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Abstract—Parallel Distributed Compensation (PDC) for 
current-controlled Active Magnetic Bearing System (AMBS) has 
been quite effective in recent years. However, this method does 
not take into account the dynamics associated with the 
electromagnet. This limits the method to smaller scale 
applications where the electromagnet dynamics can be neglected. 
Voltage-controlled AMBS is used to overcome this limitation but 
this comes with serious challenges such as complex mathematical 
modelling and higher order system control. In this work, a PDC 
with integral part is proposed for position and input tracking 
control of voltage-controlled AMBS. PDC method is based on 
nonlinear Takagi-Sugeno (T-S) fuzzy model. It is shown that the 
proposed method outperforms the conventional fuzzy PDC. It 
stabilizes the bearing shaft at any chosen operating point and 
tracks any chosen smooth trajectory within the air gap with a 
high external disturbance rejection capability. 

Keywords—Takagi-Sugeno, Active Magnetic Bearings, Parallel 
Distributed compensation, AMB voltage-controlled  

I. INTRODUCTION 
    Active Magnetic Bearing Systems (AMBS) are increasingly 
used in large variety of applications. Their main feature makes 
them attractive for solving classical rotor bearing failure. 
AMBS is a bearing without physical contact between the 
moving parts and the stationary parts, therefore losses caused 
by frictions can be fully eliminated. Without physical contact 
between the bearing and the rotor, higher operation speeds can 
be achieved [1].  

    AMB works on the principle of electromagnetic suspension 
of a ferromagnetic object in a free space movement (magnetic 
levitation). It is quite difficult to a build a magnetic bearing 
using permanent magnet due to the limitation described by the 
Earnshow’s theorem stating that ‘if the inverse-square law 

governs a group of charged particles, they can never be in a 
stable equilibrium’ [2]. These systems are open loop unstable 
and are described by highly coupled differential equations, 
making them difficult to control. As a result, AMBS require 
continuous active control system to hold the load stable.  

    Over the years, various approaches have been used [3-4], 
[8-14]. In [11] a variation of the conventional Proportional 
Integral and Derivative (PID) control was introduced. This is 
achieved by cascading Proportional and Derivative controllers 
for AMBS position control. The advantages of this control are 
transparent design, simple realization as well as higher closed-
loop damping and stiffness in comparison with conventional 
PID control. State feedback linearization was applied on a One 
Degree Of Freedom (DOF) AMBS and algebraically got the 
global linear model from its original nonlinear system [2]. PID 
controller was applied to the system in [9] and a nonlinear 
model of a voltage-controlled single DOF AMBS was 
obtained by combining both analytic and identified models 
from experimental data and a feedback linearization controller 
was designed for this system [8]. Furthermore, fuzzy logic 
control was utilized to overcome the limitation of the 
traditional PID control using fuzzy rules to evaluate optimal 
controller parameters in real-time. This has led to a significant 
improvement in the robustness of traditional AMBS PID 
controller. An hybrid controller for AMBS, was proposed in 
[10], the controller consists in two different controllers, a 
linear controller PID for operation around the linearized 
equilibrium point and a nonlinear controller (feedback 
linearization) for operation out the linearized, fuzzy controller 
was used to accomplish a smooth transition between the linear 
and nonlinear controllers.  



This breakthrough has opened the way to hybrid fuzzy 
systems. An optimal fuzzy PID based on genetic algorithm 
was proposed in [10]. The controller was further developed 
with the introduction of a novel hybrid fuzzy control for 
AMBs using Radial Basic Function neural network (RBFNN) 
to continuously adjust controller parameters [29]. A second 
variance of a fuzzy logic system was introduced in [14]. The 
T-S controllers were widely successful in controlling various 
nonlinear systems [12-19]. The mean feature of this technique 
is to express the local dynamic of each fuzzy rule by a linear 
model. The completed model is achieved by using fuzzy 
implication to put together all the linear sub-models. The 
fuzzy rules are used to express fuzzy subspace and each sub-
model can be easily controlled using linear control techniques 
such as states feedback. Hong et al, used this method on 
AMBS, this controller demonstrated performance that was 
superior to conventional PID controller [13]. New methods 
based on states feedback controller were further developed in 
[26] where T-S method is used to model AMBS and a 
nonlinear states feedback controller based on Parallel-
Distributed Compensation (PDC) to successfully stabilize 
current-controlled AMBS with very low overshoot [25]. This 
technique was further developed in [27] using T-S fuzzy 
model a magnetic levitation current-controlled system and 
PDC to stabilize the system.  

    However, current-controlled AMB does not take into 
account the dynamics associated to the electromagnet and 
therefore limits their utilization to small scale applications. 
This is on the contrary to the voltage-controlled AMBS which 
take in consideration all the dynamics associated to the 
system. In this work, PDC controller is designed for AMBS 
and an improved version using an integral T-S fuzzy PDC 
controller is proposed for the stabilisation, input tracking and 
disturbance rejection of voltage-controlled AMBS. 

    The paper is organized as follows. Section I presents the 
introduction and the literature review. Section II describes the 
mathematical model of the thrust AMBs. Section III deals with 
controller design methodology of fuzzy PDC and fuzzy PDC 
with an integral part for voltage-controlled AMBs in detail. 
Section IV analyses and discusses the simulation results for 
the proposed control schemes. 

 

II. MATHEMATICAL  MODELING 

  A schematic of a One Degree of Freedom (ODF) Thrust 
active magnetic bearing is illustrated in Fig. 1. The motion of 
the AMBs rotor-shaft can be described by the displacements 
x   of the geometric centre of the bearing. With the external 

forces acting on the shaft that include the magnetic 0x which is 

the distance between the magnet and the shaft surface, when 
the shaft is in equilibrium, (midway between the two 
electromagnets). 

 

 

• 1x , 2x  are the air gaps between the magnets and the 

rotor. 

• x is the displacement of the rotor from the 

equilibrium position. 
• m is the mass of the rotor. 

• 1F , 2F  are electromagnetically induced forces on the 

rotor (produced by the two magnets). 

• 1u , 2u  are the control voltages applied to the two 

magnetic coils. 

• 1i , 2i  are the currents flowing in the two magnetic 

coils. 

• dF is an external  disturbance force on the rotor shaft. 

 

A. AMBS Analysis 

Applying the Newton equation of motion 
 

dFFFxm +−= 21                                  (1) 

  

Where m  is the mass of the rotor, 1F and 2F   are the 

resultant magnetic bearing forces generated by both coils. The 

expression for the electromagnetic force, the forces 1F  and 

2F  are both produced by magnetic flux induced in the 

ferromagnetic cores by the current flowing in the coils. 
 

1) Magnetic force Analysis 
  The electromagnetic forces on the rotor1F and 2F are 

obtained from the calculation of the flux in the air gap. The 
total magnetic force exerted on the rotor is notedF . Resultant 
flux is determined via stored energy calculation in a magnetic 
field considering a given volume (2). 
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Fig. 1 One DOF Thrust AMBS 



Assuming that all the magnetic energy is stored in the two 
air gaps, the volume under consideration will be:  

)(   2 3mSV =  

For an infinitesimal change in the air gap of lengthdx , 
corresponding to a magnetic energy changed. This 
corresponding change can be expressed as: 
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Furthermore, the relation between the work done and the 
applied magnetics force on the rotor is given by: 

0

2

0 

s

FFdxdW ==                          (4) 

Substituting the expression of the flux in the (4) yields: 
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K in the constant is related to the Magnetic field 
characteristics. Finally, the electromagnetic forces can be 
expressed as: 
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The well-known current-controlled AMBs dynamic can be 

obtained by replacing the expression of the electromagnetic 
forces in (1) 
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2) Control Voltage Analysis  
 

From Kirchhoff law, the expression of the voltage an 
Inductor and Resistive circuit (LR) is expressed as follows: 
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The voltage across each electromagnet is expressed as: 
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B. AMBS Nonlinear Model 

 
Based on the Thrust AMBs described in Fig. 1, can define as 

4 states system. Let’s X the states vector: 
T

dt

di

dt

di
xxX 



= 21  

 
The final nonlinear model of the voltage-controlled thrust 

AMBS [31]. 
    (9) 
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C. AMBS Linear Model 

Using Jacobean transformation, a general linear model is 
derived around a chosen operating point within the air gap. 
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III.  CONTROLLER DESIGN METHODOLOGY 

A. T-S Fuzzy Theory   

 
  The fuzzy model proposed by Takagi and Sugeno is 

described by fussy IF-THEN rules, which represents the local 
input-output of a nonlinear system; the mean feature of this 
technique is to express the local dynamic of each fuzzy rule by 
a linear model. The interred system model is achieved by 
using fuzzy implication to put together all the linear sub-model. 
The fuzzy rules are used to express fuzzy subspace [12]. 

Let’s consider a nonlinear system  
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Where iii CBA ,,  represent the state space components of 

each sub-system and ii is the number of rules, and the fuzzy 
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B. PDC Control Theory 

  Parallel Distributed Compensation theory, each fuzzy 
model rule is controlled using full states feedback, the overall 
fuzzy controller is a fuzzy blending of each individual linear 
controller [26-28]. 
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The overall fuzzy controller rules can be represented as: 
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For this work pole placement method is used to design the 

matrix iK . 

The equilibrium of a fuzzy system (12) is globally 
asymptotical stable if there exist a common positive definite 
matrix which verifies equation (17)[30]. I Where   
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B. PDC Controller Design for Thrust AMBs  

In this section we used Takagi-Sugeno fuzzy model based on 
PDC for Thrust AMBs. The nonlinear model (9) of the Thrust 
AMBs can be modelled as (18), the system block diagram and 
the membership functions are represented respectively   by  
Fig. 2 and Fig. 3, 5 equilibrium points are chosen within the 
air gap 44 106106 −− − ix (m) 
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The equilibrium operating points are defined as follow: 
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1) Local controller design 
 
  States feedback control is a method employed in feedback 

control system theory to place the closed loop poles of a plant 
in pre-determined locations in the s-plane; the requirement 
system performance is chosen taking into account the 
complexity of AMBS: 

Maximum settling time sTs 1.0  

Maximum overshoot: %1sO  

 
Using state space approach, the desired characteristic equation 
of the close look system is expressed by the Ackerman (8) [24].  
 

Fig. 2 PDC Control Scheme 
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The fuzzy PDC controller gains are obtained using equation 
(19). 
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2)  Close loop stability analysis 
 
   The stability criterion described by (17) is 
verified,( )iii KBA − represents the close loop system. 
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Using Matlab LMI toolbox, P matrix is determined. 
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The designed PDC fuzzy successfully stabilizes the shaft from 
any initial position within the air gap, however any external 
disturbance results in a stationary error which deteriorate the 
system performance Fig. 6. In order to compensate the 
stationary error, an integral part is added to the PDC as per  
Fig. 4 
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ry be the extended state vector 

and the reference input respectively. 
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The overall system T-S model is expressed as: 
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Where 0 and I are matrices of proper dimension. The 

integral PDC control law can be written as: 

 =
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Substituting the equation (22) in (21) the close loop system 
can be express as: 
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Fig. 3 Membership Functions 



 

Where  iii LKF =  

 

Using states feedback control law matrix L is determined. 
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IV. SIMULATI ON RESULTS 

  The designed system is tested under different conditions, 
the simulation results are shown from Fig. 5 to Fig. 7, the 
AMBS parameters used for the simulation can be found in 
Table 1.  

TABLE.1.   AMB Simulation Parameters 

Parameter’s name Parameter’s formula or symbol values 

Nominal air gap xo 0.0007m 

Coil Resistance R 8 ohms 

Coil self-inductance Ls 0.12 

K K 5108.9 −  

Rotor Mass m 4.6 

 
  To evaluate the performances of the designed controller 

based on one of the most important criteria of the AMBS the 
robustness and the ability to stabilize from any initial position 
within the air gap. 

 

 

 

A. System stabilisation without external disturbance 

    To evaluate the system, both Conventional PDC and the 
integral PDC are used to stabilize a Thrust AMBs from an 
initial position of (0.1mm), the result is shown on Fig. 5, both 
controller successfully stabilize the shaft, it should be noted 
that the Conventional PDC achieved it with (0%) overshoot 
which is slightly better compared to the integral PDC. This can 
be explained by the fact that during the local controller design, 
the damping ratio was set to 1 (system critically damped), by 
adding the integral part, this modify the system dynamic and 
the damping ration slightly dropped below 0 resulting in few 
oscillations.  

 

B. System stabilisation with external disturbance 

An external disturbance of 50N is added to the system at 
t=0.6s and addition 20N at t=0.8s, both controllers stabilized 
the controller successfully stabilized the AMBS, however the 
integral PDC, was able to reject the disturbance and keep the 
stationary error to 0 as required. In contrary, the Conventional 
PDC stabilizes the system with a high stationary error limiting 
the loading of the bearing. Integral PDC Fuzzy controller has 
shown high robustness to external disturbance which is very 
important in AMBS Fig. 6. 

 

C. Trajectory tracking with external disturbance 

    The proposed PDC was further used in reference tracking. 
Fig. 7 shows the effectiveness on the controller. 

Fig. 4 PDC Control Scheme with Integral Part 

Fig. 5 . Fuzzy PDC & Integral Fuzzy PDC Stabilization Response 

without disturbance.  Fd=0N (Initial condition  TX 0000001.0=  



 

 

 

 

 

D. Analysis of Results  

( )                
1

1 =
−=

n

i refii yy
n

MSE (24) 

Based on Fig. 5 and the mean square error analysis from Table 
2, it can be seen that the PDC controller with integral part 
under no disturbance condition produce slightly larger settling 
time and overshoot than the original PDC controller. However, 
its performances remain satisfactory with regards to the design 
requirement (overshoot<1%, settling time<0.1s).  

The ability of the integral PDC controller to neutralise external 
disturbances Fig .6 makes it very attractive for AMBS 

application which in real industrial application is a highly 
disturbed system. 

    Variable reference tracking with external disturbance is use 
to further evaluate the controller robustness. Fig. 7 shows the 
capacity of the fuzzy PDC to track any given smooth trajectory 
within the air gap, the conventional PDC performance was 
very poor during external disturbance test, raison why its 
performance was not evaluated with a variable reference 
tracking. 

TABLE 2.     Mean Squared Error 

 Fuzzy PDC 
Integral  
Fuzzy PDC  

System without disturbance 

(Fig .5) 
91028.2 −  

91061.2 −  

System with disturbances 

(Fig. 6) 
1010163 −  

101058.5 −  

Reference tracking with 

disturbance ( Fig. 7) 
N/A 

111046.5 −  

 

V. CONCLUSION 

    In the present work, a novel nonlinear controller based on   
PDC T-S fuzzy method and enhanced by an integral action is 
implemented for a class of voltage-controlled AMBS to deal 
with stability, robustness and trajectory tracking problems. 
The proposed controller is applied to a thrust AMBS. 
Numerical simulations confirm the ability of the proposed 
controller to ensure stability and trajectory tracking despite the 
presence of external disturbances.  
 
    The major contributions of this study are the successful 
development of conventional fuzzy PDC for voltage-
controlled thrust AMBS and fuzzy PDC with an integral part 
for voltage-controlled thrust AMBS. Simulations show better 
performance of the proposed controller compared to the 
conventional PDC in terms of compensating the effect of 
external disturbances. This is a fundamental criterion for thrust 
AMBS industrial applications.  
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