z)BH(z)

[
IK + B̃(z)′Σ̃

−1

u (z)B̃(z)
]−1 [

B̃(z) − BH(z)
]′
Σ−1
u (z),

Λ6(z) = Σ−1
u (z)BH(z)ΩH(z)BH(z)′Σ−1

u (z)

with ΩH(z) =
[
IK + B̃(z)′Σ̃

−1

u (z)B̃(z)
]−1

−
[
Σ−1
F,H(z) + BH(z)′Σ−1

u (z)BH(z)
]−1

. By Assumption 2(c), (A.27)
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and Theorem 1, we have

sup
|z|6LT

‖Λ1(z)‖ = sup
|z|6LT

∥∥∥Σ̃
−1

u (z) − Σ−1
u (z)

∥∥∥ = OP

(
mN [ωL(T ,N,b)]1−q

)
.

Following the proof of Lemma 15 in Fan, Liao and Mincheva (2013), we have

sup
|z|6LT

∥∥∥∥
[
IK + B̃(z)′Σ̃

−1

u (z)B̃(z)
]−1
∥∥∥∥ = OP(1/N).

Then, we can prove that

sup
|z|6LT

‖Λ2(z)‖ 6 sup
|z|6LT

{∥∥∥Σ̃
−1

u (z) − Σ−1
u (z)

∥∥∥
∥∥∥∥B̃(z)

[
IK + B̃(z)′Σ̃

−1

u (z)B̃(z)
]−1

B̃(z)′
∥∥∥∥
−1 ∥∥∥Σ̃

−1

u (z)
∥∥∥
}

= OP

(
mN [ωL(T ,N,b)]1−q

)
,

and similarly

sup
|z|6LT

‖Λ3(z)‖ = OP

(
mN [ωL(T ,N,b)]1−q

)
.

By (S.21) in the proof of Lemma 2, we can show that

sup
|z|6LT

‖Λ4(z)‖ 6 sup
|z|6LT

{∥∥∥Σ−1
u (z)

[
B̃(z) − BH(z)

]∥∥∥
∥∥∥IK + B̃(z)′Σ̃

−1

u (z)B̃(z)
∥∥∥
−1 ∥∥∥B̃(z)′Σ̃

−1

u (z)
∥∥∥
}

= OP

(
mN [ωL(T ,N,b)]1−q

)
,

and similarly

sup
|z|6LT

‖Λ5(z)‖ = OP

(
mN [ωL(T ,N,b)]1−q

)
.

Note that

ΩH(z) =

[
1

T

T∑

t=1

F̃t(z)F̃t(z)
′ + B̃(z)′Σ̃

−1

u (z)B̃(z)

]−1

−

[
1

T

T∑

t=1

H(z)Ft(z)Ft(z)
′H(z)′ + BH(z)′Σ−1

u (z)BH(z)

]−1

.

Using (A.27), (S.15), (S.21) and Theorem 1 and following the argument in the proof of (A.28), we have

sup
|z|6LT

‖ΩH(z)‖ = OP

(mN

N
[ωL(T ,N,b)]1−q

)
,

and consequently

sup
|z|6LT

‖Λ6(z)‖ = OP

(
mN [ωL(T ,N,b)]1−q

)
.

Combining the above results, we may prove that

sup
|z|6LT

∥∥∥Σ̃
−1

X (z) − Σ−1
X,T (z)

∥∥∥ = OP

(
mN [ωL(T ,N,b)]1−q

)
. (A.29)
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In view of (A.25), (A.28) and (A.29), we prove (3.14). �

Proof of Theorem 4. By the definition of ΣX(z) in (2.5) and the factor model structure (2.1), we have

ΣX(z) =
1

T

T∑

t=1

Xt(z)Xt(z)
′

=
1

T

T∑

t=1

B(zt)Ft(z)Ft(z)
′B(zt)

′ +
1

T

T∑

t=1

B(zt)Ft(z)ut(z)
′ +

1

T

T∑

t=1

ut(z)Ft(z)
′B(zt)

′ +
1

T

T∑

t=1

ut(z)ut(z)
′.

By Assumption 2(c), ν(T ,N,b) + b2 = o(aT (f)) and Lemma 3, we may show that

sup
|z|6LT

∥∥∥∥∥
1

T

T∑

t=1

ut(z)ut(z)
′
∥∥∥∥∥ = oP(N).

By Assumption 2(a) and using the argument in the proof of (S.17) in Appendix B, we have

sup
|z|6LT

∥∥∥∥∥
1

T

T∑

t=1

B(zt)Ft(z)ut(z)
′ +

1

T

T∑

t=1

ut(z)Ft(z)
′B(zt)

′
∥∥∥∥∥ = oP(N).

By Assumptions 2(a)(b), we can prove that, with probability approaching one,

min
16k6K

inf
|z|6LT

λk

(
1

T

T∑

t=1

B(zt)Ft(z)Ft(z)
′B(zt)

′
)

> ζN

and

max
16k6K

sup
|z|6LT

λk

(
1

T

T∑

t=1

B(zt)Ft(z)Ft(z)
′B(zt)

′
)

6 ζN,

where λk(·) denotes the k-th largest eigenvalue, ζ and ζ are two positive constants. Meanwhile, the k-th

eigenvalue of
∑T

t=1 B(zt)Ft(z)Ft(z)
′B(zt)′ is zero if k > K+ 1. Then, by Weyl’s eigenvalue inequality (e.g.,

Horn and Johnson, 1991), we may show that

1

2
ζN 6 min

16k6K
inf

|z|6LT

λk
(
ΣX(z)

)
6 max

16k6K
sup

|z|6LT

λk
(
ΣX(z)

)
6 2ζN (A.30)

with probability approaching one, and

max
K+16k6K

sup
|z|6LT

λk
(
ΣX(z)

)
= oP(N). (A.31)

For 1 6 k 6 K− 1, by (A.30), we have inf|z|6LT

∣∣λk+1,z/λk,z

∣∣ is bounded away from zero; for K+ 1 6 k 6 K,

by (4.2) and (A.31), we have λk+1,z/λk,z = 1 uniformly over |z| 6 LT ; and finally, for k = K, by (A.30) and
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(A.31), we have

sup
|z|6LT

λk+1,z

λk,z

6
sup|z|6LT

λk+1,z/N

inf|z|6LT
λk,z/N

= oP(1).

Combining the above results, we have K̂(z) = K uniformly over |z| 6 LT with probability approaching one,

indicating that P
(
K̂ = K

)
→ 1 by (4.3) and noting that Z is a subset of {z : |z| 6 LT }. The proof of Theorem 4

is now completed. �
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