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Absolute and convective instabilities of parallel propagating circularly
polarized Alfvén waves: Decay instability

M. S. Ruderman® and D. Simpson
Department of Applied Mathematics, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3
7RH, United Kingdom

(Received 9 February 2004; accepted 25 May 2004; published 29 July 2004

The absolute and convective instabilities of circularly polarized Alfvén waves propagating along an
ambient magnetic field are studied. The approximation of ideal magnetohydrodynamics is used. The
analysis is restricted to the decay instability that occurs when the sound speed is smaller than the
Alfvén speed. In addition, it is assumed that the amplitadef an unstable Alfvén wavépump

wave) is small. This assumption allows us to study the problem analytically using expansions in
power series with respect # It is shown that there are quantitie$,<<0 andU, >0, such that the

pump wave is absolutely unstable in a reference frame moving with veldcityth respect to the

rest plasma itJ; <U <U,. If eitherU <U, or U>U,, then the pump wave is convectively unstable.

The expressions fod, and U, are found. The signaling problem is studied in a reference frame
where the pump wave is convectively unstable. It is shown that spatially amplifying waves exist
only when the signaling frequency is in two narrow symmetric frequency bands with the widths of
the order ofa. The implication of the obtained results on the interpretation of observational data
obtained in space missions is discussed. It is shown that circularly polarized Alfvén waves
propagating in the solar wind are convectively unstable in a reference frame of any spacecraft
moving with the velocity not exceeding a few tens of km/s in the solar reference frame. The spatial
amplification scale of these waves is very large, of the order of 1/6 a.u. In view of these results it
is not surprising at all that evidence of the decay instability of Alfvén waves in the solar wind is
sparse. €2004 American Institute of Physics. [DOI: 10.1063/1.1774166

|. INTRODUCTION larized Alfvén waves in a plasma with streaming*Héeons.
. 2,23 4
The problem of stability of finite-amplitude circularly Ling and Abraham-Sraunét, Spangleﬁ and Inhestef

polarized Alfvén waves has attracted the attention of plasmgSed theL kg;et'f (cjie Sdcrtlﬁt'ontt%.ﬁtIUdyf thg stla bll lity Olf Alfvccejn
physicists for the last four decades. This problem has beeffdves. Lou” studie € stability ‘of ‘circularly polarize

studied both from a purely theoretical point of view and fromAIWen waves in a ;elf-grawtatmg lonized med_lum. A com-
the point of view of applications to laboratory and SpaCeprehenswe comparison of theory and observations was given

plasmas. Galeev and Oraevikiiere the first to study this Y Spanglef’ Among recent publications it is worth to note
problem(see also, Sagdeev and Gal@etThis first analysis Papers by Del Zannet al.”*"and by Del Zanna and Vet
was based on the ideal magnetohydrodyna(MéiD) de- Thes'e autho.rs developed a three-_olllmensmnaI. MHD code
scription and assumed that the plasghand the Alfvén wave SPecially designed to study the stability and nonlinear evolu-
amplitude are small. After that the stability analysis was exion of Alfvén waves. They applied their numerical resulgs to
tended in a few different directions. Defognd Goldsteifi  the evolution of Alfvén wave spectra in the solar wit(d]
studied the stability of Alfvén waves with an arbitrary am- and to plasma heating in coronal hofés.
plitude in a finite B8 plasma. Mio et al.>® Mjralhus,7 The traditional treatment of the stability of circularly po-
Ovenderf and Spangler and sSheett! used the derivative larized Alfvén waves is based on the assumption that the
nonlinear Schrodinger equation to study the stability of adensity perturbation is proportional to éifkx—wt)]. With
small amplitude circularly polarized Alfvén wave in a disper- this ansatz for the density perturbation, the linearized MHD
sive plasma. Sakai and Sonnergj,ongtin and Sonneruff, ~ equations dictate how the perturbations of other quantities
Wong and Goldsteift® and Brodin and Stenftd studied the must vary. Jayanti and Hollwéy suggested another ap-
stability of finite amplitude dispersive Alfvén waves on the proach based on the use of Floquet's theorem for linear sys-
basis of the two fluid description. Vifias and Goldstein tems of differential equations with periodic coefficients. Ru-
studied the linear stability of circularly polarized Alfvén derman and Simpsdhimproved on the method developed
waves with respect to obliquely propagating perturbationsby Jayanti and Hollweg, and carried out an analytical analy-
Ghoshet al.’®'" and Ghosh and Goldstéfhused numerical sis of the general properties of the dispersion equation deter-
simulation to study nonlinear evolution of circularly polar- mining the stability of finite-amplitude circularly polarized
ized Alfvén waves in two dimensions. Hollwesj al.'® and  Alfvén waves in ideal MHD. In particular, they proved that,
Jayanti and HoIIwe%j) analyzed the stability of circularly po- for any wave amplitude and any plasmathere is such an
interval of wavenumbers that a harmonic perturbation is un-
dElectronic mail: m.s.ruderman@sheffield.ac.uk stable if its wavenumber is in this interval and stable other-
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wise. They also studied the dependence of the boundaries efgenmode where the density perturbation is proportional to
the interval of unstable wavenumbers on the Alfvén waveexdi(Kx-Qt)]. In Eq. (1), o=Q/w, k=K/k;, and b
amplitude and plasmg. =cs/va, Wherecg is the sound speed ang, is the Alfvén

It is well known that the normal mode analysis is not speed calculated with the use of the ambient magnetic field
sufficient to conclude whether a stationary state, homogeB,. Note thatwy=vK,. The dimensionless amplitude of the
neous in at least one spatial direction, appears stable or uadfvén wave, a, is equal toB, /By, whereB, is the magni-
stable in a fixed reference frame. When the normal modéude of the perpendicular component of the magnetic field in
analysis predicts stability, the further study is not neededthe Alfvén wave.
However, a steady state can appear stable in a fixed reference For any values ofa and b there is such an interval
frame even when there are growing normal modes. In thigk,,k,) that, for anyk e (k;,k,), Eq. (1) has exactly one root
case we have to distinguish between the absolute and comith positive imaginary par?.l This result implies that a cir-
vective instabilities?** The type of instability, either abso- cularly polarized Alfvén wave is always unstable with re-
lute or convective, is determined by the asymptotic behaviospect to normal modes.
of the initial perturbations. Two different kinds of asymptotic As we have already mentioned, the normal mode analy-
behavior are possible. It is possible that the initial perturbasis is insufficient to conclude whether or not the wave looks
tion grows exponentially with time at any fixed spatial posi- unstable at a fixed position. The wave does look unstable if
tion. This situation is referred to as “absolute” instability. It the instability is absolute. If the instability is convective, the
is also possible that the initial perturbation grows exponenwave looks stable in spite of the presence of unstable eigen-
tially with time, but simultaneously it is convected out of any modes. The type of instability, either absolute or convective,
finite portion of the spatial domain so fast that eventually itdepends on the reference frame. The wave can be absolutely
decays exponentially at any fixed spatial position. This situ-unstable in one reference frame and convectively unstable in
ation is referred to as a “convective” instability. The conceptanother. Therefore, in what follows we study the absolute
of absolute and convective instabilities was first developed irmnd convective instabilities in a reference frame moving with

plasma physicd”*® Later it was applied to hydrodynamic an arbitrary velocityU along thex-axis with respect to the
stability problems, in particular, to stability of geophysical hackground plasma.

and astrophysical flow§*° To distinguish between absolute and convective insta-
The distinction between absolute and convective instapjjities we have to solve the initial value problem for the

bilities is especially important for interpretation of observa-jinearized MHD equations using the Fourier transform with

tional results obtained during space missions. A space prob@spect tax and the Laplace transform with respect to time.

will observe an unstable circularly polarized Alfvén wave as a result, we obtain for the density perturbation the expres-
only if this wave is absolutely unstable in the reference framejgn

of the probe. To our knowledge nobody has yet studied the _
absolute and convective instabilities of circularly polarized IrHee Ciot “ Tk, w)
Alfvén waves. Our paper aims to fill this gap. Sp(x.t) = - ¢® dw Bk
The paper is organized as follows. In the next section we " — Dko)
formulate the problem and give a brief description of Briggs’ ~ _ ~ ~_ .
method for studying absolute and convective instabilitfes. nge D(k, w)=D(k,), v@ere.w—aﬁl‘(U 'S_the Doppler.-
In Sec. Il we study the absolute and convective decay instashifted frequency and=U/uv, is the dimensionless velocity
bilities of small amplitude circularly polarized Alfvén waves. ©f the reference frame. The functiditk, ) is determined by
In Sec. IV we study the signaling problem for convectively the initial conditions and is not important for what follows.
unstable Alfvén waves. Section V contains discussion and he Bromwich integration contouf(w)=r (J indicates the

k. (2

summary. imaginary part of a quantijyis above all zeros o~D(k,w)
considered as a function af, i.e., 7 is larger than the maxi-
Il. FORMULATION AND METHOD DESCRIPTION mum increment of unstable eigenmodes.

Now we give a brief description of Briggs’ method for

We study the stability of a circularly polarized Alfvén gy,qying absolute and convective instabilitédhe starting
wave (pump wavg propagating along the mean magnetic hoint of Briggs’ method is Eq(2). To determine if the insta-

field in the framework of ideal MHD. In Cartesian co- pijity is absolute or convective we have to determine the
ordinatesx,y,z with the x-axis in the direction of the mean asymptotic behaviour afp ast — = andx is fixed. To do this

magnetic field, the perturbations of the density, pressure ange move the Bromwich integration contour down. If we
thex-component of the velocity in this wave remain equal tojyapage to move it slightly below the real axis, this will

zero. They and z-components of the velocity and the mag- mean thatsp decays with time exponentially and the insta-
netic field are proportional to eitkox—wot)], and their  hjjity is convective.

magnitudes are constant. The stability of tgils wave is deter- | ot 4 pe the maximum increment of the instability. We
mined by the following dispersion equatf’o‘}'n will move the Bromwich integration contour down point by
D(w,k) = (0? = b%k?)(w - K)[(w + k)% - 4] point. We take a point on this contour, fix its real past,
and start to decrease the imaginary partinitially w;> y\,
—a22( 34 2 — - Y i
k(o™ + o™k =30 +k) =0. (@) which implies that the equatiob(k, w)=0, considered as an
This equation determines the stability with respect to arequation fork at fixed w has no real rooténote that we now
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FIG. 1. The trajectories of thk-roots of the dispersion equatidi(k,w)
=0 in the complexk-plane whenJ(w) decreases from> vy, + € until the

points of the trajectories and the arrows the direction of the root motion. The
thick line shows the integration contour distorted to avoid singularities. We
see that the two colliding roots with trajectories starting at different sides of
the contour pinch the contour. The two colliding roots with trajectories

starting at the same side of the contour do not pinch it.

M. S. Ruderman and D. Simpson

op 12 exgt(wim—iom)], 3)

where o;,=max(wj)).
The analysis in this section implies the following method
of studying the absolute and convective instabilities.

First we have to calculate the maximum growth rate
of the instability y,.

Then we have to calculate all double-roots of the dis-
persion equation. These roots satisfy the two equa-
tions

D(k,w) =0, 9D _. (4)

ak

This system of equations determines double rokisand

corresponding values ab.
pinching occurs, whiléR(w) is fixed. The small circles indicate the end (iii)

Now we consider all pairs of solutions to E),
(k,w), and choose only those witk satisfying the
inequality

0< wj = - (5)

We consider only pairs witho;>0 because pairs witlw;

regardk as a complex variabje Since w, is fixed andw;

<0 cannot cause absolute instability. The reason why we

varies, thek-roots of the equatio®(k, w) =0 are functions of ~reject pairs withw;>yy is the following. Let(k,w) be a
w.. When o, decreases, these roots move in the complesolution of Eq.(4) andw; > yy. We always can take< w; in

k-plane (see Fig. 1 It can occur that one of th&-roots

Eq. (2). Then the double rodt cannot appear as a result of a

becomes real for some value @f. Then we cannot integrate collision of twok-roots when the Bromwich integration con-
along the reak-axis in Eq.(2) because the integrand has atour is moved down. If there are no paifk,w) with o
singularity on it. However, this problem is easily cured. Wesatisfying Eq.(5) then the instability is convective.

simply deform the integration contour in such a way that the(iv)
root trajectory does not cross the deformed contsee Fig.

1). Since the integrand is an analytic functionkpfthe inte-

gral does not change.

A real problem occurs when two roots, one coming from
the upper and one from the lower half of the complex
k-plane, collide to form a double root as shown in Fig. 1. Itis
obvious that now we cannot deform the integration contour
to avoid a singularity of the integrand. Hence we cannot
decreasew; any further. The two colliding roots “pinch” the
integration contour, and this is why the double root that they(v)
form is called a “pinching” root. Of course, it is also possible
that two roots both coming either from the upper or from the
lower part of the complex-plane collide to form a double
root. It is clearly seen in Fig. 1 that these roots do not pinch
the integration contour, and this is why the double root that
they form is called a “nonpinching” root.

It is clear from the previous analysis that the Bromwich
integration contour can be moved below the realxis if the
pinching does not occur for any fixad, and anyw;=0. In
this casedp given by Eq.(2) decays exponentially as— o

Among all pairs(k,w) satisfying Eqg.(5) we retain
only those wherek is a pinching double root. To
verify thatk is pinching, we fixw, and increase the
imaginary part ofw from w; to yy +e€, wheree is any
positive quantity. As a result we obtain the trajectories
of the two k-roots that collide at the poirk of the
complexk-plane. If the end-points of these trajecto-
ries are on different sides of the real axis in the com-
plex k-plane, then the double root is pinching. Other-
wise it is nonpinching.

Finally, among all pairgk, w) satisfying Eq.(5) and
the condition thak is pinching, we choose one with
the largestw; (of course it is possible that there are a
few pairs with the same;). Using the notatiorw;,

for this largest value ofw;, we obtain that the
asymptotic behavior of the density perturbation is
given by Eq.(3).

Ill. ABSOLUTE AND CONVECTIVE DECAY

and the instability is convective. On the other hand, if pinch-INSTABILITIES OF SMALL-AMPLITUDE ALFVEN
ing occurs for some, and w; >0, then we cannot move the WAVES

Bromwich integration contour below the real axis in the
complexw-plane.

Using Eq.(1) we write the system of Eq$4) determin-

In what follows we assume that there are only a finiteind the doublek-roots in the form

number of pinching roots, say, Let pinching occur when
o =w;j andwj=wj;, j=1,... n. Then the asymptotic behav-
ior of dp ast— is given by?

(@® - b%K?) (@ - K)[(®+K)? - 4]

- a’k¥(@® + w9’k - 3w +Kk) =0, (6)
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~4 _ 2\~ 31, 2\~ 21,2 2~1,3 2 -1 bU b 1/2

B~ 2(1 + )@k~ 3(L + b?)@k? + 4bZak® + 52 c6,7:—b¢§[ (L+b)(U+ )] Lo, wa
+ 432 + 8020k — 12024 — a2k(2a° + 35K - 60 4L b1 +U)
+3k) + U[50* + 40°k — 3(1 + b?) @’K? In Egs. (12—(14) the upper signs correspond ¢g, c,, and

~ ~ Cs, and the lower signs tos, cs, andc,, respectively. We use
= 2(1+b%al’ + bk’ - 127 + 8k + 40%K” the agreement that the square root of a positive quantity is
- a’k’(3w’+ 2kw — 3)]=0. (7)  positive, and the square root of a negative quantity is purely
imaginary with a positive imaginary part. Although only the
Let us introduce the phase velocity in the moving referenceirst two terms are given in the expansion fgy it is easy to
framec=w/k. Then we can reduce the system of equationsshow that all terms in this expansion are real. The expansions

Egs.(6) and(7) to Egs.(12)~(14) are valid only if|1+U|>a? The case where
s o o |1+U|=0(a%) will be discussed later.
o _AMe- (e -b)-a%(3c- 1) 1 8) Now we use Eqs(8) and(11)—«14) to obtain seven pairs
(c+D[c* - (1 +a®+b*)c? +b?] of doublek-roots:
H —_h2
A(L+U)(c+ 1)(c - 1)2(c? - b)? - a[c® + 4c5 - 3c ko= £ 2820 L o), (15
- a
- 2(1 + 3v%)c®+ 3b’c? + 4b’°c - b?] + U[ 6¢° - 2¢*
- (5 + 70%)c®+ 4b%c? + (1 + 5b?)c - 2b°]} ) a2 a’u
+= T 1- +
+a[2c3+U(3c®-¢c)]=0. 9) 23 41-b9) " 41 -b)¥2(1 - U]
Jayanti and Hollwelj have used the Alfvén wave am- +0(a", (16)
plitude a as a small parameter. As a result they have man-
a_ged to study the dispersion equat'(am.analyt.ically. In par- S 2 all-bY(1-b+2U)
it:‘]cslilaElljl)‘iliE[gey have calculated the maximum increment of the 45:= %) 1 + 2(1 +b)2[b(U + 1)(U - b) |2
In this paper we follow the approach adopted by Jayanti +0(a?), (17
and Hollweg and also consider as a small parameter. In
beat nstabity(b 1) il be stuciec m the accompanying  kezu= & | 25— 2L+DMALTb+20)
Y banying 77 F) 1o 2(1-b)Z— b(U + 1)(U + b) ]2

paper. Hence, in what follows, we take<®< 1. In addition
we assume théat is not close to 0 or to 1. +0(a?). (18)

In Eg. (16) the upper sign at the last term in the curly brack-

ets corresponds tk,, and the lower sign té;. The “+” and

“~" signs at the curly brackets correspondkgs, andk; 5.,
The maximum increment of the decay instability with respectively. The same rules are applicable to Et8. and

the accuracy up to the first nonzero term in the expansioil8).

with respect toa is given by

A. Calculation of the double roots

a(1-h)l?

m. (10 B. Selection of double roots corresponding to

positive increments not exceeding the maximum
Now we calculate the double roots of the dispersionincrement
equation considered as an equationKoWe start from cal- Using the relationo=k(c—U), we obtain the values ab
culating the roots of E9). Whena=0, Eq.(9) has seven ¢orresponding to the doubleroots:
roots:c;=-1, ¢, 3=1, ¢4 5=b, andcg ;=-b. In the next order

™=

Lo . ; o
approximation with respect ta we obtain wra= & 8i(l-b 3(1 +U) +O(). 19
a2
G=-1- +0(@%, (11
4(1—b2) ~ +{1 U+a2(1+U)+a3{2(1—U2)}1/2}
W3 3+= T - _ r— ~
@ @ -y AL-b%) " 8L (-1
ottty felarua-mr 0@ +0(@@), (20)
12
2 _ +{2(b—U) . a[(1—b)(u+1)(u—b)]1’2}
W45+~ = - 1/2 2
L a-bu-p ], 1+b b1 +b)
Cy5=bx 4{ b(1+U) } +0O(a%), (13 L 0@, 2
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2(b+VU) = a[-(1+b)(U+1)(U+b)]?
we7:+= % 1-b t bY2(1 - b)2
+0(a?). (22)

Now we proceed to the third step of the analysis as de-
scribed in Sec. Il and retain only the double-roots corre-

sponding tow with the imaginary part between 0 ang,.
First of all, it is obvious thati(w,.) is either negative or
larger thany,,. Hence, we rejeck;..

J(wp3) #0 only if |U[>1. In this case & J(ws,)
=T (w3-) <ym, andJ(w,-)=TJ(w3,) <0. Hence, we retaik,,
andks_, and rejeck,_ andKks,.

J(wgs0)#0 only if —1<U<b. In this caseJ(w4-)
=J(ws,) <0, so we rejeck,_ and ks,. On the other hand,
J(ws4)=T(ws_) >0, and it is straightforward to show that
J(wyy) < ym- Therefore, we retail,, andks_.

J(wg 7+) # 0 only if eitherU <-1 orU >-b. In that case
J(wg-)=T(w74) <0, so that we rejecks_ and k;,. On the
other hand,J(wg,) =F(w7_)>0. The conditionJ(wg,) < yu
reduces tdJ_<U<U,, where

b+1
- 2

(1-b)(1 +3p)"?
21/2(1 + b)3/2

(23)

It is straightforward to show thdl_<-1<-b<U,. Sum-
marizing, we conclude that the inequality<®(wg.) < yu IS
satisfied if and only ifU satisfies the condition

U.<U<-1or -b<U<U,. (24

Hence we retairkg, andk,_ only if Eq. (24) is satisfied and
reject otherwise.

C. Selection of pinching double roots

M. S. Ruderman and D. Simpson

@2+ 2Uwk + K¥(U2 - 1)

_ w+k(U+1)
)

a? {
Ta1-m)
1+ (@ +kU)?

2(1-b?

7+b)k% —_ —
(2(I—t12) + k(w + kU)

] +O(xa%), (25
wherex=1 wheno~ 1 andy=a’ wheno < a. Equation(25)
is a quadratic equation with respectkand its solution is

straightforward. Taking into account the relatide 1 +ak
and Eq.(16) determiningk,,, the two roots of Eq(6) close

to unity are given by
ia a’a(1+b?)
K=Ky + —5—-Uot| ?+ ———5=
2 u2—1{ 7 { (1-b)?

2 2 _1\1/2 |12
L aoU-) } }+O(X1’2a3).

[2(1 _ b2)]3/2 (26)

When o=0, k*=k =k,, as it should be. Let) be positive
(recall that we considet)?>1). ThenJ(k,,) >0 andJ(k")
decreases monotonically whenincreases from 0 ter,+e.
J(k") increases whemr varies from 0 tooy given by

_ a4 +b?) +[2(1 D) (U2 - DY
M7 161 -p)HUU-D]2ru-1 7%

(27)

Then3J(k*) decreases monotonically whenvaries fromoy,

to o,+€. J(k¥)=-ao,/(U£1) <0 ato=0,. Since bothJ(k*)

and J(k) are monotonically decreasing functions for

o> oy, we conclude thali(k¥) <0 at o=0,+€. We see that

both roots,k* andk™, come from the same side of the real

axis. This implies thaks,, is not a pinching double root.
When U <0, J(k,,) <0 andJ(k*) increases monotoni-

In the last step of the analysis we have to ascertairtally wheno varies from 0 tao,+e. J(k7) decreases whem
whether or not the retained double-roots are pinching. Weyaries from 0 tooy,. ThenJ(k™) increases whemr varies
start this last step of the analysis with one note. It is easy tfom oy, to o,+e. J(k¥)=-ao,/(U+1)>0 at c=0,. Since
see thaks_=—kj,, ks-=-kK;, andk;_=—kg,, where the aster- 5(k*) and J(k") are monotonically increasing functions for
isk indicates a complex conjugate quantlty The same relag> o, we conclude thad(k¥) >0 ato=0,+e. Once again

tions are valld for the frequenciegis_=- w2+, w5_=~— w4+,
and w;_=-wg,. Obviously, if the pairk, w) satisfies Eq(6),
then the pairn-k’,-o") also satisfies Eq6). This implies

this implies thatk,, is not a pinching double root. Summa-
rizing, we conclude thélt,, is not a pinching double root for
U>1oru<-1.

that the trajectories of the roots that collide to form the  Note that the trajectories of the two colliding roots are
double rootk,,, and the trajectories of the roots that collide gn the line R(K)=R(k,,) (R indicates the real part of a
to create the double rodg_, are symmetric to each other quantity), so that the trajectories partly overlap. This peculiar
with respect to the imaginary axis in the complexplane.  pehavior of the trajectories is attributed to the approximation
Hence, the rootk,, andks_ are either both pinching or both that we use. If we continue the calculation to the next order
nonpinching. The same is true fég, andks_, and forks,  approximation, then we would obtain that the real partk*of
andk,_. This observation enables us to restrict the analysis tgnd k- are different whenr+0, and the trajectories would

the rootsk,,, ks4, andkg,.

not overlap anymore. We do not carry out this calculation

Let us now study the behavior of the trajectories of thepecause it would not affect our main conclusion that the

roots that collide ak=k,,. To do this we takev=w,,+iao,
whereo varies from 0 too,+ € with o»=[ yy—J(w,,)]/a and
€>0. Then we substitute=1-U+aw in Eq. (6) and look
for the solution to the obtained equation in the fokm1

+ak. As a result we obtain

double rootk,, is not pinching.

Now we proceed to the trajectories of the roots that col-
lide atk=k,,. We takew=w,,+iac, whereo varies from 0
to o4+ e with 0,=[ y»—TJ(w44)]/@a ande>0. We assume that
-1<U<b, so thatJ(w,,)>0. We look for the solution to
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Eq.(6) in the formk=2/(1+b) +ka. Substituting this expres-

sion into Eq.(6), we arrive at the quadratic equation for

_INLK2 _ RV T2 1—_b
U+1)(b-Uk"-(2U+1-b)wk- o (1 +D)?
=0(a), (28)
where
rea N2
o A-DU+D(b-U)] 29

bY(1 +b)?

The solution of Eq(28) is straightforward and eventually we

obtain for the roots colliding &k,, the expressions

K=Ky, + {(2U+1-b)o+[(1+b)%c?

ia
20U+ 1)(b-UV)
+20b7Y%(1 -b)(U + 1)(b - U))?]"%} + O(a%).
(30

Absolute and convective instabilities... 4183

. iao_1/2
ko= ket 2(U+1)(U +b)
+[(1-b)%0+2b7Y2((1 +b)(U + 1)(U + b)) 2]

+0(a%). (33

{-(2U+1+b)o*?

We see thak"=k =kg, when o=0. For 2J+1+b>0 we
obtain J(ks,) <0 and J(k") is a monotonically decreasing
function of o, so that the trajectory df” does not cross the
real axis. Lengthy but straightforward calculation results in
the relation

a’(1+30%)(U+1)(U+b)
2b(1 - b?)?

J3(k)I(kh) = >0, (34)

valid when o=0g Since J(k)<0, we conclude that
J(k*)<0. Then, takinge small enough, we can guarantee
thatJ(k") <0 ato=o0g+e€. Depending orb andU, J(k*) can
either be a monotonic or nonmonotonic functioncofin the
latter case the trajectory & can cross the real axis, how-
ever, it always returns to the lower part of the complex
k-plane wheno increases up tog+e. Hence, the trajectory

of k* either crosses the real axis an even number of times, or

When 2+1-b>0, J(k*) is a monotonically increasing 90€s not cross it at all. This analysis leads to the conclusion

function of o. SinceJ(k,,) >0, it follows thatJ(k") >0 for

any o >0 and the trajectory df* does not cross the real axis.

thatkg, is not a pinching double root.
In the case when2+b+1<0 the analysis is quite simi-

It is easy to show thaBi(k") is a monotonically decreasing '@ Now J(ks,)>0 andJ(k") is a monotonically increasing

function of o, and 3(k")=0(a?) at o=0,. Then it follows

function of o, so that the trajectory df" does not cross the

thatJ(k") <0 ato=o,+e whene is not too small, so that the €@l axis. It follows from Eq(34) that 3(k")>0 at o=0g.

trajectory ofk™ crosses the real axis once. Hence we con

clude thatk,, is a pinching double root.

When 2J+1-b<0, it follows thatJ(k,,) <0, and once
againJ(k*) is a monotonically increasing function of and
J(k") is a monotonically decreasing function of In addi-
tion, J(k")=0(a% at =0y, so thatJ(k')>0 at o=0,+€
whene is not too small. Hence, the trajectory lof does not

cross the real axis, while the trajectoryldfcrosses the real

axis once. This implies that, once agalg, is a pinching
double root.

Once again, taking: small enough, we can guarantee that
J(k)>0 at o=0g+e€, so that the trajectory ok™ either
crosses the real axis an even number of times, or does not
cross it at all. Hence, we conclude thgt is not a pinching
double root. Note that, similar to the trajectories of the roots
colliding atk,., the trajectories of the roots colliding kg.
partly overlap. The discussion of this phenomenon given in
the case of the double rok}, is also applicable to the case

of the double rooks,.

Finally, we consider the trajectories of the two roots that

collide atkg,. We takew= wg,+iaoc with o varying from 0 to
og+€, whereog=[yy—J(wgs)]/a, and e>0. Now we look

for the solutions to Eq(6) in the form k:—2/(1—b)+aE
Substituting this expression in E¢6) we obtain the qua-

dratic equation fok,

- =, 1+b
(U+1)(U+bk*+(2U +1+b)wk+ w 4b(1-b)?
- 0(a), (31
where
] @a+pMu+ U+
w= |{o’+ bl/2(1 —b)2 } (32)

D. Summary

Summarizing the analysis of this section, we conclude
that, in the case when <1U<Db, there are two pinching
double rootsk,, andks_, corresponding to the same incre-
ment

al(1-b)(U + 1)(b- U)J*?
bl/2(1 +b)2

¥=T(w44) = (ws) =

+0(a?). (35

WhenU<-1 or U>Db, there are no pinching double roots
corresponding taw with a positive imaginary part. Hence,
the circularly polarized Alfvén wave is absolutely unstable if
—-1<U<b, and convectively unstable otherwise. We obtain
the maximum incrementy=y,,, whenU=(b-1)/2, which

is equal to the group velocity of the wave mode that has the

The solution of Eq(31) is straightforward, and eventually maximum growth raté® This result is in complete agreement

we arrive at the following expression for the two roots col-with the general

liding at kg,:

theory of absolute and convective
instabilities%33
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Let us make a comment on the accuracy of the expres- Tm(k)
sions for the lower and upper boundaries of the absolute L ki
instability. We observe that the second term in &1, is of
the order of neglected termg)(a?), when U-b=0(a?).
Hence, in this case we cannot claim tHHiw,,) >0 even
when U >b. Therefore, the upper boundary of the absolute
instability is U, =b+0O(a). Re(k)

WhenU=-1+Ua, whereU # 0 and|U| is of the order of
unity, the analysis has to be modified. The teftta*) on the
right-hand side of Eq(12) has to be substituted b§(a’?),
and the term#€(a?) on the right-hand sides of Eg&l3) and
(14) by O(a%?). As a result, the last term on the right hand
side of Eq.(21) will be ©(a®?) instead ofO(a?). This im-
plies that the neglected terms in E@Q1) are of the same
order as the second term in the curly brackets and we cannetG. 2. The trajectories of thie-roots of the dispersion equatidd(k, w)

: . __ - =0 in the complex-plane wherfi(w) decreases from> vy, +¢€ to 0 while
%arantee thati(w,.) is positive whenU=-1+Ua with R(w)=wy. The small circles indicate the end points of the trajectories. The

U>0. This means that the lower boundary of the absolutehick line shows the integration contour distorted to avoid singularities.
instability isU;=-1+0O(a).

We can give a simple physical interpretation of the result
that the instability is absolute in a reference frame movingV- SPATIALLY AMPLIFYING WAVES
with the velocityU satisfying —1<U <b. The decay insta- A. Theory
bility is a decay of the pump wave in the forward propagat-
ing sound wave and backward propagating Alfvén waee,
Jayanti and HoIIweﬁ). As a result of the instability, the bot
waves grow at expense of the pump wave. betwi(k) be
the dispersion relation for the forward propagating soun
wave, andw=wpa(K) be the dispersion relation for the back-
ward propagating Alfvén wave. Then, for small RR(wss)
~bk, R(wpp) =2-k, while J(w) ~T(wpa) ~a. In general,
the concept of group velocity is irrelevant for growing per-

Ky

When the pump wave is convectively unstable but abso-
h lutely stable, spatially amplifying perturbations can be ex-
cited by a localized source of perturbations periodic in
Jime® A problem of asymptotic response of the system to
such perturbations when- «, is called a signaling problem.
From the physical point of view, it is very important to de-
termine the frequencies of the localized perturbations for
which the asymptotic response is amplifying in space. Sig-
turbations. However, we still can use this conceptdomly naling With. such frequencies can trigger npnlinear effgcts
' that may either lead to the transition to a different laminar

growing waves, i.e., for waves with the increment much o !
: base state, or cause the transition to turbulence. Since the
smaller than the frequency. For such waves we determine the

. ump wave is absolutely stable, an initial perturbation causes
group velocity asjm(g))/dk. In the case (.)f stable waves the fhe Fe)zmergence of anyunstable propagF;ting wave packet
energy propagates with the group Vek.)C'ty' For slowly 9"OW-\hich, fort— oo decays in every spatially bounded region
:tnyg waves it propagatespproximately with the group veloc- thus making no effect on the spatial structure formation

' . . through signaling.
The group velocities of the forward propagating sound Tgle signaling problem can be, therefore, formulated as
wave and the backward propagating Alfvén wave argq : '

. . initial value problem in which the initial conditions are
dR(ws)/dk~b and dR(w)/dk~—1, respectively. This taken to be zero and there is an external perturbation of the

means that the energy propagates approximately with speed f(x,t)= it . . .

) .2 . . ) =fo(x)H(t)e™“d", wherefy(x) is a function with a
b.m the forward direction and with speed 1 n the l:)"’ICKW"’“dﬁnite support, i.e., it is identically zero outside a finite inter-
d_|rect|on. _Th(_::n, for Iarge, the perturbed porF'O” of _the spa- val, wy is real, andH(t) is the Heaviside step function
tial domain is determined by the approximate mequallty(H(t):O for t<0, H(t)=1 for t>0). Then in the convec-

—t<_x< bt in .the p_Iasma rest reference frarne.th is the _tively unstable case, instead of E@) we obtain
spatial coordinate in a reference frame moving with velocity

U with respect to the plasma rest reference frame, ttien _ T grlod * Sk,o)
- . . op(x,t) = do| =
=x-Ut. It follows that the perturbed portion of the spatial . - _
o : : 7o d = D(k, @)
domain in this new reference frame is determined by the
approximate inequality t1+U)<x’'<(b—U)t. The insta- Where the functiorS(k, w) depends on the external perturba-
bility is absolute if the left boundary of this interval is mov- tion. Note thatS(k, ) is an analytic function ok andw.
ing backward, and the right boundary is moving forward. As in the previous section, we consider the trajectories
This condition results in —¥U<b. WhenU <-1, the left  of all k-roots of D(k,w)=0 in the complex-plane(see Fig.
boundary is moving forward, the perturbed portion of the2). Since the instability is convective, there are no pinching
spatial domain is swept away, and the instability is convecroots corresponding t@ with positive imaginary part. If we
tive. WhenU > D, the right boundary is moving backward. assume that eithdd is slightly smaller tharlJ, or slightly
Once again the perturbed portion of the spatial domain isarger thanU,, then there are also no pinching roots corre-
swept away, and the instability is convective. sponding tow with J(w)=0. This implies that we can shift

edk, (36)
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the Bromwich integration contour in the-plane slightly be- by Egs.(20)+22). It is not surprising at all because, 3.,
low the real axis everywhere except a small vicinity @f w45, and wg 7. are the values ofv for which Eq. (6) has
=wy. Then it immediately follows that the asymptotic behav- double roots with respect ta

ior ast— is given by p=F(x)e '*d, where Now we substitutan=wg+ar+iao (j=1,...,8 in Eq.
Sk | (6) considered as an equation fqrand look for the solutions

Fx)=W/|[ ——*dk, (37) in the form of power series with respectdoSince Eq(6) is
c Dk, w) a fifth-order algebraic equation with respectkothere are

five roots for any value ob. However we are only interested
in roots that may have a nonzero imaginary part.

We start fromj=1 and takew=wy;+aw, where w=\
+io. In the zero-order approximation the double root of Eq.
(6) is equal to 1, so that we are looking for a solution to Eq.

W is a nonzero constant, aritis the integration contour in
the complexk-plane distorted to avoid singularities of the
integrand whenJ(w) decreases fromr>1y, to 0 while
R(w) = wyg.

Let us first study the asymptotic behavior Bfx) asx ) T )
.. Itis straightforward to see that these asymptotic behay(®) In the formk=1-+ak. Substituting these expressions or
ior is determined by the root with the trajectory starting in 2ndK in Eq. (6) we arrive at Eq(25). The solution to this
the upper part of the complekplane that has the smallest quadratic equa.tlon is straightforward and, as a result, we
imaginary part at the end of its trajectory. If we denote this€ventually obtain

root ask,, thenF(x) ~ €k* asx— . The rate of spatial am- . a _ alU+1) .
plification is y;=-J(k,). If all roots with trajectories starting kp=1+ 1-02 [U‘*’ Ta1-09) t 'Dllz] +0(x"%ad),
in the upper complek-plane have positive imaginary parts
at the end of their trajectories, then there are no spatially (39
amplifying waves propagating to the right. where
The same analysis is applicable to the case where
—o. The only difference is that now the asymptotic behavior _@%(1-U) | a(l+Uu)|?
of F(x) is determined by the root with the trajectory starting B 8(1 —b?)? @ 4(1-b
in the lower part of the complek-plane that has the largest — ’
imaginary part at the end of its trajectory. If we denote this _a w(l+b ){;_ a1 +U)} (40)
root ask;, then F(x) ~€** as x——wx. The rate of spatial (1-b?? 41-b% ]

amplification isy=J(k)). If all roots with trajectories start- Recall thaty=1 whenw~ 1 andy=a2 when|o] <a. We are
ing in the lower complex-plane have negative imaginary X X -

) s only interested irk-roots that have nonzero imaginary part
parts, then there are no spatially amplifying waves propagatwhen o=0. It is easy to see that, whem is real and the
ing to the left. X '

expression in the first square brackets on the right-hand side
of Eq. (40) is larger or of the order of, D<0 andJ(kj)
=0. Hence we can havi&kj) # 0 ato=0 only if

In accordance with the analysis of the last subsection, in a(1+U)
order to study the signaling problem we have to find the R(w)= )\:m +a%, (41)
trajectories of thek-roots of (6) when R(w)=wy and ac
=J(w) decreases fronyy +ae to 0, wheree>0. When doing  where ¢ is an arbitrary parameter. Then it immediately fol-
so we assume that the instability is convective, i.e., eithefows thatD >0 if and only if
U<U,=-1+0(a), or U>U,=b+O(a?. We look for the so- 5
lutions to Eq.(6) in the form of power series with respect to f< 1-U
a. Whenw is real(c=0) anda=0, Eq.(6) has five real roots. 32(1-b%*
It is straightforward to see that the roots of ) remain This inequality can be satisfied only B} <1. Since we

real in any order approximation ‘.N'th respectaaf the dif- .consider eitheld<-1 or U>b, we impose the restriction
ference between any two roots in the zeroth-order approxiz . . )
C . . S b<U<1. Wheno is of the order of unity, we obtain
mation is of the order of unity. This means that in this case
there are no spatially amplifying waves. Complex roots of
Eq. (6) can appear only when there are at least two roots
such that the difference between them is of ordeor S
smaller. This can occur only wheng=wg;+ax, wherex is  which implies thatJ(k;) >0 and 3(k)) <0 wheno=yy/a
real andadj (j=1,...,6 are given by +e. SinceJ(k;) >0 andJ(k;) <0 ato=0, we conclude that
the trajectory ok; (o) starts and ends in the upper part of the

B. Calculations

(42)

iao

Ux1

ki=1- +0(a?), (43

w41 2= +(1-U), wg34= * M complex plane, and the trajectory I6f(o) starts and ends in
’ ' 1+b the lower part of the complex plane. This result implies that
o 2(U +b) the rootsk; do not give rise to spatially amplifying waves
Wds6= £ (38)  when|x| — .

Let us now proceed tp=2. We note that if a paifw,k)
Note thatwy; 5, wgs 4 and wgs ¢ coincide with the first terms  satisfies Eq(6), then the pain-w”,-k") also satisfies Eq.
of the asymptotic expansions fak, 3., w4 5. andwg 7+ given  (6). This means that Eq6) has the roots;=~-(k7)" when
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o=-wgp-a\+iac. Hence, in this case the trajectories of theimplies thatk; gives rise to a spatially amplifying wave as
two complex roots are symmetric with respect to the imagix— « whenU < -1, andk; gives rise to a spatially amplify-

nary axis to the trajectories of the roots in the casd.

Therefore, they also do not give rise to spatially amplifying

waves agx| — ce,
Now we takej=3. In this case Eq6) has a double root
k=2/(1+b) in the zero-order approximation. Substitutiag

=wg+aw and k=2/(1+b)+ak in Eq. (6), we obtain Eq.
(28). The solutions of this equation are
= _ (b-1-Ww
3T 2U+1)(U-b)
LA-bU+D(U-b)-b(1+ b)*w?]M?
2bY%(1 +b)(U + 1)(U - b)

+0(a@). (44)
We see thaﬁ(@) #0 ato=0 only if
N2 (1-b)(U+1)(U-b) (45)

b(1 +b)*
Long but straightforward calculation results in

2(2b)Y2(1 +b)(U + 1)(U - b)3 (k&) = (20)%(1 +b) (b
—1-20)o+{[(b(1+b)*\?+0?) - (1-b)(U+1)
X (U -b))2+4b(1 -b)(1 +b)*(U + 1)(U - b)d?]*2
-b(1 +b)*(A\*-¢?) + (1 -b)(U + 1)(U - b)}*2
(46)

Let us first considelJ <-1. Thenb-1-2U>0 and we im-

mediately obtain thafi(k’)>0 for any c=0. Hence, the
whole trajectory ok;(o) is in the upper part of the complex
plane ands does not give rise to spatially amplifying waves
as|x| —ce.

The conditionJ(k3) >0 can be reduced to

PR LY L
a

P — 47
(b-1-2U)? “7)
Hence, J(k3)>0 at o=vyy/ate so that the trajectory of

ing wave ax— -~ whenU>h.

Let us now takg =5. In this case Eq(6) has a double
rootk=-2/(1-b) in the zero order approximation. Substitut-
ing w=wg+aw andk=-2/(1-b)+ak in Eq. (6), we obtain
Eqg. (31). The discriminant of this quadratic equation is equal
to

(1+b)(U+1)(U+b)
b(1 -b)?

It is positive wheno=0 and eitheld <-1 or U>b. Hence,
the rootskz do not give rise to spatially amplifying waves as
x| — 0. By symmetry, the same is true fpr6.

Summarizing, we conclude that there are spatially am-
plifying waves only if
2(b-U)

1+b

(1-b)?w?+ (48

I+

wWq = a)\, (49)
where\ satisfies Eq(45). WhenU < -1, there is a spatially
amplifying wave propagating in the positivedirection.
WhenU > b, there is a spatially amplifying wave propagat-
ing in the negativex-direction. In both cases the spatial am-
plification rate is given by

al(1-b)(U +1)(U - b) - b(1 +b)*\?]*?
2bY2(1 +b)(U + 1)(U -b)

3(k3(0))| =

(50)

The wavenumber of a spatially amplifying wave s
=+2/(1+b)+O(a).

V. SUMMARY AND CONCLUSIONS

In this paper we have studied the absolute and convec-
tive instabilities of circularly polarized Alfvén wavepump
waveg propagating along the ambient magnetic field. We
have restricted our analysis to the decay instability which
occurs wherb< 1 (recall thatb is the ratio of the sound and
Alfvén speeds To make analytical progress we have as-
sumed that the amplitude of the pump wavés small and

k(o) starts in the upper and ends in the lower part of theysed expansions in power series with respect.tave have

complex plane. Sincg(k3) <0 ato=0, this implies that the
root k; gives rise to a spatially amplifying wave &s-« if
\ satisfies Eq(45).

Now we considelU >b. In this caseb-1-2U<0 and
we immediately see thal(k;) <0 for anyo=0. Hence, the
whole trajectory ok;(o) is in the lower part of the complex
plane and< does not give rise to spatially amplifying waves

as x| —c. The condition thati(k3) <0 is once again re-
duced to Eq(47). Hence,J(k3) <0 at o=7yy/a+e, so that
the trajectory ok;(o) starts in the lower part of the complex
plane and ends in the upper part. Sia¢k;) >0 ato=0, this
implies that the root; gives rise to a spatially amplifying
wave asx— — if A satisfies Eq(45).

In the case whef=4 the trajectories of the root§(o)
are symmetric to the trajectories of the roéfgo) with re-
spect to the imaginary axis if we také= wg,—a\+iac. This

shown that the circularly polarized Alfvén wave is absolutely
unstable in a reference frame moving with the velotity),
with respect to the rest plasma in the direction of Alfvén
wave propagation iU satisfiesU,<U<U,, whereU,=-1
+0(a) andU,=b+0(a?). The instability increment takes its
maximum value given by Eq10) whenU=(b-1)/2.

When eithetU <-U, or U>U,, the circularly polarized
Alfvén wave is convectively unstable. In this case we have
studied the signaling problem. We have found that the sig-
naling with the frequencwywg, Wherewy is the frequency of
the pump wave, gives rise to spatially amplifying waves only
if wg==2(b-U)/(1+b)+a\, where\ satisfies the inequality
Eq. (45). These spatially amplifying waves propagate in the
positive x-direction when U<-1, and in the negative
x-direction whenU > b, where the positive-direction is the
direction of propagation of the pump wave with respect to
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the rest plasma. The wavenumber of a spatially amplifying<nowledges the support by the University of Sheffield En-
wave is X,/ (1+b)+O(a), wherek, is the wavenumber of dowment Fellowship.
the pump wave.
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