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Emergent Failures: Rethinking Reliable 

Cloud Datacenters at Scale 

 
Since the conception of Cloud computing, ensuring its ability to provide 

highly reliable service has been of the upmost importance and criticality 

to the business objectives of providers. This has held true for every facet 

within the system, encompassing applications, resource management, 

the underlying computing infrastructure, and environmental cooling. 

Thus, the Cloud computing and dependability research communities 

have exerted considerable efforts towards enhancing the reliability of 

system components against various software and hardware failures. 

However, as these systems have continued to grow in scale, 

heterogeneity and complexity resulting in the manifestation of 

emergent behaviour, so too have their respective failures. Recent 

studies of production Cloud datacenter indicate the existence of 

complex failure manifestation which existing fault tolerance and 

recovery strategies are ill-equipped to effectively handle and can even 

be responsible for such failures themselves. These emergent failures – 

frequently transient and only identifiable at run-time – represent a 

significant threat towards designing reliable Cloud systems. This work 

identifies the challenges of emergent failures within Cloud datacenters 

at scale, their impact upon system resource management, and discusses 

potential directions of further study for IoT integration and holistic fault 

tolerance. 

 

 

Introduction 

By 2020, the first centralized Exascale system will be 

created, comprising hundreds of thousands of nodes 

that provisions enormous quantities of computational 

and storage capability. Modern Cloud datacenter 

operation is characterized by growing system scale and 

diversity within workload usage patterns, resource 

utilization, and application types. Such behaviour 

subsequently results in diverse fault activation 

producing failures strongly influenced by user and task 

behaviour, resource type, workload intensity [1], and 

environmental factors (temperature, humidity, power). 

As modern Cloud datacentres have continued to grow in 

scale and complexity, failures have become the norm, 

and not the exception. Studies of very large-scale 

computing systems spanning Cloud datacenters, 

supercomputers, HPC, and clusters have demonstrated 

that 4-11% of all tasks fail [1][2][3] stemming from 

diverse sources of faults in software and hardware. This 

has resulted creating a myriad of fault tolerance and 

recovery strategies focused on enhancing the availability 

and reliability of datacenter components including jobs 
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and tasks, the resource manager, physical nodes, 

storage, networking, and facility cooling. 

Moreover, this has resulted Cloud in datacenter 

operation manifesting emergent behaviour - system 

operation unforeseen at design time. Empirical study of 

large-scale computing systems have indicated that such 

emergent behaviour has also resulted in failure 

manifestation that is increasingly complex and transient 

in nature stemming from correlated fault activation 

types [1]-[4]. These failures types – which we term 

emergent failures – are difficult to address as they 

represent “known unknown” and “unknown unknown” 
phenomena identified at system run-time and are 

oftentimes difficult to reproduce. This is a key challenge 

as assumptions that underpin designing reliable systems 

are defined at design time and are unable to adequately 

handle constantly changing error confinement 

boundaries and failure scenarios driven by the evolution 

and dynamicity of Cloud datacenter operation. These 

failures impact all aspects of system operation from 

scheduling and instrumentation, workload execution, 

and even the fundamental assumptions that define 

failure propagation boundaries of components. 

In this work, we discuss the nature of these emergent 

failures within Cloud datacenters and their impact upon 

resource management. Moreover, we outline potential 

areas that need to be addressed and future direction for 

Cloud reliability research to address emergent failures. 

Emergent Failure Fundamentals 

The Evolution of Cloud Failures 

For many decades within computer science, the creation 

of a computer system is achieved by defining its function 

and behaviour (i.e. architecture, component interaction, 

and operational assumptions) at design time known as 

the development phase within the dependability 

community [5]. Such an approach is wholly intuitive – to 

create a desired system, it is necessary to first explicitly 

define its respective behaviour to implement 

appropriate mechanisms ensuring its dependability. 

Within the context of reliability, systems are defined via 

expert analysis and specification of assumptions 

pertaining to faults and failures types, error propagation 

across components and system boundaries, necessary 

fault tolerance and recovery strategies, as well as their 

respective coverage required to effectively address 

selected failures. Due to the potential impact upon 

system performance and cost, it is often considered 

viable to only consider a limited scope of fault types and 

failure coverage (e.g. a system designer can decide not 

to commit considerable engineering effort to tolerate 

incredibly rare yet minor failures). Such an approach is 

driven by the need to reduce the complexity of system 

design and to localise error recovery.  

When failures do manifest outside the confines of a set 

of defined assumptions, maintenance is required to 

conduct system repair and modification to address the 

fault root-cause. Within Cloud datacenters, it is 

inevitable that it is not possible to cover all types of 

faults and failures that may potentially manifest. 

However, present day and future Cloud datacentres are 

frequently exposed to conditions and scenarios that 

result in a large variety of faults and failure scenarios 

which are not envisioned at design time: 

Dynamicity & Heterogeneity. There exists a positive 

correlation between workload resource type, workload 

intensity, and failure rate [1]. As workload dynamicity is 

an intrinsic property of Cloud computing, it is difficult to 

forecast the precise conditions that precipitate failure. 

Such dynamicity is not solely limited to workload, but 

encompasses server power consumption, network 

traffic, and environmental conditions (e.g. temperature 

hotspots). This problem becomes compounded when 

these factors are combined; workload can execute 

within a diverse range of server architectures (refreshed 

by a datacenter approximately every nine months), 

microprocessor types (CPU, GPU, NPU, etc.), network 

configurations, and cooling technologies (air or liquid). 

While such heterogeneity is advantageous for Cloud 

datacenters to minimize likelihood of common-mode 

failure, it does so at the expense of increasing its 

exposure to different fault types and component 

interactions that the system is not originally designed 

for. 

Scale & Complexity. Cloud datacenters operating at 

massive-scale are exposed to more frequent and 

complex failure scenarios. Due to an increase in 

potential system states and complexity in component 

interactions, it is difficult to ascertain the precise root-

cause of failure manifestation and its dependencies with 

components across the system. Datacenter operators 

frequently encounter scenarios whereby hundreds of 

failure event notifications from different components 

are eventually traced to a root-cause within a seemingly 

non-related component event. Moreover, a system with 



a greater number of components intuitively experiences 

higher failure frequency. If assuming identical Mean 

Time Between Failure (MTBF) of components, a 10,000 

node datacenter will encounter more frequent 

component failures in comparison to a 1,000 node 

datacenter. 

That is not to say that these conditions alone have 

resulted in highly unreliable systems – if that were the 

case existing Cloud datacenters would not operate. 

However, it is indicative of two growing trends within 

large-scale systems that directly threaten their reliability. 

First, as Cloud datacenters continue to evolve in terms 

of their scale, dynamicity, heterogeneity and complexity, 

the manifestation of emergent failures has also 

increased. Second, it is increasingly challenging to 

ensure system reliability when human-defined design 

assumptions for fault types, propagation, as well as fault 

tolerance and recovery strategies may not be 

appropriate for the current operational conditions of the 

Cloud datacenter.  

Potential Causes of Emergent Failures 

Emergent failures are types of failure characterized by 

their transient nature, manifestation within constantly 

changing error propagation boundaries intersecting 

hardware and software components, and are only 

identifiable at system run-time. There exist various 

examples of emergent failure phenomena in large-scale 

Cloud datacenters, with their effects ranging from minor 

system degradation to catastrophic facility outage. 

Performance Interference. Virtualisation encapsulates 

functionality to construct well-defined and fault 

assumptions for Virtual Machines (VMs). However, VMs 

in multi-tenant servers transparently share the same 

underlying resources. This results in performance 

interference between VMs and daemon processes 

within the server, increasing late-timing failure 

likelihood for interactive tasks. The challenge is that 

such phenomenon varies considerably based on 

workload and hardware heterogeneity, and that VMs 

are not designed to mitigate effects outside of its 

operational boundary. 

Stragglers: Also known as tailing behaviour whereby a 

subset of a job executes abnormally slower compared to 

typical tasks [4], resulting in late-timing failures for any 

jobs that enforce time-related SLAs. It has been 

demonstrated that 5% of tasks stragglers impact over 

half of the jobs within a datacentre [3]. Understanding 

and mitigating stragglers is an open challenge in the 

distributed systems community pertaining to detection 

and forecasting due to their transient nature and 

manifestation stemming from a wide variety of potential 

sources from daemon processes, data skew, resource 

contention, component failure, server hotspots, energy 

management, and a combination of any of these causes 

together. 

‘Competing’ Fault Tolerance. Fault tolerance is designed 

assuming defined layers of abstraction between 

components. For example, a sub-system comprising 

multiple components (such as a VM containing an OS) 

can activate a particular fault tolerant strategy to ensure 

service adheres to specified availability and reliability 

requirements. However, as these are created 

independently from other system components, the fault 

tolerant strategy for one sub-system can unknowingly 

impact the service of components outside its 

operational boundary. Creating a VM replica can result 

in increased performance interference and stragglers 

within other VMs, or increase server temperature 

resulting in a hotspot requiring task eviction, and so on.   

Cascading Recovery. Ironically, recovery strategies 

within Cloud datacenters can also result in emergent 

failure manifestation. A well-documented case study of 

such failures is the Amazon 2017 outage. This outage 

was resultant of S3 experiencing substantial growth over 

the past few years, whereby the process of restarting S3 

services and running safety checks to validate metadata 

integrity took longer than expected. Such delays 

resulted in unintended failure cascade between 

recovery strategies as other AWS services impacted by 

this event also began recovering, and these services 

accumulated a backlog of work during S3 disruption that 

themselves required additional time to recover. The 

scale of this problem has been identified by The 

Argonne National Laboratory stating that such an outage 

demonstrated that interdependencies between 

datacenter and network providers are not well 

understood, and further compounds the challenge of 

creating resilient infrastructure. 



Emergent failures can also stem from hardware and 

software reasons including but not limited to: channel 

overloading, power shortage, incorrect kernel caching, 

unpredictably invalid memory access due to 

wild/dangling pointers, unexpected race conditions 

within concurrent threads, kernel or human-made bugs, 

incorrect configurations and so forth. The key principle 

idea underpinning these failures is that they are a by-

product of emergent operational behaviour  

unanticipated at system design. 

Existing fault tolerance and recovery mechanisms are 

unable to alter their operation and coverage in response 

to any of these causes within Cloud datacenters without 

manual intervention after failure occurrence. Thus, 

emergent failures are frequently omitted from the 

majority of fault tolerance and fault recovery design due 

to their complexity. However, these types of failures will 

become more prominent as Cloud datacenter grow in 

scale and complexity and become even greater with a 

rise IoT and Fog computing prominence.  

Emergent Failures in Resource Management 

Resource management is a fundamental aspect of Cloud 

datacenter operation facilitated by deployment of a 

resource manager (Kubernetes, Borg, Fuxi, YARN, Mesos, 

etc.) that orchestrates machine resources and monitors 

execution of jobs and tasks. Modern Cloud datacenters 

attempt to ensure that all submitted jobs are 

successfully scheduled (in reality, 99.999%), executed, 

and completed without loss of correct service 

perceivable by the customer. The resource scheduler 

attempts to achieve this by monitoring machine health, 

finding available resources for pending tasks, deploying 

binaries and launching workload, restart failed jobs and 

restore state during failover.  

Specifically, failures within resource managers are 

predominately resultant of (i) time-out caused by the 

overall latency aggregated from different service calls 

for jobs (i.e. interactive jobs that experience slowdown 

and have a timing SLA imposed), and (ii) component 

hanging or crash due to resource exhaustion (i.e. faulty 

service or component results in insufficient resources 

for regular request handling of other tasks). The 

challenge is that these causes are increasingly resultant 

of emergent failures. As shown within Fig. 1, Resource 

managers are required to provide resources (compute, 

storage and network) to increasingly various levels of 

abstractions (VMs, containers, batch jobs, object storage, 

etc.) within large-scale dynamic Cloud datacenter 

environments, thus making it difficult to capturing 

 

Figure 1. Emergent failure manifestation in Cloud datacenter resource management 



failures which transcend established component 

boundaries. 

We discuss three different perspectives as to how 

emergent failures affect resource management, as well 

as how to alleviate their effects: architectural 

factorisation to isolate failures and reduce their 

propagation, runtime monitoring to timely detect 

anomaly behaviour, and instrumentation to proactive 

prevention and tolerance. 

Containerized Architecture Rethinking 

Architectural evolution - The centralized resource 

manager architecture [6-10] is a monolithic system 

which contains all functional components (request 

handler and dispatcher, communication messenger, 

state manager, and decision maker, etc.) contained 

within single or multiple processes. Although 

decentralized scheduling [11][14] can dispatch such 

functionality to distributed components in a loose-

coupled manner, they are still logically monolithic from 

the holistic view. There is an increasing likelihood that 

emergent failures manifest from memory exhaustion 

(due to faulty components) resulting in the overall crash 

and stop, unsolved deadlock in the decision maker 

resulting in the slowdown of request handling, and late-

timing state mismatch in the state manager leading to 

the scheduling conflicts.  

As a result, there has been a need to leverage sub-

modulization and containerization of the datacenter 

resource manager. For example, the resource manager 

master scheduler should be able to function in the face 

of various failures. To orchestrate and run containers, 

other system components such as container clustering, 

networking, and automated deployment and monitoring 

are required. For instance, Kubernetes schedules any 

number of container replicas across a group of nodes. To 

benefit from containerization and increase the 

management flexibility, increasing Kubernetes 

components or external plugins are deployed and 

maintained within containers.   

Fault isolation and propagation prevention - Resource 

exhaustion [12] is a leading root-cause of crash-stop or 

timing failures within system components, and can be 

derived from either failure within a singular component 

or influence from other faulty and non-faulty 

component behaviour outside of its defined system 

boundaries. For example, a service that experiences high 

latency (due to stragglers or crash failures within the 

network) can result in communicating services to 

experience resource exhaustion. Performance 

interference between tasks in the same physical node 

results in performance degradation and resource 

exhaustion within other tasks. System designers attempt 

to mitigate such propagation via leveraging container-

based mechanisms and cgroup restriction whose 

operation is dictated by quantitative QoS modelling to 

define the conservatively least resource boundary of 

each job group and fair resource allocations among 

different groups. However, determining the more 

appropriate parameters (and importantly, how they 

should evolve in response to changes in operational 

context) is an open research challenge.  

Cloud Monitoring - Timely Detection and 

Alerting 

Robust monitoring and alerting. At increased system 

scale, real-time health-checking, load measurement 

throughput, and application-specific errors become 

increasingly important. However, an outstanding issue is 

how to effectively monitor system health when 

considering the sheer volume and variety of hundreds of 

millions of potential system metrics. When exposed to 

the manifestation of emergent failures that can be 

caused by monitoring itself, traditional static threshold-

based monitoring and alerting are insufficient. A human-

defined threshold may be useful to enact automated 

decision making and alerting on-call technical staff, 

however encounters difficulties in terms of false 

negatives and false positives that may change in 

response to system usage. Therefore, a robust anomaly 

detection mechanism whose sensitivity can be 

appropriately tuned in accordance to current 

operational context of the system is required. A 

potential means to achieve this is leveraging adaptive 

learning of monitoring and detection parameter which 

considers different periodicity, parameter types, and 

parameter values.  However how to generate and 

exploit streaming metrics to recognise outliers is 

intricately challenging due to the contradictory dilemma 

system monitor is facing - selective use of partial metrics 

to enact fast (yet imprecise) decisions or exploit a large 

amount of metrics for more precise (yet slow) decision 

making.  

Preventive performance diagnosis. In contrast to 

reactive solutions whereby a faulty running service is 

halted to ascertain what conditions led to emergent 

failures manifestation to enact necessary maintenance 

http://techbeacon.com/does-kubernetes-make-containers-ready-prime-time


(which has been demonstrated to be ineffective for 

dealing with stragglers [4]), a proactive diagnosis would 

ensure that end user service is minimally affected. 

Monitoring as many components as possible is likely to 

support failure prediction. However, in practise not all 

components can be monitored due to the sheer volume 

of data required to be collected, transmitted, and 

calculated.  information pertaining to hardware to 

environmental factors such as fan speed or temperature, 

it is highly desirable to explore the failure root causes 

and investigate the interactions of system components 

in failures caused by multiple faults. However, it is 

extremely difficult to articulate the root causes at 

runtime due to the uncontrollable and intrinsic system 

factors. Statistical correlation among metrics can 

facilitate to rapidly to find root causes and determine 

the most effective handler. 

Component self-diagnosis is also beneficial to the 

system instrumentation. For example, understanding 

and leveraging node performance is critical for straggler 

mitigation and workload placement. The performance 

refers to its ability to execute parallel applications and 

hold containerized services. Machine learning 

techniques such as classification and regression (e.g. 

Random Forest, Gradient Boosting Trees) might be one 

means in order to achieve this; through classifying nodes 

into different categories and predicting the 

corresponding performance category with high accuracy, 

the scheduler can rank nodes and select suitable nodes 

to launch latency-sensitive tasks, avoid assigning 

speculative tasks onto nodes that are likely to be in their 

weak performance state as soon as possible. 

Cloud Scheduling and Instrumentation: 

Prevention and Tolerance  

Emergent failure-aware design should be permeated 

into each step and component in the Cloud scheduler. 

To reduce the scheduling downtime, the system should 

not have a single point of failure in the design. The 

ultimate objective is to realize a zero-downtime 

scheduler system. 

Latency-oriented tail mitigation based on redundancy. 

Modern cluster schedulers must deal with both the 

latency-sensitive requests and computation intensive 

tasks (e.g. long-running HTTP services, periodic cron 

jobs).   Redundancy is the fundamental technique used 

to enhance component reliability of hardware, software 

and data storage. Based on the multi-replica component 

deployment, identical components can be deployed.  

The replication controller is typically used to track and 

record the health status of replicated components. The 

controller should guarantee the provisioned replica 

number at any given moment.  Namely, the controller 

should launch a new replica if a component is killed or 

becomes inaccessible. For instance, in Kubernetes, the 

Replication Controller can auto-scale and manage 

microservices based on resource utilization or a fixed 

lower or upper limitations of expected replica number. 

For computation intensive tasks, the most common 

means to resolve the straggler is the speculation 

execution relying on the idempotency. However, a lack 

of coordinate fault tolerance between components 

leads to an emergent failure whereby such an action 

results in increased the resource contention, leading to 

cascading latencies for new tasks. Stragglers even rises 

more frequently in learning systems and distributed 

optimizations due to the performance is significantly 

throttled by slow communications and computations. 

The idempotency is invalid due to the shared states. 

Scenario-specific mitigations such as data encoding with 

built redundancy [15] and work reassignment with 

consistency bounds.   

User-transparent failover and fault conversion. The 

system designer attempts to design the resource 

scheduler so that it can perform failover and self-healing 

(i.e. autonomous recovery) of all components 

unperceived by the customer. An important 

consideration for conducting failover is state recovery 

that prominently leverages caching or checkpointing. 

Intermediate states or returned results from stateless 

services can be cached so that the majority of services 

can continue operating during intermittent failures 

within any related components. For more critical data or 

state (such as runtime memory bitmap and register 

values), checkpointing can be leveraged to create 

snapshot backups of current system states. While this 

strategy is an effective for recovering from incorrect 

state and data loss, the checkpointing itself is often 

considerably large. Checkpointing within a 1,000 node 

datacenter cluster in Alibaba over 24 hours has been 

reported to generate 1.7GB checkpoint  (and within HPC, 

completing checkpointing can take hours to complete), 

and as demonstrated by the Amazon outage, can 

unknowingly manifesting as an emergent failure itself. 

Therefore, we believe that new approaches are required 

for checkpointing to function at scale such as combining 

hard state backup and soft-state inference [13].However,  



due to the emergent failure cannot be anticipated 

beforehand, it is essential to enable the finite-state-

machine (FSM) of system faults to more be able to adapt 

in accordance to detected system faults. For example, 

whether it is possible to automatically transform the 

emergent fault mode into a known classification of fault 

modes which can be then be tackled by established 

approaches. Once a fault is deterministic, the 

component or devices (such as storage block, NICs) that 

lead to performance degradation could be temporarily 

isolated or removed during system failover.     

Rethinking Beyond Clouds 

Holistic fault tolerance and recovery. Holistic Fault 

Tolerance (HFT) has been recently introduced that could 

potentially be an effective approach for handling 

emergent failures. HFT relies on a cross-cutting 

components for system recovery tailored to a specific 

error detected and the appropriate recovery strategy for 

execution. The recovery region strictly involves system 

components that need to be involved for recovery for a 

given error. These components, which could be located 

at different layers, subsystems, packages, nodes, etc., 

are involved in a coordinated recovery. This HFT 

approach makes it possible to reduces the system 

complexity to addressing complex failure recovery 

scenarios. 

For example, in order to address the challenges with 

performance interference, it could be possible to 

coordinate VMs on the same physical node. In the event 

where a VM is failing to adhere to timing requirements. 

The HFT could then consider performing coordinate 

recovery by leveraging components within both VMs. 

This could be facilitated by the hypervisor altering its 

scheduling to provide more CPU to a particular VM, and 

then measures the resultant delays in both to ensure 

satisfactory levels of CPU share. If they are unable to do 

so, the hypervisor itself would then need to make this 

change. If this is not possible, then a wider decision to 

evict and reschedule the VM is required that then 

incorporates the resource manager. 

IoT integration. The presence of emergent failures is 

not solely confined to Cloud datacenters, and can 

manifest within any large-scale computing system. IoT is 

such a system particularly susceptible to emergent 

failures for many of the reasons given for Cloud – 

dynamic and unpredictable assortment of 

interconnected virtual and physical devices. A key 

difference is IoT exhibits high degree of dynamic join-

leave not found within Cloud computing. If the system 

boundaries of interconnected components are 

constantly changing due to their usage and device 

composition, it is intuitive to assume that imposing rigid 

fault tolerance strategies that designed independently 

from the operational context of greater system is 

increasingly infeasible. Such system environments will 

also likely result in ‘fluid’ error confinement areas for a 
set of components, hence we believe a future research 

direction will be investigating how to autonomously 

determine the optimal fault tolerance and recovery 

mechanism for a given system context. 

Conclusion 

In this paper we discuss the rise of emergent failures: a 

growing problem towards ensuring reliability in Cloud 

datacenters and all future computing systems at scale. A 

central issue to address is how to determine effective 

fault tolerance and recovery strategies when 

assumptions that define fault types and failure scenarios 

are constantly changing due to Cloud datacenter 

dynamicity, complexity, and heterogeneity between 

interacting components. Two potential ways to address 

this issue is (i) rethinking the nature of system 

abstraction allowing for holistic fault tolerance that 

cross-cuts coordination of components, and (ii) 

exploring the concept adaptive fault tolerance in 

response to current and forecasted operational 

scenarios. Moreover, further study is required by the 

research community to study the relationship between 

Cloud datacenter operation and emergent failure 

manifestation beyond coarse-grain analysis and 

observation, and towards creating models which 

precisely capture system conditions that lead to failure. 
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