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Lithium-ion batteries have been widely used as energy storage systems and in electric vehicles due to their desirable balance of both
energy and power densities as well as continual falling price. Accurate estimation of the state-of-charge (SOC) of a battery pack is
important in managing the health and safety of battery packs. ,is paper proposes a compact radial basis function (RBF) neural
model to estimate the state-of-charge (SOC) of lithium battery packs. Firstly, a suitable input set strongly correlated with the package
SOC is identified from directly measured voltage, current, and temperature signals by a fast recursive algorithm (FRA). Secondly, a
RBF neural model for battery pack SOC estimation is constructed using the FRA strategy to prune redundant hidden layer neurons.
,en, the particle swarm optimization (PSO) algorithm is used to optimize the kernel parameters. Finally, a conventional RBF neural
network model, an improved RBF neural model using the two stage method, and a least squares support vector machine (LSSVM)
model are also used to estimate the battery SOC as a comparative study. Simulation results show that generalization error of SOC
estimation using the novel RBF neural network model is less than half of that using other methods. Furthermore, the model training
time is much less than the LSSVM method and the improved RBF neural model using the two-stage method.

1. Introduction

Lithium-ion batteries have been widely used as energy
storage devices and in electric vehicles due to their desirable
balance of both energy and power densities. Compared with
single lithium battery cells, a lithium battery pack with
hundreds even thousands of battery cells connected in
parallel and series is able to provide the required power in
various applications [1–3]. ,e battery management system
(BMS) plays an important role in maintaining safe and
efficient operation of the battery. ,e State-of-Charge (SOC)
of li-ion battery pack is a key parameter affecting the battery
life, safety and efficient operation [4, 5]. Based on the ac-
curate estimation of SOC, effective management strategies
can be developed to avoid overcharging/overdischarging,
prolong the cycle life of batteries, and prevent the occurrence
of security incidents [6]. Furthermore, with the correctly

estimated SOC information, drivers can also arrange the
driving time properly.

Due to the complex nonlinear characteristics of li-ion
batteries, SOC cannot be measured directly in real-time
applications, and it needs to be inferred using other mea-
surable variables [7]. Since a battery pack may consists of
hundreds and even thousands of battery cells, the compu-
tation effort for modelling is increased accordingly. Besides,
the inconsistency of cells in a battery pack varies along with
the life of the battery. ,us, it is a challenge to accurately
estimate the SOC of the battery pack. Recently, a number of
methods have been proposed to improve the SOC estimation
and they can be grouped to three general approaches for the
estimation of battery pack SOC.,e first approach integrates
the cell model into the structure of the battery pack [8, 9].
However, the inconsistency between different cells in a
battery pack is ignored.
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In the second category, the single cell SOC estimation
approach is directly extended to battery packs, including
open circuit voltage method [10], ampere-hour integral
method [11], Kalman filter [12, 13], and the equivalent
electric circuit model [8]. ,ese methods treat the battery
pack as a “big battery” [14], whichmakes the SOC estimation
simpler andmore quick. However, the simple model is based
on the precise mechanism of single cells. Due to the in-
consistency between different battery cells, estimation error
inevitably exists.

,e third category includes various statistical methods.
Plett first proposed the Bar-Delta Filter method in 2009 [15]
which uses a Sigma Point Kalman Filter (SPKF) to estimate
the average SOC of the battery pack and Delta Filters to
estimate the variance between the cell’s characteristics and
the average characteristics. However, the accuracy of the
battery SOC estimation is a key, which is still a challenge. Dai
et al. [16] and Sun and Xiong [14] proposed a dual time-scale
Kalman filter, based on the equivalent electrical circuit
model (EECM) where the differences in the internal resis-
tance battery cells are considered.,e mean SOCmodel and
the differences of battery SOC proposed by Zheng et al.
[17, 18] use the extended Kalman filter (EKF) based on the
cell meanmodel (CMM) and cell differencemodel (CDM) to
estimate both the mean SOC value of battery cells and their
differences, respectively. ,is method still requires internal
information about the battery pack. Deng et al. [19] pro-
posed a data-driven method, and an efficient feature se-
lection method is used to estimate the SOC of a battery pack
using an autoregressive Gaussian process regression (GPR)
model [20, 21]. A challenge for the GPR modelling is its
computation time (O(N3)).

In summary, albeit the aforementioned progresses in the
battery pack SOC estimation, to develop a simple yet ac-
curate model is still an important issue in real-life battery
applications. Data-driven methods [22] have gained a lot of
interest in recent years to solve highly nonlinear classifi-
cation and regression problems. ,e advantages of data-
driven methods are the flexibility and model-free [23]
characteristics which make them easy to create new models.
As a class of data-driven methods [24], the machine learning
approaches, such as support vector regression [25], Kalman
filter [12, 13, 17], and backpropagation (BP) neural networks
[26], have been successfully used in SOC estimation and
prediction. However, the selection of dataset and input
features for building these models is still ad hoc via trial and
error.

To overcome some shortcomings in the aforementioned
methods for the battery pack SOC estimation, this paper
presents an improved RBF method using a fast recursive
algorithm (FRA) to estimate the SOC of a battery pack. ,e
FRA method [27] can be used for both neural inputs se-
lection [28] and hidden layer node selection [29–31] in the
configuration of RBF networks. Comparing to [32], the
average cell temperature, the time mean pack voltage, the
time mean pack temperature, and the time mean loop
current all over 10 seconds intervals can be also added to the
initial candidate pool of input variables, other input can-
didates can also be included such as the maximum cell

voltage, the minimum cell voltage, the average cell voltage,
and loop current. ,e statistical variables are adopted to
reduce the complexity of the model and the cell information
is used to overcome the inconsistency among single cells.
,en, a compact subset of these candidate variables are
selected as the model input by the FRA method. On this
basis, an improved RBF model built by the FRA method is
used to predict the SOC of the battery pack. ,e proposed
RBF model is automatically constructed by the selection of
the hidden layer nodes using the FRAmethod. Furthermore,
the parameters of RBF kernel are optimized by particle
swarm optimization algorithm (PSO).

,e rest of this paper is organized as follows. Section 1
introduces the input selection based on the FRA method. In
Section 2, the application of improved RBF neural network for
SOC estimation of battery pack is introduced in detail.
Furthermore, the experimental and simulation results are
compared in Section 3. Finally, Section 4 concludes the paper.

2. Input Selection Using FRA

Based on the theory of series expansion, polynomial
NARMAX models can achieve the same modelling per-
formance as various neural networks if certain conditions
are satisfied [28]. ,e input selection of RBF neural network
is thus simplified to determining the structure of the
polynomial NARMAX model. ,e structure of the poly-
nomial NARMAX model can be efficiently detected by
selecting important polynomial terms using the FRA
method with low computational complexity [27].

2.1. FRA Method. Consider the following multiple-input
single-output system represented by a linear-in-the-pa-
rameter model:

y(t) � 􏽘
n

k�1
θkφk(X

→
(t)) + ε(t), (1)

where y(t), X
→

(t) ∈ Rm, and ε(t) are output variable, input
variable vector, and model error at time instant t, respec-
tively. Herein, m and n denote the number of input variables
and model terms (mapping functions), respectively. φk is the
nonlinear mapping function. θk are the linear coefficients for
the mapping functions.

For given N training samples, the system model is
expressed in the following matrix form:

y
→

� Φ(X
→

(t))Θ + e, (2)

where Φ(X
→

) � [ϕ1(X
→

), . . . , ϕn(X
→

)]T ∈ RN×n is formed
by mapping functions. ϕi � [φi(X

→
(1)), . . . , φi(X

→

(N))]T, i � 1, . . . , n. y
→

� [y(1), . . . , y(N)]T ∈ RN is the
output vector. Θ � [θ1, . . . , θn]T ∈ Rn denotes the linear
parameters.

Refer to [27], and the minimal cost function using the
least square method is given as

E � y
→T

y
→

− 􏽢ΘTΦT
y
→

, (3)

where
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􏽢Θ � argminΘ‖ y
→

− ΦΘ‖2 � ΦTΦ􏼐 􏼑
− 1
ΦT y

→
. (4)

,us, the minimal cost function is reformulated as
follows:

E � y
→T

y
→

− y
→TΦ ΦTΦ􏼐 􏼑

− 1
ΦT

y
→

. (5)

Use the definitions below:

Mk �
△ ΦT

kΦk,

Rk �
△

I − Φk ΦT
kΦk􏼐 􏼑

− 1
ΦT

k ,

R0 � IN×N,

k � 0, 1, . . . , n.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(6)

,e variance of the minimal cost function E induced by
an additional mapping function ϕk+1 is given as follows:

ΔEk+1 � Ek+1 − Ek � y
→TRk+1 y

→
− y

→TRk y
→

. (7)

Using the propositions detailed in [27], equation (7) is
rewritten as follows:

ΔEk+1 �
− y

→Tϕ(k)
k+1􏼒 􏼓

2

ϕ(k)T
k+1 ϕ

(k)
k+1􏼐 􏼑

, k � 0, 1, . . . , n − 1, (8)

where ϕ(k)
k+1 � Rkϕk+1.

Obviously, the variance ΔEk+1 only concerns the addi-
tional mapping function ϕk+1. ,en, define the recursive
matrix A � [ai,j]k×n and recursive vector Ay � [ai,j]

T

n×1, the
elements of which are defined as follows:

ak,i�
△ ϕ(k− 1)

k􏼐 􏼑
T
ϕ(k− 1)

i , where a1,i�
△ ϕ1( 􏼁

Tϕi k � 1, 2, . . . , n, i � k, . . . , n,

ak,y�
△ ϕ(k− 1)

k􏼐 􏼑
T

y
→

, where a1,y�
△ ϕ1( 􏼁

T
y
→

k � 1, 2, . . . , n.

(9)

,erefore, the net contribution induced by the ϕk+1 is
expressed as

ΔEk+1 ϕk+1( 􏼁 �
y
→Tϕk+1 − 􏽐

k
j�1 aj,yaj,k+1/aj,j􏼐 􏼑􏼒 􏼓

2

ϕk+1( 􏼁
Tϕk+1 − 􏽐

k
j�1 a

2
j,k+1/aj,j􏼐 􏼑

, k � 1, 2, . . . , n. (10)

And the linear coefficients are estimated by 􏽢θj �
aj,y − 􏽐

k
i�j+1

􏽢θiaj,i􏼐 􏼑

aj,j

, j � k, k − 1, . . . , 1. (11)

Require the maximum voltage vector v
→

max ∈ R
N×1, the minimum voltage v

→
min ∈ R

N×1, the average voltage v
→

avg ∈ R
N×1, the

average temperature tmp���→ ∈ RN×1 of the battery cells, the circuit current I
→
∈ RN×1, the maximal order of time lags for inputs

lx � 10, the maximal order of time lags for output ly � 3, the maximal number of selected terms m, and the minimal training error
e.

Ensure the SOC vector of the battery pack y
→ ∈ RN×1.

(1) Initialization: form the regression matrix for polynomial term selection.
(2) for i � 1 to n do
(3) calculate the recursive matrix A, Ay, aj,j and ayj (j � 1, . . . , m) is recursively calculated by

ai,j � 0, j< i

ai,j �
ϕ(i− 1)

i
Tϕ(i− 1)

i �
ϕiTϕi − 􏽘

i− 1
h�1a

2
h,i/ah,h, j � i

ai,j � (ϕ(i− 1)
i )

Tϕ(i− 1)
j � (ϕi)

Tϕj − 􏽘
i− 1
h�1((ah,iah,j)/ah,h), i< j< n

ayi � ϕT
i Ri− 1y � ϕT

i y − 􏽐
i− 1
h�1((ah,iah,j)/ah,h), 1≤ i< k

(4) calculate the net contribution of the terms using equation (10).
(5) select the significant term.
(6) end for
(7) Input selection: find the order of the time lags from the selected model terms.

ALGORITHM 1: Input selection using FRA algorithm.
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Require: selected input variable matrix Φ ∈ RN⋋m in equation (2), the variable upper/lower bounds [Xmin, Xmax] and the velocity
upper/lower bounds [vmin, vmax], the size of the population l, the maximum number of iterations T, the crossover factors
CR � [c1, c2] ∈ [0, 1], and the acceleration of the particle velocity wi.

Ensure: the SOC vector of the battery pack y
→ ∈ RN×1.

(1) Initialization: R0 � IN×N, J0 � 1/N 􏽐
N
t�1 y(t)2 k � 0.

(2)While Jk > Jk+1 do
(3)Initialization: Set the initial centers x1

j,0 and widths x2
j,0 of the RBF basis function, where j � 1, . . . , l, thus the initial nonlinear

parameters are X
→

0,0 � [x1
1,0, x2

1,0]; [x1
2,0, x2

2,0], . . . , [x1
l,0, x2

l,0]
T. Set the initial velocity V

→
0,0 � [v11,0, v21,0]; [v12,0, v22,0], . . . , [v1l,0, v2l,0]

T.
(4)for i � 1 to T do
(5) construct the candidate RBF basis vectors.
(6) calculate the matrix Rk using Rk+1 � Rk − (Rkψk+1ψT

k+1Rk)/(ψT
k+1Rkψk+1) and the recursive matrix A, Ay using Algorithm 1,

respectively.
(7) calculate the vector e

→
k+1 using e

→
k+1 � Rk+1 y

→.
(8) Find the candidate regressor that gives the minimal PRESS error, and record the minimal PRESS error (index s, minimal PRESS

error Ji,k) and the best position of each particle p
→

b,i � [x1
s,i, x2

s,i]
T.

(9) compare to the last best position using Ji− 1,k, obtain the global optimal position p
→

g,i.
(10) update velocity and position using V

→
k,i � wi V

→
k,i− 1 + c1r1(pb − Xi,k) + c2r2( p

→
g,i − Xi,k), Xk,i+1 � Xk,i + v

where V
→

k,i and Xk,i+1 denote the velocity and particle at ith iteration for kth selection, r1 and r2 is the random numbers.
(11)end for
(12)add the candidate feature with the minimal PRESS error to the regression matrix Φ, k � k + 1.
(13)end while
(14)Identification: calculate the linear coefficients using equation (11).

ALGORITHM 2: Compact RBF modelling algorithm using the PSO method.
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Figure 1: ,e flowchart of the battery pack SOC estimation.
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2.2. Input Selection for Battery Pack SOC Estimation. For the
battery pack SOC estimation, the measured variables including
the maximum and minimum voltages of the battery cells, the
overall voltage of the battery pack, the circuit current, and the
average temperature of the battery cells are all possible can-
didates as the model inputs and the targeted SOC is considered
as model output, respectively. Based on the moving average
method, themean of a time sequence values in the shifting time
window can be used to eliminate the random and other noises.
,en, the average of the pack voltage, the pack temperature,
and loop current for every 10 seconds interval is calculated as
the time mean pack voltage, the time mean pack temperature,
and the time mean loop current, respectively. Both the

measured variables and the statistical variables are considered
as augmented variables for estimating the battery pack SOC.
,e SOCof a battery pack is a time sequence, so both themodel
dependent variables and themodel outputmeasured in the past
are critical to the estimation of next SOC value. However, not
all of the historical data are needed for SOC estimation, so the
maximum order of time lags for these input variables should be
determined in advance.

To select the RBF neural network inputs, the problem is
converted into the polynomial model construction.,us, the
input selection problem is formulated as equation (1).

Herein, the mapping functions are selected using the
following polynomial terms:

Table 1: Performance for different input variables using proposed RBF.

Inputs RMSE (training) RMSE (validation) MAX (training) (%) MAX (validation) Time
Selected by FRA 0.041 0.087 0.6783 1.9606 114
By experience 0.042 0.9811 0.6287 2.5228 117
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Figure 2: Training results for different model inputs using proposed RBF.
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ϕk � 􏽙

nyi

j�ny1

y(t − j) 􏽙
m

k�1
􏽑
nxki

j�nxk1

xk t − dk − j( 􏼁,

i � 1, . . . , p, ϕ0 � 1,

(12)

where 0≦ nyk1 ≦ · · · ≦ nyki ≦ ly, 0≦ nxki ≦ · · · ≦ nxki ≦ lx, and
lx � 10 and ly � 3.

,en, the neural network model inputs can be identified
by selecting the most significant polynomial terms using the
FRA method. ,e following input selection method is de-
tailed in Algorithm 1.

3. Improved RBFModel for the SOC Estimation

,is paper aims to develop an accurate yet simple model for
battery pack SOC estimation. Deng et al. proposed a two
stage algorithm based on the leave-one-out method [30] to
increase the performance of RBF neural networks. ,e
selection procedure is automatically terminated by pre-
dicted-residual-sums-of-squares (PRESS) error so that the
constructed RBF neural model is parsimonious and

accurate. In this paper, the FRA method is used instead of
the two stage algorithm for RBF neural network con-
struction, which reduces the modelling complexity. In
order to ensure the accuracy of the model, particle swarm
optimization (PSO) algorithm is used to optimize the
kernel parameters.

3.1. General RBF Neural Network. A RBF neural model can
be formulated as a linear-in-the-parameters model like
equation (1) as follows:

y(t) � 􏽘
n

k�1
θkφk X

→
(t); ck; σk􏼒 􏼓 + ε(t), (13)

where the additional parameters φk(X
→

(t); ck; σk) is the
radial basis activation function for the hidden nodes which is
often chosen as a Gaussian function. ck ∈ Rm is the centers,
and σk ∈ R1 denotes the RBF widths.

Similar to equation (2), the RBF neural model is for-
mulated in the matrix form as follows:
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Figure 3: Validation results for different model inputs using proposed RBF.

Table 2: Performance for the SOC estimation using different methods.

Method RMSE (training) (%) RMSE (validation) (%) MAX (training) (%) MAX (validation) (%) Time (s)
Proposed RBF 0.041 0.087 0.4458 2.0232 114
General RBF 0.041 0.1539 0.6956 2.0904 30
LSSVM 0.042 0.1179 0.8289 1.8128 5400
TSS_RBF 0.044 0.1136 0.7893 1.9603 4400
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y
→

� Φ(X, c
→

, σ→)Θ + e
→

, (14)

where Φ � [ϕ1, . . . , ϕn]T ∈ RN×n is the output matrix of the
hidden nodes. ϕi � [φi(X

→
(1), c

→
, σ→), . . . , φi(X

→

(N), c
→

, σ→)]T, i � 1, . . . , n.

3.2. Improved RBF Neural Model. ,e performance of the
RBF neural model is related to the number of the hidden
layer nodes and the kernel parameters. ,erefore, the
construction of RBF network can be regarded as an op-
timization problem which depends on the number of
hidden layer nodes, kernel parameters, and connection
weights. In order to improve the accuracy and real-time
performance of Li-ion battery pack SOC estimation, the
FRA method is used to establish an accurate and compact
RBF neural model.

Using the improved RBF neural model based on the
FRA method, the hidden layer nodes are selected
according to the net contribution of the hidden layer node
output. At the same time, the nonlinear kernel parameters
are optimized by the particle swarm optimization method.
Particle swarm optimization (PSO) [33] is a nonlinear

parameter optimization algorithm based on swarm in-
telligence, and it has been widely used for nonlinear
parameter optimization. ,e method is simple and easy to
implement, it is applied to the parameter optimization of
RBF kernel function. According to [30], leave-one-out
(LOO) crossvalidation and associated predicted-residual-
sums-of-squares (PRESS) error are used as an index to
select hidden layer nodes and automatically break the
selection procedure. ,e hidden layer nodes are selected
with the maximal reduced PRESS error. ,us, the net
contribution is changed to the following equation:

Jk �
1
N

􏽘

N

t�1

e
2
k(t)

R2
k(t, t)

, k � 1, 2, . . . , n, (15)

where N and n is the number of the samples and the max
number of the hidden layer nodes, respectively. ek(t) and
Rk(t, t) is the model error and the defined matrix Rk in
equation (6) at time instant t, respectively.

Based on this net contribution, the improved RBF neural
networks optimized by the PSO method is shown in
Algorithm 2.
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Figure 4: Training results of the FUDS process using different weights.
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3.3. Battery Pack SOC Estimation. As mentioned earlier, the
battery pack SOC is estimated using the improved RBF
neutral network. ,e schematic diagram of the proposed
method for the battery pack SOC estimation is illustrated in
Figure 1.

From Figure 1, there are three parts in the proposed
method. In the first part, the inputs are determined from
the measurements including the voltage of the battery cell
(Vcell), the voltage of the battery pack (Vpack), the terminal
current (Icir), the temperature of the battery cell (Tcell), the
SOC of the battery cell (SOCcell), and the SOC of the battery
pack (SOCpack). Before the model inputs are determined by
the FRA method, the candidate inputs are expanded by
finding the maximum, the minimum, and the mean of
Vpack, Tcell, and Icir. ,en, the delayed sequence obtained by
using delay operator (z− 1, . . . , z− 10) is adopted to produce
the polynomial terms. ,us, the inputs are selected from
the terms in the resultant nonlinear autoregressive moving
average with exogenous inputs (NARMAX) model. In the
second part, the improved RBF model is trained using the
FRA method combined with the PSO method. Finally, the

SOC of the battery pack is predicted using the built RBF
model in which the kernel parameters (μ, σ), the number of
the hidden layer (n) nodes, and the weights to the outputs
(Θ) are optimized by PSO [33].

4. Simulation Results

We first consider a package with 216 battery cells of 18650
types connected in series. 8 battery packs in the same
configuration were tested. In these tests, the circuit current,
the terminal voltage of the battery pack, the terminal
voltages of each cell individual, and the temperature between
two battery cells are measured every 1 s. ,e SOC of the
battery pack and the battery individual cell are all estimated
every 1s by the battery management system.

,e data collected from a battery pack are often too large
to be used to establish the estimation model. ,e ageing of
battery capacity can be ignored in a short period, the training
samples are selected every 30 s to build the improved RBF
model. ,en, the model inputs are chosen by FRA for the
battery pack SOC estimation.
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Figure 5: Validation results of the FUDS process using different weights.
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Using the FRA method, the maximum voltage v max(t)

of the battery cells, the minimum voltage v min(t) of the
battery cells, the average voltage of the battery pack v avg(t),
the voltage of the battery pack v(t), the mean voltage v m(t)

of past 10 measurements, the mean current i m(t) of past 10
measurements, the mean temperature tmp m(t) of past 10
measurements, the circuit current i(t) and the average
temperature tmp(t) of the battery cells, and the estimated
SOC soc(t) are adopted as the inputs and output, respec-
tively. Finally, v avg(t − 4), i(t), i(t − 6), i(t − 7), i(t − 8),
v(t − 7), v max(t − 8), v m(t), v m(t − 8), i m(t − 2),
tmp m(t − 2), tmp m(t − 8), and soc(t − 1) are selected. To
verify the selected inputs, the improved RBF model for the
SOC estimation is built using the selected inputs compared
to the inputs selected by experience (trial and error). ,e
performance using different inputs are shown in Table 1.

In Table 1, the RMSE (rootmean square error) and themax
absolute error are shown. Clearly, the model using the selected
inputs performs much better, with the RMSE of the absolute
error is almost always within ±0.08. ,e simulations are il-
lustrated in Figure 2 and 3. It is shown that the SOC estimation
is more accurate using the selected inputs of which the gen-
eralization error is less than that using experience inputs.

,en, the proposed model is compared with the con-
ventional RBF method, the general least square support
vector method (LSSVM), and the improved RBF neural
model and optimized by the two-stage method (TSS_RBF)
[30]. ,e performance of the three methods is shown in
Table 2.

According to Table 2, the proposed RBF method took
more time than the conventional RBFmethod in training the
model, but the validation RMSE of the proposed RBF model
is just half of that using the general RBF model. While the
LSSVMmodel takes almost 50 times longer to train than the
proposed RBF model and the improved RBF neural model
by the two stagemethod takes almost 50 times longer to train
than the proposed RBF model. Meanwhile, the validation
RMSE of the proposed RBF model is 0.02% lower than the
other methods.,e simulation results are shown in Figures 4
and 5. It is clear that the proposed RBF model has excellent
generalization capability to obtain more accurate SOC than
the other methods.

5. Conclusions

In order to estimate the SOC of battery pack accurately, it is
necessary to adopt the data-driven method to handle the
inconsistencies among the cells in a battery pack. ,is paper
first uses the FRA method to select the input variables to
improve the precision of the model because the inputs
features are important to ensure the accuracy of the RBF
neural networks. ,e experiment results show that better
SOC estimation results can be achieved when a compact set
of model inputs is selected. ,en, the FRA method is further
used to improve construction RBF neural network for
battery pack SOC estimation. ,e hidden nodes of RBF
neutral networks are again selected using the FRA method,
and the particle swarm optimization algorithm is used to
optimize the kernel parameters. ,e results show that the

improved RBF model can achieve high estimation accuracy
at acceptable time costs.
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