
This is a repository copy of Emergent Failures: Rethinking Cloud Reliability at Scale.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/166991/

Version: Accepted Version

Article:

Garraghan, P, Yang, R, Wen, Z et al. (4 more authors) (2018) Emergent Failures:
Rethinking Cloud Reliability at Scale. IEEE Cloud Computing, 5 (5). pp. 12-21. ISSN 2325-
6095

https://doi.org/10.1109/MCC.2018.053711662

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Emergent Failures: Rethinking Reliable

Cloud Datacenters at Scale

Since the conception of Cloud computing, ensuring its ability to provide

highly reliable service has been of the upmost importance and criticality

to the business objectives of providers. This has held true for every facet

within the system, encompassing applications, resource management,

the underlying computing infrastructure, and environmental cooling.

Thus, the Cloud computing and dependability research communities

have exerted considerable efforts towards enhancing the reliability of

system components against various software and hardware failures.

However, as these systems have continued to grow in scale,

heterogeneity and complexity resulting in the manifestation of

emergent behaviour, so too have their respective failures. Recent

studies of production Cloud datacenter indicate the existence of

complex failure manifestation which existing fault tolerance and

recovery strategies are ill-equipped to effectively handle and can even

be responsible for such failures themselves. These emergent failures –

frequently transient and only identifiable at run-time – represent a

significant threat towards designing reliable Cloud systems. This work

identifies the challenges of emergent failures within Cloud datacenters

at scale, their impact upon system resource management, and discusses

potential directions of further study for IoT integration and holistic fault

tolerance.

Introduction

By 2020, the first centralized Exascale system will be

created, comprising hundreds of thousands of nodes

that provisions enormous quantities of computational

and storage capability. Modern Cloud datacenter

operation is characterized by growing system scale and

diversity within workload usage patterns, resource

utilization, and application types. Such behaviour

subsequently results in diverse fault activation

producing failures strongly influenced by user and task

behaviour, resource type, workload intensity [1], and

environmental factors (temperature, humidity, power).

As modern Cloud datacentres have continued to grow in

scale and complexity, failures have become the norm,

and not the exception. Studies of very large-scale

computing systems spanning Cloud datacenters,

supercomputers, HPC, and clusters have demonstrated

that 4-11% of all tasks fail [1][2][3] stemming from

diverse sources of faults in software and hardware. This

has resulted creating a myriad of fault tolerance and

recovery strategies focused on enhancing the availability

and reliability of datacenter components including jobs

Peter Garraghan

Lancaster University,

United Kingdom

Renyu Yang

University of Leeds,

United Kingdom

Zhenyu Wen

Newcastle University,

United Kingdom

Alexander Romanovsky

Newcastle University,

United Kingdom

 Jie Xu

 University of Leeds,

 United Kingdom

 Rajkumar Buyya

 University of Melbourne,

 Australia

 Rajiv Ranjan

Newcastle University,

United Kingdom

and tasks, the resource manager, physical nodes,

storage, networking, and facility cooling.

Moreover, this has resulted Cloud in datacenter

operation manifesting emergent behaviour - system

operation unforeseen at design time. Empirical study of

large-scale computing systems have indicated that such

emergent behaviour has also resulted in failure

manifestation that is increasingly complex and transient

in nature stemming from correlated fault activation

types [1]-[4]. These failures types – which we term

emergent failures – are difficult to address as they

represent “known unknown” and “unknown unknown”
phenomena identified at system run-time and are

oftentimes difficult to reproduce. This is a key challenge

as assumptions that underpin designing reliable systems

are defined at design time and are unable to adequately

handle constantly changing error confinement

boundaries and failure scenarios driven by the evolution

and dynamicity of Cloud datacenter operation. These

failures impact all aspects of system operation from

scheduling and instrumentation, workload execution,

and even the fundamental assumptions that define

failure propagation boundaries of components.

In this work, we discuss the nature of these emergent

failures within Cloud datacenters and their impact upon

resource management. Moreover, we outline potential

areas that need to be addressed and future direction for

Cloud reliability research to address emergent failures.

Emergent Failure Fundamentals

The Evolution of Cloud Failures

For many decades within computer science, the creation

of a computer system is achieved by defining its function

and behaviour (i.e. architecture, component interaction,

and operational assumptions) at design time known as

the development phase within the dependability

community [5]. Such an approach is wholly intuitive – to

create a desired system, it is necessary to first explicitly

define its respective behaviour to implement

appropriate mechanisms ensuring its dependability.

Within the context of reliability, systems are defined via

expert analysis and specification of assumptions

pertaining to faults and failures types, error propagation

across components and system boundaries, necessary

fault tolerance and recovery strategies, as well as their

respective coverage required to effectively address

selected failures. Due to the potential impact upon

system performance and cost, it is often considered

viable to only consider a limited scope of fault types and

failure coverage (e.g. a system designer can decide not

to commit considerable engineering effort to tolerate

incredibly rare yet minor failures). Such an approach is

driven by the need to reduce the complexity of system

design and to localise error recovery.

When failures do manifest outside the confines of a set

of defined assumptions, maintenance is required to

conduct system repair and modification to address the

fault root-cause. Within Cloud datacenters, it is

inevitable that it is not possible to cover all types of

faults and failures that may potentially manifest.

However, present day and future Cloud datacentres are

frequently exposed to conditions and scenarios that

result in a large variety of faults and failure scenarios

which are not envisioned at design time:

Dynamicity & Heterogeneity. There exists a positive

correlation between workload resource type, workload

intensity, and failure rate [1]. As workload dynamicity is

an intrinsic property of Cloud computing, it is difficult to

forecast the precise conditions that precipitate failure.

Such dynamicity is not solely limited to workload, but

encompasses server power consumption, network

traffic, and environmental conditions (e.g. temperature

hotspots). This problem becomes compounded when

these factors are combined; workload can execute

within a diverse range of server architectures (refreshed

by a datacenter approximately every nine months),

microprocessor types (CPU, GPU, NPU, etc.), network

configurations, and cooling technologies (air or liquid).

While such heterogeneity is advantageous for Cloud

datacenters to minimize likelihood of common-mode

failure, it does so at the expense of increasing its

exposure to different fault types and component

interactions that the system is not originally designed

for.

Scale & Complexity. Cloud datacenters operating at

massive-scale are exposed to more frequent and

complex failure scenarios. Due to an increase in

potential system states and complexity in component

interactions, it is difficult to ascertain the precise root-

cause of failure manifestation and its dependencies with

components across the system. Datacenter operators

frequently encounter scenarios whereby hundreds of

failure event notifications from different components

are eventually traced to a root-cause within a seemingly

non-related component event. Moreover, a system with

a greater number of components intuitively experiences

higher failure frequency. If assuming identical Mean

Time Between Failure (MTBF) of components, a 10,000

node datacenter will encounter more frequent

component failures in comparison to a 1,000 node

datacenter.

That is not to say that these conditions alone have

resulted in highly unreliable systems – if that were the

case existing Cloud datacenters would not operate.

However, it is indicative of two growing trends within

large-scale systems that directly threaten their reliability.

First, as Cloud datacenters continue to evolve in terms

of their scale, dynamicity, heterogeneity and complexity,

the manifestation of emergent failures has also

increased. Second, it is increasingly challenging to

ensure system reliability when human-defined design

assumptions for fault types, propagation, as well as fault

tolerance and recovery strategies may not be

appropriate for the current operational conditions of the

Cloud datacenter.

Potential Causes of Emergent Failures

Emergent failures are types of failure characterized by

their transient nature, manifestation within constantly

changing error propagation boundaries intersecting

hardware and software components, and are only

identifiable at system run-time. There exist various

examples of emergent failure phenomena in large-scale

Cloud datacenters, with their effects ranging from minor

system degradation to catastrophic facility outage.

Performance Interference. Virtualisation encapsulates

functionality to construct well-defined and fault

assumptions for Virtual Machines (VMs). However, VMs

in multi-tenant servers transparently share the same

underlying resources. This results in performance

interference between VMs and daemon processes

within the server, increasing late-timing failure

likelihood for interactive tasks. The challenge is that

such phenomenon varies considerably based on

workload and hardware heterogeneity, and that VMs

are not designed to mitigate effects outside of its

operational boundary.

Stragglers: Also known as tailing behaviour whereby a

subset of a job executes abnormally slower compared to

typical tasks [4], resulting in late-timing failures for any

jobs that enforce time-related SLAs. It has been

demonstrated that 5% of tasks stragglers impact over

half of the jobs within a datacentre [3]. Understanding

and mitigating stragglers is an open challenge in the

distributed systems community pertaining to detection

and forecasting due to their transient nature and

manifestation stemming from a wide variety of potential

sources from daemon processes, data skew, resource

contention, component failure, server hotspots, energy

management, and a combination of any of these causes

together.

‘Competing’ Fault Tolerance. Fault tolerance is designed

assuming defined layers of abstraction between

components. For example, a sub-system comprising

multiple components (such as a VM containing an OS)

can activate a particular fault tolerant strategy to ensure

service adheres to specified availability and reliability

requirements. However, as these are created

independently from other system components, the fault

tolerant strategy for one sub-system can unknowingly

impact the service of components outside its

operational boundary. Creating a VM replica can result

in increased performance interference and stragglers

within other VMs, or increase server temperature

resulting in a hotspot requiring task eviction, and so on.

Cascading Recovery. Ironically, recovery strategies

within Cloud datacenters can also result in emergent

failure manifestation. A well-documented case study of

such failures is the Amazon 2017 outage. This outage

was resultant of S3 experiencing substantial growth over

the past few years, whereby the process of restarting S3

services and running safety checks to validate metadata

integrity took longer than expected. Such delays

resulted in unintended failure cascade between

recovery strategies as other AWS services impacted by

this event also began recovering, and these services

accumulated a backlog of work during S3 disruption that

themselves required additional time to recover. The

scale of this problem has been identified by The

Argonne National Laboratory stating that such an outage

demonstrated that interdependencies between

datacenter and network providers are not well

understood, and further compounds the challenge of

creating resilient infrastructure.

Emergent failures can also stem from hardware and

software reasons including but not limited to: channel

overloading, power shortage, incorrect kernel caching,

unpredictably invalid memory access due to

wild/dangling pointers, unexpected race conditions

within concurrent threads, kernel or human-made bugs,

incorrect configurations and so forth. The key principle

idea underpinning these failures is that they are a by-

product of emergent operational behaviour

unanticipated at system design.

Existing fault tolerance and recovery mechanisms are

unable to alter their operation and coverage in response

to any of these causes within Cloud datacenters without

manual intervention after failure occurrence. Thus,

emergent failures are frequently omitted from the

majority of fault tolerance and fault recovery design due

to their complexity. However, these types of failures will

become more prominent as Cloud datacenter grow in

scale and complexity and become even greater with a

rise IoT and Fog computing prominence.

Emergent Failures in Resource Management

Resource management is a fundamental aspect of Cloud

datacenter operation facilitated by deployment of a

resource manager (Kubernetes, Borg, Fuxi, YARN, Mesos,

etc.) that orchestrates machine resources and monitors

execution of jobs and tasks. Modern Cloud datacenters

attempt to ensure that all submitted jobs are

successfully scheduled (in reality, 99.999%), executed,

and completed without loss of correct service

perceivable by the customer. The resource scheduler

attempts to achieve this by monitoring machine health,

finding available resources for pending tasks, deploying

binaries and launching workload, restart failed jobs and

restore state during failover.

Specifically, failures within resource managers are

predominately resultant of (i) time-out caused by the

overall latency aggregated from different service calls

for jobs (i.e. interactive jobs that experience slowdown

and have a timing SLA imposed), and (ii) component

hanging or crash due to resource exhaustion (i.e. faulty

service or component results in insufficient resources

for regular request handling of other tasks). The

challenge is that these causes are increasingly resultant

of emergent failures. As shown within Fig. 1, Resource

managers are required to provide resources (compute,

storage and network) to increasingly various levels of

abstractions (VMs, containers, batch jobs, object storage,

etc.) within large-scale dynamic Cloud datacenter

environments, thus making it difficult to capturing

Figure 1. Emergent failure manifestation in Cloud datacenter resource management

failures which transcend established component

boundaries.

We discuss three different perspectives as to how

emergent failures affect resource management, as well

as how to alleviate their effects: architectural

factorisation to isolate failures and reduce their

propagation, runtime monitoring to timely detect

anomaly behaviour, and instrumentation to proactive

prevention and tolerance.

Containerized Architecture Rethinking

Architectural evolution - The centralized resource

manager architecture [6-10] is a monolithic system

which contains all functional components (request

handler and dispatcher, communication messenger,

state manager, and decision maker, etc.) contained

within single or multiple processes. Although

decentralized scheduling [11][14] can dispatch such

functionality to distributed components in a loose-

coupled manner, they are still logically monolithic from

the holistic view. There is an increasing likelihood that

emergent failures manifest from memory exhaustion

(due to faulty components) resulting in the overall crash

and stop, unsolved deadlock in the decision maker

resulting in the slowdown of request handling, and late-

timing state mismatch in the state manager leading to

the scheduling conflicts.

As a result, there has been a need to leverage sub-

modulization and containerization of the datacenter

resource manager. For example, the resource manager

master scheduler should be able to function in the face

of various failures. To orchestrate and run containers,

other system components such as container clustering,

networking, and automated deployment and monitoring

are required. For instance, Kubernetes schedules any

number of container replicas across a group of nodes. To

benefit from containerization and increase the

management flexibility, increasing Kubernetes

components or external plugins are deployed and

maintained within containers.

Fault isolation and propagation prevention - Resource

exhaustion [12] is a leading root-cause of crash-stop or

timing failures within system components, and can be

derived from either failure within a singular component

or influence from other faulty and non-faulty

component behaviour outside of its defined system

boundaries. For example, a service that experiences high

latency (due to stragglers or crash failures within the

network) can result in communicating services to

experience resource exhaustion. Performance

interference between tasks in the same physical node

results in performance degradation and resource

exhaustion within other tasks. System designers attempt

to mitigate such propagation via leveraging container-

based mechanisms and cgroup restriction whose

operation is dictated by quantitative QoS modelling to

define the conservatively least resource boundary of

each job group and fair resource allocations among

different groups. However, determining the more

appropriate parameters (and importantly, how they

should evolve in response to changes in operational

context) is an open research challenge.

Cloud Monitoring - Timely Detection and

Alerting

Robust monitoring and alerting. At increased system

scale, real-time health-checking, load measurement

throughput, and application-specific errors become

increasingly important. However, an outstanding issue is

how to effectively monitor system health when

considering the sheer volume and variety of hundreds of

millions of potential system metrics. When exposed to

the manifestation of emergent failures that can be

caused by monitoring itself, traditional static threshold-

based monitoring and alerting are insufficient. A human-

defined threshold may be useful to enact automated

decision making and alerting on-call technical staff,

however encounters difficulties in terms of false

negatives and false positives that may change in

response to system usage. Therefore, a robust anomaly

detection mechanism whose sensitivity can be

appropriately tuned in accordance to current

operational context of the system is required. A

potential means to achieve this is leveraging adaptive

learning of monitoring and detection parameter which

considers different periodicity, parameter types, and

parameter values. However how to generate and

exploit streaming metrics to recognise outliers is

intricately challenging due to the contradictory dilemma

system monitor is facing - selective use of partial metrics

to enact fast (yet imprecise) decisions or exploit a large

amount of metrics for more precise (yet slow) decision

making.

Preventive performance diagnosis. In contrast to

reactive solutions whereby a faulty running service is

halted to ascertain what conditions led to emergent

failures manifestation to enact necessary maintenance

http://techbeacon.com/does-kubernetes-make-containers-ready-prime-time

(which has been demonstrated to be ineffective for

dealing with stragglers [4]), a proactive diagnosis would

ensure that end user service is minimally affected.

Monitoring as many components as possible is likely to

support failure prediction. However, in practise not all

components can be monitored due to the sheer volume

of data required to be collected, transmitted, and

calculated. information pertaining to hardware to

environmental factors such as fan speed or temperature,

it is highly desirable to explore the failure root causes

and investigate the interactions of system components

in failures caused by multiple faults. However, it is

extremely difficult to articulate the root causes at

runtime due to the uncontrollable and intrinsic system

factors. Statistical correlation among metrics can

facilitate to rapidly to find root causes and determine

the most effective handler.

Component self-diagnosis is also beneficial to the

system instrumentation. For example, understanding

and leveraging node performance is critical for straggler

mitigation and workload placement. The performance

refers to its ability to execute parallel applications and

hold containerized services. Machine learning

techniques such as classification and regression (e.g.

Random Forest, Gradient Boosting Trees) might be one

means in order to achieve this; through classifying nodes

into different categories and predicting the

corresponding performance category with high accuracy,

the scheduler can rank nodes and select suitable nodes

to launch latency-sensitive tasks, avoid assigning

speculative tasks onto nodes that are likely to be in their

weak performance state as soon as possible.

Cloud Scheduling and Instrumentation:

Prevention and Tolerance

Emergent failure-aware design should be permeated

into each step and component in the Cloud scheduler.

To reduce the scheduling downtime, the system should

not have a single point of failure in the design. The

ultimate objective is to realize a zero-downtime

scheduler system.

Latency-oriented tail mitigation based on redundancy.

Modern cluster schedulers must deal with both the

latency-sensitive requests and computation intensive

tasks (e.g. long-running HTTP services, periodic cron

jobs). Redundancy is the fundamental technique used

to enhance component reliability of hardware, software

and data storage. Based on the multi-replica component

deployment, identical components can be deployed.

The replication controller is typically used to track and

record the health status of replicated components. The

controller should guarantee the provisioned replica

number at any given moment. Namely, the controller

should launch a new replica if a component is killed or

becomes inaccessible. For instance, in Kubernetes, the

Replication Controller can auto-scale and manage

microservices based on resource utilization or a fixed

lower or upper limitations of expected replica number.

For computation intensive tasks, the most common

means to resolve the straggler is the speculation

execution relying on the idempotency. However, a lack

of coordinate fault tolerance between components

leads to an emergent failure whereby such an action

results in increased the resource contention, leading to

cascading latencies for new tasks. Stragglers even rises

more frequently in learning systems and distributed

optimizations due to the performance is significantly

throttled by slow communications and computations.

The idempotency is invalid due to the shared states.

Scenario-specific mitigations such as data encoding with

built redundancy [15] and work reassignment with

consistency bounds.

User-transparent failover and fault conversion. The

system designer attempts to design the resource

scheduler so that it can perform failover and self-healing

(i.e. autonomous recovery) of all components

unperceived by the customer. An important

consideration for conducting failover is state recovery

that prominently leverages caching or checkpointing.

Intermediate states or returned results from stateless

services can be cached so that the majority of services

can continue operating during intermittent failures

within any related components. For more critical data or

state (such as runtime memory bitmap and register

values), checkpointing can be leveraged to create

snapshot backups of current system states. While this

strategy is an effective for recovering from incorrect

state and data loss, the checkpointing itself is often

considerably large. Checkpointing within a 1,000 node

datacenter cluster in Alibaba over 24 hours has been

reported to generate 1.7GB checkpoint (and within HPC,

completing checkpointing can take hours to complete),

and as demonstrated by the Amazon outage, can

unknowingly manifesting as an emergent failure itself.

Therefore, we believe that new approaches are required

for checkpointing to function at scale such as combining

hard state backup and soft-state inference [13].However,

due to the emergent failure cannot be anticipated

beforehand, it is essential to enable the finite-state-

machine (FSM) of system faults to more be able to adapt

in accordance to detected system faults. For example,

whether it is possible to automatically transform the

emergent fault mode into a known classification of fault

modes which can be then be tackled by established

approaches. Once a fault is deterministic, the

component or devices (such as storage block, NICs) that

lead to performance degradation could be temporarily

isolated or removed during system failover.

Rethinking Beyond Clouds

Holistic fault tolerance and recovery. Holistic Fault

Tolerance (HFT) has been recently introduced that could

potentially be an effective approach for handling

emergent failures. HFT relies on a cross-cutting

components for system recovery tailored to a specific

error detected and the appropriate recovery strategy for

execution. The recovery region strictly involves system

components that need to be involved for recovery for a

given error. These components, which could be located

at different layers, subsystems, packages, nodes, etc.,

are involved in a coordinated recovery. This HFT

approach makes it possible to reduces the system

complexity to addressing complex failure recovery

scenarios.

For example, in order to address the challenges with

performance interference, it could be possible to

coordinate VMs on the same physical node. In the event

where a VM is failing to adhere to timing requirements.

The HFT could then consider performing coordinate

recovery by leveraging components within both VMs.

This could be facilitated by the hypervisor altering its

scheduling to provide more CPU to a particular VM, and

then measures the resultant delays in both to ensure

satisfactory levels of CPU share. If they are unable to do

so, the hypervisor itself would then need to make this

change. If this is not possible, then a wider decision to

evict and reschedule the VM is required that then

incorporates the resource manager.

IoT integration. The presence of emergent failures is

not solely confined to Cloud datacenters, and can

manifest within any large-scale computing system. IoT is

such a system particularly susceptible to emergent

failures for many of the reasons given for Cloud –

dynamic and unpredictable assortment of

interconnected virtual and physical devices. A key

difference is IoT exhibits high degree of dynamic join-

leave not found within Cloud computing. If the system

boundaries of interconnected components are

constantly changing due to their usage and device

composition, it is intuitive to assume that imposing rigid

fault tolerance strategies that designed independently

from the operational context of greater system is

increasingly infeasible. Such system environments will

also likely result in ‘fluid’ error confinement areas for a
set of components, hence we believe a future research

direction will be investigating how to autonomously

determine the optimal fault tolerance and recovery

mechanism for a given system context.

Conclusion

In this paper we discuss the rise of emergent failures: a

growing problem towards ensuring reliability in Cloud

datacenters and all future computing systems at scale. A

central issue to address is how to determine effective

fault tolerance and recovery strategies when

assumptions that define fault types and failure scenarios

are constantly changing due to Cloud datacenter

dynamicity, complexity, and heterogeneity between

interacting components. Two potential ways to address

this issue is (i) rethinking the nature of system

abstraction allowing for holistic fault tolerance that

cross-cuts coordination of components, and (ii)

exploring the concept adaptive fault tolerance in

response to current and forecasted operational

scenarios. Moreover, further study is required by the

research community to study the relationship between

Cloud datacenter operation and emergent failure

manifestation beyond coarse-grain analysis and

observation, and towards creating models which

precisely capture system conditions that lead to failure.

Acknowledgement

This work is supported by the EPSRC (EP/P031617/1)

and the National Key Research and Development

Program of China (2016YFB1000103). Dr. Renyu Yang is

the corresponding author.

References

[1] Schroder, B., Gibson, A. G., A large-scale study of failures in

high-performance computing systems, In the Proceedings of

DSN, 2016.

[2] Garraghan, P., Solis Moreno, I. Townend, P., Xu, J. An

Analysis of Failure-Related Energy Waste in a Large-Scale

Cloud Environment, IEEE Transactions on Emerging Topics in

Computing

javascript:void(0)
javascript:void(0)
javascript:void(0)

[3] Garraghan, P., Ouyang, X., Yang, R., McKee, D., Xu, J.,

Straggler Root Cause and Impact Analysis for Massive scale

Virtualized Cloud Datacenters, IEEE Transactions on Services

Computing, 2016

[4] Dean, J., Barroso, L.A., The Tail at Scale, Communications of

the ACM 56, 2013.

[5] Avižienis, A. et al., Basic Concepts and Taxonomy of

Dependable and Secure Computing, IEEE Transactions on

Dependable and Secure Computing, 2004.

[6] Verma, A., Pedrosa, L., Korupolu, M., Oppenheimer, D., Tune,

E. and Wilkes, J., 2015, April. Large-scale cluster

management at Google with Borg. In Proceedings of the

Tenth European Conference on Computer Systems (p. 18).

ACM.

[7] Burns, B., Grant, B., Oppenheimer, D., Brewer, E. and Wilkes,

J., 2016. Borg, omega, and kubernetes. ACM Queue, 14(1),

p.10.

[8] Hindman, B., Konwinski, A., Zaharia, M., Ghodsi, A., Joseph,

A.D., Katz, R.H., Shenker, S. and Stoica, I., 2011, March.

Mesos: A Platform for Fine-Grained Resource Sharing in the

Data Center. In NSDI (Vol. 11, No. 2011, pp. 22-22).

[9] Vavilapalli, V.K., Murthy, A.C., Douglas, C., Agarwal, S., Konar,

M., Evans, R., Graves, T., Lowe, J., Shah, H., Seth, S. and Saha,

B., 2013, October. Apache hadoop yarn: Yet another

resource negotiator. In Proceedings of the 4th annual

Symposium on Cloud Computing (p. 5). ACM.

[10] Zhang, Z., Li, C., Tao, Y., Yang, R., Tang, H. and Xu, J., 2014.

Fuxi: a fault-tolerant resource management and job

scheduling system at internet scale. Proceedings of the VLDB

Endowment, 7(13), pp.1393-1404.

[11] Boutin, E., Ekanayake, J., Lin, W., Shi, B., Zhou, J., Qian, Z.,

Wu, M. and Zhou, L., 2014, October. Apollo: Scalable and

Coordinated Scheduling for Cloud-Scale Computing.

In OSDI (Vol. 14, pp. 285-300).

[12] Maurer, B., 2015. Fail at scale. ACM Queue, 13(8), p.30.

[13] Yang, R., Zhang, Y., Garraghan, P., Feng, Y., Ouyang, J., Xu, J.,

Zhang, Z. and Li, C., 2017. Reliable computing service in

massive-scale systems through rapid low-cost failover. IEEE

Transactions on Services Computing, 10(6), pp.969-983.
[14] Sun, X., Hu, C., Yang, R., Garraghan, P., Wo, T., Xu, J., Zhu, J.

and Li, C. ROSE: Cluster Resource Scheduling via Speculative

Over-subscription. In IEEE ICDCS 2018

[15] Karakus, C., Sun, Y., Diggavi,S. and Yin, W., 2017. Straggler

mitigation in distributed optimization through data encoding.

In Advances in Neural Information Processing Systems (pp.

5434-5442).

ABOUT THE AUTHORS

Peter Garraghan is a Lecturer in Distributed Systems at

Lancaster University, UK, and received his PhD in Computer

Science at the University of Leeds, UK. His research interests

encompass massive-scale distributed systems, dependability,

resource management, and energy-efficiency. Contact him at

p.garraghan@lancaster.ac.uk

Renyu Yang is a research fellow at University of Leeds, UK and

R&D scientist at Edgetic Ltd., UK. His research interests include

massive-scale distributed systems, resource scheduling, and

dependability. He received his PhD in Computer Science from

Beihang University, China. Contact him at r.yang1@leeds.ac.uk

Zhenyu Wen is research fellow at Newcastle University, UK. He

received his PhD in Cloud Computing from Newcastle University.

His research interests includes IoT, Distributed systems, Big

Data Analytics and Computer network. Contact him at

zhenyu.wen@newcastle.ac.uk.

Alexander Romanovsky is a Chair Professor of Computing

Science at Newcastle University, UK. He received his PhD in

Computer Science from St. Petersburg State Technical

University, Russia. His research interests include fault tolerance

and system dependability. Contact him at

alexander.romanovsky@ncl.ac.uk.

Jie Xu is a Chair Professor of Computing at the University of

Leeds, Lead of a Research Peak of Excellence at Leeds, and

Head of Distributed Systems and Services, and co-founder of

Edgetic Ltd. UK. His research interests include large-scale

distributed computing and dependability etc. Contact him at

j.xu@leeds.ac.uk

Rajkumar Buyya is a professor of computer science and

software engineering, at the University of Melbourne, Australia.

His research interests include cloud, grid, distributed, and

parallel computing. Buyya has a PhD in computer science from

Monash University. Contact him at rbuyya@unimelb.edu.au.

Rajiv Ranjan is a Chair Professor of Computing Science and IoT

at Newcastle University, UK. He received a PhD in Computer

Science and Software Engineering from the University of

Melbourne. His research interests include Internet of Things,

Big Data Analytics. Contact him at raj.ranjan@ncl.ac.uk.

mailto:zhenyu.wen@newcastle.ac.uk
mailto:alexander.romanovsky@ncl.ac.uk

