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Absolute and convective instabilities of parallel propagating circularly
polarized Alfvén waves: Decay instability

M. S. Rudermana) and D. Simpson
Department of Applied Mathematics, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3
7RH, United Kingdom

(Received 9 February 2004; accepted 25 May 2004; published 29 July 2004)

The absolute and convective instabilities of circularly polarized Alfvén waves propagating along an
ambient magnetic field are studied. The approximation of ideal magnetohydrodynamics is used. The
analysis is restricted to the decay instability that occurs when the sound speed is smaller than the
Alfvén speed. In addition, it is assumed that the amplitudea of an unstable Alfvén wave(pump
wave) is small. This assumption allows us to study the problem analytically using expansions in
power series with respect toa. It is shown that there are quantities,Ul,0 andUr.0, such that the
pump wave is absolutely unstable in a reference frame moving with velocityU with respect to the
rest plasma ifUl,U,Ur. If eitherU,Ul or U.Ur, then the pump wave is convectively unstable.
The expressions forUl and Ur are found. The signaling problem is studied in a reference frame
where the pump wave is convectively unstable. It is shown that spatially amplifying waves exist
only when the signaling frequency is in two narrow symmetric frequency bands with the widths of
the order ofa. The implication of the obtained results on the interpretation of observational data
obtained in space missions is discussed. It is shown that circularly polarized Alfvén waves
propagating in the solar wind are convectively unstable in a reference frame of any spacecraft
moving with the velocity not exceeding a few tens of km/s in the solar reference frame. The spatial
amplification scale of these waves is very large, of the order of 1/6 a.u. In view of these results it
is not surprising at all that evidence of the decay instability of Alfvén waves in the solar wind is
sparse. ©2004 American Institute of Physics. [DOI: 10.1063/1.1774166]

I. INTRODUCTION

The problem of stability of finite-amplitude circularly
polarized Alfvén waves has attracted the attention of plasma
physicists for the last four decades. This problem has been
studied both from a purely theoretical point of view and from
the point of view of applications to laboratory and space
plasmas. Galeev and Oraevskii1 were the first to study this
problem(see also, Sagdeev and Galeev2

). This first analysis
was based on the ideal magnetohydrodynamic(MHD) de-
scription and assumed that the plasmab and the Alfvén wave
amplitude are small. After that the stability analysis was ex-
tended in a few different directions. Derby3 and Goldstein4

studied the stability of Alfvén waves with an arbitrary am-
plitude in a finite b plasma. Mio et al.,5,6 Mjølhus,7

Ovenden,8 and Spangler and Sheerin9,10 used the derivative
nonlinear Schrödinger equation to study the stability of a
small amplitude circularly polarized Alfvén wave in a disper-
sive plasma. Sakai and Sonnerup,11 Longtin and Sonnerup,12

Wong and Goldstein,13 and Brodin and Stenflo14 studied the
stability of finite amplitude dispersive Alfvén waves on the
basis of the two fluid description. Viñas and Goldstein15

studied the linear stability of circularly polarized Alfvén
waves with respect to obliquely propagating perturbations.
Ghoshet al.16,17 and Ghosh and Goldstein18 used numerical
simulation to study nonlinear evolution of circularly polar-
ized Alfvén waves in two dimensions. Hollweget al.19 and
Jayanti and Hollweg20 analyzed the stability of circularly po-

larized Alfvén waves in a plasma with streaming He++ ions.
Ling and Abraham-Srauner,21 Spangler,22,23 and Inhester24

used the kinetic description to study the stability of Alfvén
waves. Lou25 studied the stability of circularly polarized
Alfvén waves in a self-gravitating ionized medium. A com-
prehensive comparison of theory and observations was given
by Spangler.26 Among recent publications it is worth to note
papers by Del Zannaet al.27,28and by Del Zanna and Velli.29

These authors developed a three-dimensional MHD code
specially designed to study the stability and nonlinear evolu-
tion of Alfvén waves. They applied their numerical results to
the evolution of Alfvén wave spectra in the solar wind,27,28

and to plasma heating in coronal holes.29

The traditional treatment of the stability of circularly po-
larized Alfvén waves is based on the assumption that the
density perturbation is proportional to expfiskx−vtdg. With
this ansatz for the density perturbation, the linearized MHD
equations dictate how the perturbations of other quantities
must vary. Jayanti and Hollweg30 suggested another ap-
proach based on the use of Floquet’s theorem for linear sys-
tems of differential equations with periodic coefficients. Ru-
derman and Simpson31 improved on the method developed
by Jayanti and Hollweg, and carried out an analytical analy-
sis of the general properties of the dispersion equation deter-
mining the stability of finite-amplitude circularly polarized
Alfvén waves in ideal MHD. In particular, they proved that,
for any wave amplitude and any plasmab, there is such an
interval of wavenumbers that a harmonic perturbation is un-
stable if its wavenumber is in this interval and stable other-a)Electronic mail: m.s.ruderman@sheffield.ac.uk
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wise. They also studied the dependence of the boundaries of
the interval of unstable wavenumbers on the Alfvén wave
amplitude and plasmab.

It is well known that the normal mode analysis is not
sufficient to conclude whether a stationary state, homoge-
neous in at least one spatial direction, appears stable or un-
stable in a fixed reference frame. When the normal mode
analysis predicts stability, the further study is not needed.
However, a steady state can appear stable in a fixed reference
frame even when there are growing normal modes. In this
case we have to distinguish between the absolute and con-
vective instabilities.32,33 The type of instability, either abso-
lute or convective, is determined by the asymptotic behavior
of the initial perturbations. Two different kinds of asymptotic
behavior are possible. It is possible that the initial perturba-
tion grows exponentially with time at any fixed spatial posi-
tion. This situation is referred to as “absolute” instability. It
is also possible that the initial perturbation grows exponen-
tially with time, but simultaneously it is convected out of any
finite portion of the spatial domain so fast that eventually it
decays exponentially at any fixed spatial position. This situ-
ation is referred to as a “convective” instability. The concept
of absolute and convective instabilities was first developed in
plasma physics.32,33 Later it was applied to hydrodynamic
stability problems, in particular, to stability of geophysical
and astrophysical flows.34–38

The distinction between absolute and convective insta-
bilities is especially important for interpretation of observa-
tional results obtained during space missions. A space probe
will observe an unstable circularly polarized Alfvén wave
only if this wave is absolutely unstable in the reference frame
of the probe. To our knowledge nobody has yet studied the
absolute and convective instabilities of circularly polarized
Alfvén waves. Our paper aims to fill this gap.

The paper is organized as follows. In the next section we
formulate the problem and give a brief description of Briggs’
method for studying absolute and convective instabilities.32

In Sec. III we study the absolute and convective decay insta-
bilities of small amplitude circularly polarized Alfvén waves.
In Sec. IV we study the signaling problem for convectively
unstable Alfvén waves. Section V contains discussion and
summary.

II. FORMULATION AND METHOD DESCRIPTION

We study the stability of a circularly polarized Alfvén
wave (pump wave) propagating along the mean magnetic
field in the framework of ideal MHD. In Cartesian co-
ordinatesx ,y ,z with the x-axis in the direction of the mean
magnetic field, the perturbations of the density, pressure and
thex-component of the velocity in this wave remain equal to
zero. They and z-components of the velocity and the mag-
netic field are proportional to expfisk0x−v0tdg, and their
magnitudes are constant. The stability of this wave is deter-
mined by the following dispersion equation3,4,31

Dsv,kd ; sv2 − b2k2dsv − kdfsv + kd2 − 4g

− a2k2sv3 + v2k − 3v + kd = 0. s1d

This equation determines the stability with respect to an

eigenmode where the density perturbation is proportional to
expfisKx−Vtdg. In Eq. (1), v=V /v0, k=K /k0, and b
=cs /vA, wherecs is the sound speed andvA is the Alfvén
speed calculated with the use of the ambient magnetic field
B0. Note thatv0=vAk0. The dimensionless amplitude of the
Alfvén wave,a, is equal toB' /B0, whereB' is the magni-
tude of the perpendicular component of the magnetic field in
the Alfvén wave.

For any values ofa and b there is such an interval
sk1,k2d that, for anykP sk1,k2d, Eq. (1) has exactly one root
with positive imaginary part.31 This result implies that a cir-
cularly polarized Alfvén wave is always unstable with re-
spect to normal modes.

As we have already mentioned, the normal mode analy-
sis is insufficient to conclude whether or not the wave looks
unstable at a fixed position. The wave does look unstable if
the instability is absolute. If the instability is convective, the
wave looks stable in spite of the presence of unstable eigen-
modes. The type of instability, either absolute or convective,
depends on the reference frame. The wave can be absolutely
unstable in one reference frame and convectively unstable in
another. Therefore, in what follows we study the absolute
and convective instabilities in a reference frame moving with

an arbitrary velocityŪ along thex-axis with respect to the
background plasma.

To distinguish between absolute and convective insta-
bilities we have to solve the initial value problem for the
linearized MHD equations using the Fourier transform with
respect tox and the Laplace transform with respect to time.
As a result, we obtain for the density perturbation the expres-
sion

drsx,td =E
it−`

it+`

e−ivtdvE
−`

` Tsk,vd

D̃sk,vd
eikxdk. s2d

Here D̃sk ,vd=Dsk ,ṽd, where ṽ=v+kU is the Doppler-

shifted frequency andU=Ū /vA is the dimensionless velocity
of the reference frame. The functionTsk ,vd is determined by
the initial conditions and is not important for what follows.
The Bromwich integration contourIsvd=t (I indicates the

imaginary part of a quantity) is above all zeros ofD̃sk ,vd
considered as a function ofv, i.e., t is larger than the maxi-
mum increment of unstable eigenmodes.

Now we give a brief description of Briggs’ method for
studying absolute and convective instabilities.32 The starting
point of Briggs’ method is Eq.(2). To determine if the insta-
bility is absolute or convective we have to determine the
asymptotic behaviour ofdr ast→` andx is fixed. To do this
we move the Bromwich integration contour down. If we
manage to move it slightly below the real axis, this will
mean thatdr decays with time exponentially and the insta-
bility is convective.

Let gM be the maximum increment of the instability. We
will move the Bromwich integration contour down point by
point. We take a point on this contour, fix its real part,vr,
and start to decrease the imaginary partvi. Initially vi.gM,

which implies that the equationD̃sk ,vd=0, considered as an
equation fork at fixedv has no real roots(note that we now
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regardk as a complex variable). Since vr is fixed andvi

varies, thek-roots of the equationD̃sk ,vd=0 are functions of
vi. When vi decreases, these roots move in the complex
k-plane (see Fig. 1). It can occur that one of thek-roots
becomes real for some value ofvi. Then we cannot integrate
along the realk-axis in Eq.(2) because the integrand has a
singularity on it. However, this problem is easily cured. We
simply deform the integration contour in such a way that the
root trajectory does not cross the deformed contour(see Fig.
1). Since the integrand is an analytic function ofk, the inte-
gral does not change.

A real problem occurs when two roots, one coming from
the upper and one from the lower half of the complex
k-plane, collide to form a double root as shown in Fig. 1. It is
obvious that now we cannot deform the integration contour
to avoid a singularity of the integrand. Hence we cannot
decreasevi any further. The two colliding roots “pinch” the
integration contour, and this is why the double root that they
form is called a “pinching” root. Of course, it is also possible
that two roots both coming either from the upper or from the
lower part of the complexk-plane collide to form a double
root. It is clearly seen in Fig. 1 that these roots do not pinch
the integration contour, and this is why the double root that
they form is called a “nonpinching” root.

It is clear from the previous analysis that the Bromwich
integration contour can be moved below the realv-axis if the
pinching does not occur for any fixedvr and anyviù0. In
this casedr given by Eq.(2) decays exponentially ast→`

and the instability is convective. On the other hand, if pinch-
ing occurs for somevr andvi.0, then we cannot move the
Bromwich integration contour below the real axis in the
complexv-plane.

In what follows we assume that there are only a finite
number of pinching roots, say,n. Let pinching occur when
vr=vrj andvi=vij, j=1, . . . ,n. Then the asymptotic behav-
ior of dr as t→` is given by32

dr ~ t−1/2 expftsvim − ivrmdg, s3d

wherevim=maxjsvijd.
The analysis in this section implies the following method

of studying the absolute and convective instabilities.

(i) First we have to calculate the maximum growth rate
of the instabilitygM.

(ii ) Then we have to calculate all double-roots of the dis-
persion equation. These roots satisfy the two equa-
tions

D̃sk,vd = 0,
] D̃

] k
= 0. s4d

This system of equations determines double roots,k, and
corresponding values ofv.
(iii ) Now we consider all pairs of solutions to Eq.(4),

sk ,vd, and choose only those withv satisfying the
inequality

0 , vi ø gM . s5d

We consider only pairs withvi.0 because pairs withvi

ø0 cannot cause absolute instability. The reason why we

reject pairs withvi.gM is the following. Let sk̄ ,v̄d be a
solution of Eq.(4) andv̄i.gM. We always can taket, v̄i in

Eq. (2). Then the double rootk̄ cannot appear as a result of a
collision of twok-roots when the Bromwich integration con-
tour is moved down. If there are no pairssk ,vd with vi

satisfying Eq.(5) then the instability is convective.
(iv) Among all pairssk ,vd satisfying Eq.(5) we retain

only those wherek is a pinching double root. To
verify that k is pinching, we fixvr and increase the
imaginary part ofv from vi to gM +e, wheree is any
positive quantity. As a result we obtain the trajectories
of the two k-roots that collide at the pointk of the
complexk-plane. If the end-points of these trajecto-
ries are on different sides of the real axis in the com-
plex k-plane, then the double root is pinching. Other-
wise it is nonpinching.

(v) Finally, among all pairssk ,vd satisfying Eq.(5) and
the condition thatk is pinching, we choose one with
the largestvi (of course it is possible that there are a
few pairs with the samevi). Using the notationvim

for this largest value ofvi, we obtain that the
asymptotic behavior of the density perturbation is
given by Eq.(3).

III. ABSOLUTE AND CONVECTIVE DECAY
INSTABILITIES OF SMALL-AMPLITUDE ALFVÉN
WAVES

Using Eq.(1) we write the system of Eqs.(4) determin-
ing the doublek-roots in the form

sṽ2 − b2k2dsṽ − kdfsṽ + kd2 − 4g

− a2k2sṽ3 + ṽ2k − 3ṽ + kd = 0, s6d

FIG. 1. The trajectories of thek-roots of the dispersion equationD̃sk ,vd
=0 in the complexk-plane whenIsvd decreases fromt.gM +e until the
pinching occurs, whileRsvd is fixed. The small circles indicate the end
points of the trajectories and the arrows the direction of the root motion. The
thick line shows the integration contour distorted to avoid singularities. We
see that the two colliding roots with trajectories starting at different sides of
the contour pinch the contour. The two colliding roots with trajectories
starting at the same side of the contour do not pinch it.
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ṽ4 − 2s1 + b2dṽ3k − 3s1 + b2dṽ2k2 + 4b2ṽk3 + 5b2k4

+ 4ṽ2 + 8b2ṽk − 12b2k2 − a2ks2ṽ3 + 3ṽ2k − 6ṽ

+ 3kd + Uf5ṽ4 + 4ṽ3k − 3s1 + b2dṽ2k2

− 2s1 + b2dṽk3 + b2k4 − 12ṽ2 + 8ṽk + 4b2k2

− a2k2s3ṽ2 + 2kṽ − 3dg = 0. s7d

Let us introduce the phase velocity in the moving reference
frame c=ṽ /k. Then we can reduce the system of equations
Eqs.(6) and (7) to

k2 =
4sc − 1dsc2 − b2d − a2s3c − 1d

sc + 1dfc4 − s1 + a2 + b2dc2 + b2g
, s8d

4s1 + Udsc + 1dsc − 1d2sc2 − b2d2 − a2hfc6 + 4c5 − 3c4

− 2s1 + 3b2dc3 + 3b2c2 + 4b2c − b2g + Uf6c5 − 2c4

− s5 + 7b2dc3 + 4b2c2 + s1 + 5b2dc − 2b2gj

+ a4f2c3 + Us3c3 − cdg = 0. s9d

Jayanti and Hollweg39 have used the Alfvén wave am-
plitude a as a small parameter. As a result they have man-
aged to study the dispersion equation(1) analytically. In par-
ticular, they have calculated the maximum increment of the
instability.

In this paper we follow the approach adopted by Jayanti
and Hollweg and also considera as a small parameter. In
what follows we study only the decaysb,1d instability. The
beat instabilitysb.1d will be studied in the accompanying
paper. Hence, in what follows, we take 0,b,1. In addition
we assume thatb is not close to 0 or to 1.

A. Calculation of the double roots

The maximum increment of the decay instability with
the accuracy up to the first nonzero term in the expansion
with respect toa is given by39

gM =
as1 − bd1/2

2b1/2s1 + bd
. s10d

Now we calculate the double roots of the dispersion
equation considered as an equation fork. We start from cal-
culating the roots of Eq.(9). Whena=0, Eq. (9) has seven
roots:c1=−1, c2,3=1, c4,5=b, andc6,7=−b. In the next order
approximation with respect toa we obtain

c1 = − 1 −
a2

4s1 − b2d
+ Osa3d, s11d

c2,3= 1 +
a2

2s1 − b2d
±

a3

8
F 2s1 − Ud

s1 + Uds1 − b2d3G1/2

+ Osa4d,

s12d

c4,5= b ±
a

4
F s1 − bdsU − bd

bs1 + Ud
G1/2

+ Osa2d, s13d

c6,7= − b ±
a

4
F− s1 + bdsU + bd

bs1 + Ud
G1/2

+ Osa2d. s14d

In Eqs. (12)–(14) the upper signs correspond toc2, c4, and
c6, and the lower signs toc3, c5, andc7, respectively. We use
the agreement that the square root of a positive quantity is
positive, and the square root of a negative quantity is purely
imaginary with a positive imaginary part. Although only the
first two terms are given in the expansion forc1, it is easy to
show that all terms in this expansion are real. The expansions
Eqs.(12)–(14) are valid only if u1+U u @a2. The case where
u1+U u =Osa2d will be discussed later.

Now we use Eqs.(8) and(11)–(14) to obtain seven pairs
of doublek-roots:

k1± = ±
8is1 − b2d

a2 + Os1d, s15d

k2,3± = ± H1 −
a2

4s1 − b2d
7

a3U

4s1 − b2d3/2f2s1 − U2dg1/2J
+ Osa4d, s16d

k4,5± = ± H 2

1 + b
7

as1 − bd1/2s1 − b + 2Ud

2s1 + bd2fbsU + 1dsU − bdg1/2J
+ Osa2d, s17d

k6,7± = ± H − 2

1 − b
±

as1 + bd1/2s1 + b + 2Ud

2s1 − bd2f− bsU + 1dsU + bdg1/2J
+ Osa2d. s18d

In Eq. (16) the upper sign at the last term in the curly brack-
ets corresponds tok2, and the lower sign tok3. The “+” and
“−” signs at the curly brackets correspond tok2,3+ andk2,3−,
respectively. The same rules are applicable to Eqs.(17) and
(18).

B. Selection of double roots corresponding to
positive increments not exceeding the maximum
increment

Using the relationv=ksc−Ud, we obtain the values ofv
corresponding to the doublek-roots:

v1± = ±
8is1 − b2ds1 + Ud

a2 + Os1d, s19d

v2,3± = ± H1 − U +
a2s1 + Ud

4s1 − b2d
±

a3

8
F2s1 − U2d

s1 − b2d3 G1/2J
+ Osa4d, s20d

v4,5± = ± H2sb − Ud

1 + b
±

afs1 − bdsU + 1dsU − bdg1/2

b1/2s1 + bd2 J
+ Osa2d, s21d
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v6,7± = ± H2sb + Ud

1 − b
±

af− s1 + bdsU + 1dsU + bdg1/2

b1/2s1 − bd2 J
+ Osa2d. s22d

Now we proceed to the third step of the analysis as de-
scribed in Sec. II and retain only the double-roots corre-
sponding tov with the imaginary part between 0 andgM.
First of all, it is obvious thatIsv1±d is either negative or
larger thangM. Hence, we rejectk1±.

Isv2,3±dÞ0 only if uU u .1. In this case 0,Isv2+d
=Isv3−d,gM, andIsv2−d=Isv3+d,0. Hence, we retaink2+

andk3−, and rejectk2− andk3+.
Isv4,5±dÞ0 only if −1,U,b. In this caseIsv4−d

=Isv5+d,0, so we rejectk4− and k5+. On the other hand,
Isv4+d=Isv5−d.0, and it is straightforward to show that
Isv4+d,gM. Therefore, we retaink4+ andk5−.

Isv6,7±dÞ0 only if eitherU,−1 or U.−b. In that case
Isv6−d=Isv7+d,0, so that we rejectk6− and k7+. On the
other hand,Isv6+d=Isv7−d.0. The conditionIsv6+d,gM

reduces toU−,U,U+, where

U± = −
b + 1

2
±

s1 − bds1 + 3b2d1/2

21/2s1 + bd3/2 . s23d

It is straightforward to show thatU−,−1,−b,U+. Sum-
marizing, we conclude that the inequality 0,Isv6+d,gM is
satisfied if and only ifU satisfies the condition

U− , U , − 1 or −b , U , U+. s24d

Hence we retaink6+ andk7− only if Eq. (24) is satisfied and
reject otherwise.

C. Selection of pinching double roots

In the last step of the analysis we have to ascertain
whether or not the retained double-roots are pinching. We
start this last step of the analysis with one note. It is easy to
see thatk3−=−k2+

* , k5−=−k4+
* , andk7−=−k6+

* , where the aster-
isk indicates a complex conjugate quantity. The same rela-
tions are valid for the frequencies:v3−=−v2+

* , v5−=−v4+
* ,

andv7−=−v6+
* . Obviously, if the pairsk ,vd satisfies Eq.(6),

then the pairs−k* ,−v*d also satisfies Eq.(6). This implies
that the trajectories of the roots that collide to form the
double rootk2+, and the trajectories of the roots that collide
to create the double rootk3−, are symmetric to each other
with respect to the imaginary axis in the complexk-plane.
Hence, the rootsk2+ andk3− are either both pinching or both
nonpinching. The same is true fork4+ and k5−, and for k6+

andk7−. This observation enables us to restrict the analysis to
the rootsk2+, k4+, andk6+.

Let us now study the behavior of the trajectories of the
roots that collide atk=k2+. To do this we takev=v2++ ias,
wheres varies from 0 tos2+e with s2=fgM −Isv2+dg /a and
e.0. Then we substitutev=1−U+av̄ in Eq. (6) and look
for the solution to the obtained equation in the formk=1

+ak̄. As a result we obtain

v̄2 + 2Uv̄k̄ + k̄2sU2 − 1d

= a
v̄ + k̄sU + 1d

2s1 − b2d

+
a2

4s1 − b2d
F s7 + b2dk̄2

2s1 − b2d
+ k̄sv̄ + k̄Ud

−
s1 + 7b2dsv̄ + k̄Ud2

2s1 − b2d
G + Osxa3d, s25d

wherex=1 whens,1 andx=a2 whens&a. Equation(25)

is a quadratic equation with respect tok̄ and its solution is

straightforward. Taking into account the relationk=1+ak̄
and Eq.(16) determiningk2+, the two roots of Eq.(6) close
to unity are given by

k± = k2+ +
ia

U2 − 1
H− Us ± Fs2 +

a2ss1 + b2d

s1 − b2d2

+
a2ssU2 − 1d1/2

f2s1 − b2dg3/2 G1/2J + Osx1/2a3d. s26d

When s=0, k+=k−=k2+ as it should be. LetU be positive
(recall that we considerU2.1). ThenIsk2+d.0 andIsk−d
decreases monotonically whens increases from 0 tos2+e.
Isk+d increases whens varies from 0 tosM given by

sM =
a2h4s1 + b2d + f2s1 − b2dsU2 − 1dg1/2j

16s1 − b2d2hfUsU − 1dg1/2 + U − 1j
, s2. s27d

ThenIsk+d decreases monotonically whens varies fromsM

to s2+e. Isk±d=−as2/ sU±1d,0 ats=s2. Since bothIsk+d
and Isk−d are monotonically decreasing functions for
s.sM, we conclude thatIsk±d,0 at s=s2+e. We see that
both roots,k+ and k−, come from the same side of the real
axis. This implies thatk2+ is not a pinching double root.

When U,0, Isk2+d,0 andIsk+d increases monotoni-
cally whens varies from 0 tos2+e. Isk−d decreases whens
varies from 0 tosM. Then Isk−d increases whens varies
from sM to s2+e. Isk±d=−as2/ sU±1d.0 at s=s2. Since
Isk+d and Isk−d are monotonically increasing functions for
s.sM, we conclude thatIsk±d.0 at s=s2+e. Once again
this implies thatk2+ is not a pinching double root. Summa-
rizing, we conclude thatk2+ is not a pinching double root for
U.1 or U,−1.

Note that the trajectories of the two colliding roots are
on the line Rskd=Rsk2+d (R indicates the real part of a
quantity), so that the trajectories partly overlap. This peculiar
behavior of the trajectories is attributed to the approximation
that we use. If we continue the calculation to the next order
approximation, then we would obtain that the real parts ofk+

and k− are different whensÞ0, and the trajectories would
not overlap anymore. We do not carry out this calculation
because it would not affect our main conclusion that the
double rootk2+ is not pinching.

Now we proceed to the trajectories of the roots that col-
lide at k=k4+. We takev=v4++ ias, wheres varies from 0
to s4+e with s4=fgM −Isv4+dg /a ande.0. We assume that
−1,U,b, so thatIsv4+d.0. We look for the solution to
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Eq. (6) in the formk=2/s1+bd+ k̄a. Substituting this expres-

sion into Eq.(6), we arrive at the quadratic equation fork̄

sU + 1dsb − Udk̄2 − s2U + 1 −bdv̄k̄ − v̄2 −
1 − b

4bs1 + bd2

= Osad, s28d

where

v̄ = is +
ifs1 − bdsU + 1dsb − Udg1/2

b1/2s1 + bd2 . s29d

The solution of Eq.(28) is straightforward and eventually we
obtain for the roots colliding atk4+ the expressions

k± = k4+ +
ia

2sU + 1dsb − Ud
hs2U + 1 −bds ± fs1 + bd2s2

+ 2sb−1/2ss1 − bdsU + 1dsb − Udd1/2g1/2j + Osa2d.

s30d

When 2U+1−b.0, Isk+d is a monotonically increasing
function of s. SinceIsk4+d.0, it follows thatIsk+d.0 for
anys.0 and the trajectory ofk+ does not cross the real axis.
It is easy to show thatIsk−d is a monotonically decreasing
function of s, and Isk−d=Osa2d at s=s4. Then it follows
thatIsk−d,0 ats=s4+e whene is not too small, so that the
trajectory of k− crosses the real axis once. Hence we con-
clude thatk4+ is a pinching double root.

When 2U+1−b,0, it follows thatIsk4+d,0, and once
againIsk+d is a monotonically increasing function ofs, and
Isk−d is a monotonically decreasing function ofs. In addi-
tion, Isk+d=Osa2d at s=s4, so thatIsk+d.0 at s=s4+e
whene is not too small. Hence, the trajectory ofk− does not
cross the real axis, while the trajectory ofk+ crosses the real
axis once. This implies that, once again,k4+ is a pinching
double root.

Finally, we consider the trajectories of the two roots that
collide atk6+. We takev=v6++ ias with s varying from 0 to
s6+e, wheres6=fgM −Isv6+dg /a, ande.0. Now we look

for the solutions to Eq.(6) in the form k=−2/s1−bd+ak̄.
Substituting this expression in Eq.(6) we obtain the qua-

dratic equation fork̄,

sU + 1dsU + bdk̄2 + s2U + 1 +bdv̄k̄ + v̄2 −
1 + b

4bs1 − bd2

= Osad, s31d

where

v̄ = iHs +
s1 + bd1/2fsU + 1dsU + bdg1/2

b1/2s1 − bd2 J . s32d

The solution of Eq.(31) is straightforward, and eventually
we arrive at the following expression for the two roots col-
liding at k6+:

k± = k6+ +
ias1/2

2sU + 1dsU + bd
h− s2U + 1 +bds1/2

± fs1 − bd2s + 2b−1/2ss1 + bdsU + 1dsU + bdd1/2g1/2j

+ Osa2d. s33d

We see thatk+=k−=k6+ when s=0. For 2U+1+b.0 we
obtain Isk6+d,0 and Isk−d is a monotonically decreasing
function of s, so that the trajectory ofk− does not cross the
real axis. Lengthy but straightforward calculation results in
the relation

Isk−dIsk+d =
a2s1 + 3b2dsU + 1dsU + bd

2bs1 − b2d2 . 0, s34d

valid when s=s6. Since Isk−d,0, we conclude that
Isk+d,0. Then, takinge small enough, we can guarantee
thatIsk+d,0 ats=s6+e. Depending onb andU, Isk+d can
either be a monotonic or nonmonotonic function ofs. In the
latter case the trajectory ofk+ can cross the real axis, how-
ever, it always returns to the lower part of the complex
k-plane whens increases up tos6+e. Hence, the trajectory
of k+ either crosses the real axis an even number of times, or
does not cross it at all. This analysis leads to the conclusion
that k6+ is not a pinching double root.

In the case when 2U+b+1,0 the analysis is quite simi-
lar. Now Isk6+d.0 andIsk+d is a monotonically increasing
function of s, so that the trajectory ofk+ does not cross the
real axis. It follows from Eq.(34) that Isk−d.0 at s=s6.
Once again, takinge small enough, we can guarantee that
Isk−d.0 at s=s6+e, so that the trajectory ofk− either
crosses the real axis an even number of times, or does not
cross it at all. Hence, we conclude thatk6+ is not a pinching
double root. Note that, similar to the trajectories of the roots
colliding at k2+, the trajectories of the roots colliding atk6+

partly overlap. The discussion of this phenomenon given in
the case of the double rootk2+ is also applicable to the case
of the double rootk6+.

D. Summary

Summarizing the analysis of this section, we conclude
that, in the case when −1,U,b, there are two pinching
double roots,k4+ and k5−, corresponding to the same incre-
ment

g = Isv4+d = Isv5−d =
afs1 − bdsU + 1dsb − Udg1/2

b1/2s1 + bd2

+ Osa2d. s35d

When U,−1 or U.b, there are no pinching double roots
corresponding tov with a positive imaginary part. Hence,
the circularly polarized Alfvén wave is absolutely unstable if
−1,U,b, and convectively unstable otherwise. We obtain
the maximum increment,g=gM, when U=sb−1d /2, which
is equal to the group velocity of the wave mode that has the
maximum growth rate.39 This result is in complete agreement
with the general theory of absolute and convective
instabilities.32,33
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Let us make a comment on the accuracy of the expres-
sions for the lower and upper boundaries of the absolute
instability. We observe that the second term in Eq.(21) is of
the order of neglected terms,Osa2d, when U−b=Osa2d.
Hence, in this case we cannot claim thatIsv4+d.0 even
when U.b. Therefore, the upper boundary of the absolute
instability is Ur=b+Osa2d.

WhenU=−1+Ūa, whereŪÞ0 anduŪu is of the order of
unity, the analysis has to be modified. The termOsa4d on the
right-hand side of Eq.(12) has to be substituted byOsa7/2d,
and the termsOsa2d on the right-hand sides of Eqs.(13) and
(14) by Osa3/2d. As a result, the last term on the right hand
side of Eq.(21) will be Osa3/2d instead ofOsa2d. This im-
plies that the neglected terms in Eq.(21) are of the same
order as the second term in the curly brackets and we cannot

guarantee thatIsv4+d is positive whenU=−1+Ūa with

Ū.0. This means that the lower boundary of the absolute
instability is Ul=−1+Osad.

We can give a simple physical interpretation of the result
that the instability is absolute in a reference frame moving
with the velocityU satisfying −1,U,b. The decay insta-
bility is a decay of the pump wave in the forward propagat-
ing sound wave and backward propagating Alfvén wave(i.e.,
Jayanti and Hollweg39

). As a result of the instability, the both
waves grow at expense of the pump wave. Letv=vfsskd be
the dispersion relation for the forward propagating sound
wave, andv=vbAskd be the dispersion relation for the back-
ward propagating Alfvén wave. Then, for smalla, Rsvfsd
<bk, RsvbAd<2−k, while Isvfsd,IsvbAd,a. In general,
the concept of group velocity is irrelevant for growing per-
turbations. However, we still can use this concept forslowly
growing waves, i.e., for waves with the increment much
smaller than the frequency. For such waves we determine the
group velocity asdRsvd /dk. In the case of stable waves the
energy propagates with the group velocity. For slowly grow-
ing waves it propagatesapproximately with the group veloc-
ity.

The group velocities of the forward propagating sound
wave and the backward propagating Alfvén wave are
dRsvfsd /dk<b and dRsvfsd /dk<−1, respectively. This
means that the energy propagates approximately with speed
b in the forward direction and with speed 1 in the backward
direction. Then, for larget, the perturbed portion of the spa-
tial domain is determined by the approximate inequality
−t,x,bt in the plasma rest reference frame. Ifx8 is the
spatial coordinate in a reference frame moving with velocity
U with respect to the plasma rest reference frame, thenx8

=x−Ut. It follows that the perturbed portion of the spatial
domain in this new reference frame is determined by the
approximate inequality −ts1+Ud,x8, sb−Udt. The insta-
bility is absolute if the left boundary of this interval is mov-
ing backward, and the right boundary is moving forward.
This condition results in −1,U,b. WhenU,−1, the left
boundary is moving forward, the perturbed portion of the
spatial domain is swept away, and the instability is convec-
tive. WhenU.b, the right boundary is moving backward.
Once again the perturbed portion of the spatial domain is
swept away, and the instability is convective.

IV. SPATIALLY AMPLIFYING WAVES

A. Theory

When the pump wave is convectively unstable but abso-
lutely stable, spatially amplifying perturbations can be ex-
cited by a localized source of perturbations periodic in
time.32 A problem of asymptotic response of the system to
such perturbations whent→`, is called a signaling problem.
From the physical point of view, it is very important to de-
termine the frequencies of the localized perturbations for
which the asymptotic response is amplifying in space. Sig-
naling with such frequencies can trigger nonlinear effects
that may either lead to the transition to a different laminar
base state, or cause the transition to turbulence. Since the
pump wave is absolutely stable, an initial perturbation causes
the emergence of an unstable propagating wave packet
which, for t→`, decays in every spatially bounded region,
thus making no effect on the spatial structure formation
through signaling.

The signaling problem can be, therefore, formulated as
the initial value problem in which the initial conditions are
taken to be zero and there is an external perturbation of the
form fsx ,td= f0sxdHstde−ivdt, wheref0sxd is a function with a
finite support, i.e., it is identically zero outside a finite inter-
val, vd is real, andHstd is the Heaviside step function
(Hstd=0 for t,0, Hstd=1 for t.0). Then in the convec-
tively unstable case, instead of Eq.(2) we obtain

drsx,td =E
it−`

it+` e−ivdt

v − vd
dvE

−`

` Ssk,vd

D̃sk,vd
eikxdk, s36d

where the functionSsk ,vd depends on the external perturba-
tion. Note thatSsk ,vd is an analytic function ofk andv.

As in the previous section, we consider the trajectories

of all k-roots ofD̃sk ,vd=0 in the complexk-plane(see Fig.
2). Since the instability is convective, there are no pinching
roots corresponding tov with positive imaginary part. If we
assume that eitherU is slightly smaller thanUl or slightly
larger thanUr, then there are also no pinching roots corre-
sponding tov with Isvd=0. This implies that we can shift

FIG. 2. The trajectories of thek-roots of the dispersion equationD̃sk ,vd
=0 in the complexk-plane whenIsvd decreases fromt.gM +e to 0 while
Rsvd=vd. The small circles indicate the end points of the trajectories. The
thick line shows the integration contour distorted to avoid singularities.
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the Bromwich integration contour in thev-plane slightly be-
low the real axis everywhere except a small vicinity ofv

=vd. Then it immediately follows that the asymptotic behav-
ior as t→` is given bydr=Fsxde−ivdt, where

Fsxd = WE
C

Ssk,vd

D̃sk,vd
eikxdk, s37d

W is a nonzero constant, andC is the integration contour in
the complexk-plane distorted to avoid singularities of the
integrand whenIsvd decreases fromt.gM to 0 while
Rsvd=vd.

Let us first study the asymptotic behavior ofFsxd as x
→`. It is straightforward to see that these asymptotic behav-
ior is determined by the root with the trajectory starting in
the upper part of the complexk-plane that has the smallest
imaginary part at the end of its trajectory. If we denote this
root askr, thenFsxd,eikrx asx→`. The rate of spatial am-
plification is gr

s=−Iskrd. If all roots with trajectories starting
in the upper complexk-plane have positive imaginary parts
at the end of their trajectories, then there are no spatially
amplifying waves propagating to the right.

The same analysis is applicable to the case wherex→

−`. The only difference is that now the asymptotic behavior
of Fsxd is determined by the root with the trajectory starting
in the lower part of the complexk-plane that has the largest
imaginary part at the end of its trajectory. If we denote this
root as kl, then Fsxd,eiklx as x→−`. The rate of spatial
amplification isgl

s=Iskld. If all roots with trajectories start-
ing in the lower complexk-plane have negative imaginary
parts, then there are no spatially amplifying waves propagat-
ing to the left.

B. Calculations

In accordance with the analysis of the last subsection, in
order to study the signaling problem we have to find the
trajectories of thek-roots of (6) when Rsvd=vd and as

=Isvd decreases fromgM +ae to 0, wheree.0. When doing
so we assume that the instability is convective, i.e., either
U,Ul=−1+Osad, or U.Ur=b+Osa2d. We look for the so-
lutions to Eq.(6) in the form of power series with respect to
a. Whenv is realss=0d anda=0, Eq.(6) has five real roots.
It is straightforward to see that the roots of Eq.(6) remain
real in any order approximation with respect toa if the dif-
ference between any two roots in the zeroth-order approxi-
mation is of the order of unity. This means that in this case
there are no spatially amplifying waves. Complex roots of
Eq. (6) can appear only when there are at least two roots
such that the difference between them is of ordera or
smaller. This can occur only whenvd=v̄dj+al, wherel is
real andv̄dj sj=1, . . . ,6d are given by

v̄d1,2= ± s1 − Ud, v̄d3,4= ±
2sb − Ud

1 + b
,

v̄d5,6= ±
2sU + bd

1 − b
. s38d

Note thatv̄d1,2, v̄d3,4 and v̄d5,6 coincide with the first terms
of the asymptotic expansions forv2,3±, v4,5± andv6,7± given

by Eqs.(20)–(22). It is not surprising at all becausev2,3±,
v4,5± and v6,7± are the values ofv for which Eq. (6) has
double roots with respect tok.

Now we substitutev=v̄dj+al+ ias sj=1, . . . ,6d in Eq.
(6) considered as an equation fork, and look for the solutions
in the form of power series with respect toa. Since Eq.(6) is
a fifth-order algebraic equation with respect tok, there are
five roots for any value ofv. However we are only interested
in roots that may have a nonzero imaginary part.

We start from j=1 and takev=v̄d1+av̄, where v̄=l

+ is. In the zero-order approximation the double root of Eq.
(6) is equal to 1, so that we are looking for a solution to Eq.

(6) in the formk=1+ak̄. Substituting these expressions forv

and k in Eq. (6) we arrive at Eq.(25). The solution to this
quadratic equation is straightforward and, as a result, we
eventually obtain

k1
± = 1 +

a

1 − U2FUv̄ −
asU + 1d

4s1 − b2d
± iD1/2G + Osx1/2a3d,

s39d

where

D =
a3v̄s1 − Ud

8s1 − b2d2 − Fv̄ −
as1 + Ud

4s1 − b2d
G2

−
a2v̄s1 + b2d

s1 − b2d2 Fv̄ −
as1 + Ud

4s1 − b2d
G . s40d

Recall thatx=1 whenv̄,1 andx=a2 whenuv̄ u &a. We are
only interested ink-roots that have nonzero imaginary part
when s=0. It is easy to see that, whenv̄ is real and the
expression in the first square brackets on the right-hand side
of Eq. (40) is larger or of the order ofa, D,0 andIsk1

±d
=0. Hence we can haveIsk1

±dÞ0 at s=0 only if

Rsv̄d ; l =
as1 + Ud

4s1 − b2d
+ a2j, s41d

wherej is an arbitrary parameter. Then it immediately fol-
lows thatD.0 if and only if

j2 ,
1 − U2

32s1 − b2d3 . s42d

This inequality can be satisfied only ifuU u ,1. Since we
consider eitherU,−1 or U.b, we impose the restriction
b,U,1. Whens is of the order of unity, we obtain

k1
± = 1 −

ias

U 7 1
+ Osa2d, s43d

which implies thatIsk1
+d.0 andIsk1

−d,0 when s=gM /a
+e. SinceIsk1

+d.0 andIsk1
−d,0 at s=0, we conclude that

the trajectory ofk1
+ssd starts and ends in the upper part of the

complex plane, and the trajectory ofk1
−ssd starts and ends in

the lower part of the complex plane. This result implies that
the rootsk1

± do not give rise to spatially amplifying waves
when ux u →`.

Let us now proceed toj=2. We note that if a pairsv ,kd
satisfies Eq.(6), then the pairs−v* ,−k*d also satisfies Eq.
(6). This means that Eq.(6) has the rootsk2

±=−sk1
±d* when
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v=−v̄d2−al+ ias. Hence, in this case the trajectories of the
two complex roots are symmetric with respect to the imagi-
nary axis to the trajectories of the roots in the casej=1.
Therefore, they also do not give rise to spatially amplifying
waves asux u →`.

Now we takej=3. In this case Eq.(6) has a double root
k=2/s1+bd in the zero-order approximation. Substitutingv

=v̄d3+av̄ and k=2/s1+bd+ak̄ in Eq. (6), we obtain Eq.
(28). The solutions of this equation are

k̄3
± =

sb − 1 − 2Udv̄

2sU + 1dsU − bd

±
ifs1 − bdsU + 1dsU − bd − bs1 + bd4v̄2g1/2

2b1/2s1 + bdsU + 1dsU − bd

+ Osa2d. s44d

We see thatIsk̄3
±dÞ0 at s=0 only if

l2 ,
s1 − bdsU + 1dsU − bd

bs1 + bd4 . s45d

Long but straightforward calculation results in

2s2bd1/2s1 + bdsU + 1dsU − bdIsk̄3
±d = s2bd1/2s1 + bdsb

− 1 − 2Uds ± hfsbs1 + bd4sl2 + s2d − s1 − bdsU + 1d

3sU − bdd2 + 4bs1 − bds1 + bd4sU + 1dsU − bds2g1/2

− bs1 + bd4sl2 − s2d + s1 − bdsU + 1dsU − bdj1/2.

s46d

Let us first considerU,−1. Thenb−1−2U.0 and we im-

mediately obtain thatIsk̄+
3d.0 for any sù0. Hence, the

whole trajectory ofk3
+ssd is in the upper part of the complex

plane andk3
+ does not give rise to spatially amplifying waves

as ux u →`.

The conditionIsk̄3
−d.0 can be reduced to

s2 . SgM

a
D2

−
s1 + bd2l2

sb − 1 − 2Ud2 . s47d

Hence, Isk3
−d.0 at s=gM /a+e so that the trajectory of

k3
−ssd starts in the upper and ends in the lower part of the

complex plane. SinceIsk3
−d,0 at s=0, this implies that the

root k3
− gives rise to a spatially amplifying wave asx→` if

l satisfies Eq.(45).
Now we considerU.b. In this caseb−1−2U,0 and

we immediately see thatIsk3
−d,0 for anysù0. Hence, the

whole trajectory ofk3
−ssd is in the lower part of the complex

plane andk3
− does not give rise to spatially amplifying waves

as ux u →`. The condition thatIsk̄3
+d,0 is once again re-

duced to Eq.(47). Hence,Isk3
+d,0 at s=gM /a+e, so that

the trajectory ofk3
+ssd starts in the lower part of the complex

plane and ends in the upper part. SinceIsk3
+d.0 ats=0, this

implies that the rootk3
+ gives rise to a spatially amplifying

wave asx→−` if l satisfies Eq.(45).
In the case whenj=4 the trajectories of the rootsk4

±ssd
are symmetric to the trajectories of the rootsk3

±ssd with re-
spect to the imaginary axis if we takev=v̄d4−al+ ias. This

implies thatk4
− gives rise to a spatially amplifying wave as

x→` whenU,−1, andk4
+ gives rise to a spatially amplify-

ing wave asx→−` whenU.b.
Let us now takej=5. In this case Eq.(6) has a double

root k=−2/s1−bd in the zero order approximation. Substitut-

ing v=v̄d5+av̄ andk=−2/s1−bd+ak̄ in Eq. (6), we obtain
Eq. (31). The discriminant of this quadratic equation is equal
to

s1 − bd2v̄2 +
s1 + bdsU + 1dsU + bd

bs1 − bd2 . s48d

It is positive whens=0 and eitherU,−1 or U.b. Hence,
the rootsk5

± do not give rise to spatially amplifying waves as
ux u →`. By symmetry, the same is true forj=6.

Summarizing, we conclude that there are spatially am-
plifying waves only if

vd = ±
2sb − Ud

1 + b
+ al, s49d

wherel satisfies Eq.(45). WhenU,−1, there is a spatially
amplifying wave propagating in the positivex-direction.
WhenU.b, there is a spatially amplifying wave propagat-
ing in the negativex-direction. In both cases the spatial am-
plification rate is given by

uIsk3
±s0ddu =

afs1 − bdsU + 1dsU − bd − bs1 + bd4l2g1/2

2b1/2s1 + bdsU + 1dsU − bd
.

s50d

The wavenumber of a spatially amplifying wave isk
= ±2/s1+bd+Osad.

V. SUMMARY AND CONCLUSIONS

In this paper we have studied the absolute and convec-
tive instabilities of circularly polarized Alfvén waves(pump
waves) propagating along the ambient magnetic field. We
have restricted our analysis to the decay instability which
occurs whenb,1 (recall thatb is the ratio of the sound and
Alfvén speeds). To make analytical progress we have as-
sumed that the amplitude of the pump wavea is small and
used expansions in power series with respect toa. We have
shown that the circularly polarized Alfvén wave is absolutely
unstable in a reference frame moving with the velocityUvA

with respect to the rest plasma in the direction of Alfvén
wave propagation ifU satisfiesUl,U,Ur, whereUl=−1
+Osad andUr=b+Osa2d. The instability increment takes its
maximum value given by Eq.(10) whenU=sb−1d /2.

When eitherU,−Ul or U.Ur, the circularly polarized
Alfvén wave is convectively unstable. In this case we have
studied the signaling problem. We have found that the sig-
naling with the frequencyvdv0, wherev0 is the frequency of
the pump wave, gives rise to spatially amplifying waves only
if vd= ±2sb−Ud / s1+bd+al, wherel satisfies the inequality
Eq. (45). These spatially amplifying waves propagate in the
positive x-direction when U,−1, and in the negative
x-direction whenU.b, where the positivex-direction is the
direction of propagation of the pump wave with respect to
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the rest plasma. The wavenumber of a spatially amplifying
wave is ±2k0/ s1+bd+Osad, wherek0 is the wavenumber of
the pump wave.

The results obtained in this paper can have serious im-
plication on the interpretation of observational data obtained
in space missions. Alfvén waves propagating in the solar
wind plasma have been observed during space missions.
Since the Alfvén speed is much smaller than the solar wind
speed at distances of the order of or larger than 1 a.u.(astro-
nomical unit), the phase speed of Alfvén waves in the solar
reference frame is approximately equal to the solar wind
speed. The speeds of space stations with respect to the solar
reference frame are much smaller than the solar wind speed.
This means that the phase speed of Alfvén waves is approxi-
mately equal to the solar wind speed in a space station ref-
erence frame, i.e., it is much larger than the Alfvén speed. In
accordance with the results obtained in this paper this im-
plies that circularly polarized Alfvén waves propagating in
the solar wind plasma are always convectively unstable in a
space station reference frame. Hence, we cannot observe
temporal growth of the Alfvén wave instability in space mis-
sions.

What we can observe during space missions are the spa-
tially amplifying waves produced by this instability. How-
ever, to make such observations is not simple at all. The
reason is that the characteristic scale of spatial amplification
is very large. If we take as typical valuesvA=50 km/s and
vsol=500 km/s, wherevsol is the solar wind speed, then we
obtain for the dimensionless velocity of a space station rela-
tive to the solar winduU u <10. It follows from Eq.(50) that,
for b not very close to zero, which is usually the case in the
solar wind, uIsk3

±s0ddu&a / uU u <a /10. Then the spatial am-
plification scale isL*k0

−1uIsk3
±s0ddu−1<10k0

−1a−1. Let us con-
sider an Alfvén wave with periodT0. The period of this wave
in the solar wind reference frame is approximatelyT0vsol/vA

and its frequency isv0=2pvAsT0vsold
−1<0.6/T0. Then, us-

ing the relation v0=vAk0, we eventually arrive atL
*17vAT0/a. The typical value forT0 is 1 hour. Takinga
=0.1 we obtainL*2.53107 km=1/6 a.u. In view of this
result it is not surprising at all that evidence of the decay
instability of Alfvén waves in the solar wind is sparse.26
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