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Abstract — Virtualization is one of the main technologies used for 

improving resource efficiency in datacenters; it allows the 

deployment of co-existing computing environments over the same 

hardware infrastructure. However, the co-existing of 

environments - along with management inefficiencies - often 

creates scenarios of high-competition for resources between 

running workloads, leading to performance degradation. This 

phenomenon is known as Performance Interference, and 

introduces a non-negligible overhead that affects both a 

datacenter’s Quality of Service and its energy-efficiency.  This 

paper introduces a novel approach to workload allocation that 

improves energy-efficiency in Cloud datacenters by taking into 

account their workload heterogeneity. We analyze the impact of 

performance interference on energy-efficiency using workload 

characteristics identified from a real Cloud environment, and 

develop a model that implements various decision-making 

techniques intelligently to select the best workload host according 

to its internal interference level.  Our experimental results show 

reductions in interference by 27.5% and increased energy-

efficiency up to 15% in contrast to current mechanisms for 

workload allocation. 

Keywords — Cloud computing, energy-efficiency, performance 

interference, virtual machine placement, workload heterogeneity   

I. INTRODUCTION 

Cloud Computing is “a model for enabling ubiquitous, 
convenient, on-demand network access to a shared pool of 
configurable computing resources that can be rapidly 
provisioned and released with minimal management effort or 
service provider interaction” [1]. It is experiencing rapid 
growth as it promises to reduce maintenance and management 
costs in comparison with in-house infrastructure [2]. Despite its 
commercial advantage of reduced energy consumption on the 
client side, Cloud providers still need to address a number of 
key challenges, such as striking a balance between optimal 
energy efficiency and satisfying the increasing demand and 
high performance expectations of users.  

The first generation of energy-efficient Cloud computing 
approaches have introduced mechanisms to dynamically resize 
the pool of servers based on actual demand [3, 4].  Additionally, 
others such as [5, 6]  have proposed to extend these 
mechanisms with enhanced migration and server activation 
policies to reduce Service Level Agreement (SLA) violations. 
However, these approaches neglect potential inefficiencies at a 
fine-grained level such as the overhead produced by the high 
competition for resources in virtualized environments [7]. If the 
approaches do not take into account such inefficiencies, their 

claimed energy-efficiency and performance improvements may 
be drastically diminished under real conditions. Cloud 
computing datacenters are multi-tenant environments where 
diverse workload types live together. Normally encapsulated 
into Virtual Machines (VMs), these workloads are co-allocated 
into the same servers sharing the underlying physical 
infrastructure to maximize the datacenter utilization. Although 
virtualization offers environmental and fault isolation, it does 
not  guarantee that the resource consumption of a VM will not 
affect the performance of other VMs running on the same 
server [8]. This condition creates scenarios of high-competition 
for resources that could negatively affect the Quality of Service 
(QoS) specified in SLAs. This phenomenon is known as 
Performance Interference and its effect on the QoS of 
workloads has been previously analyzed in [8-12]. However, 
current approaches have yet to consider the impact of such 
interference on a datacenter´s energy-efficiency. An 
understanding of this phenomenon is critical if we are to design 
energy-efficient mechanisms that maintain performance under 
realistic environmental conditions.    

In this paper, we analyze the impact of performance 
interference on energy-efficiency and propose a model to 
reduce energy waste by taking into account the workload 
heterogeneity that exists in Cloud environments. Our core idea 
is to co-allocate different types of workloads based on the level 
of interference that they create, in order to reduce the resultant 
overhead and consequently improve a datacenter´s energy-
efficiency. The proposed model classifies incoming workloads 
based on their resource usage patterns, pre-selects the hosting 
servers based on resources constraints, and makes the final 
allocation decision based on the current servers’ performance 
interference level. In order to conduct this study we emulate the 
different workload types derived from the Google Cloud 
tracelog [13], and execute them on the iVIC Virtual Computing 
Infrastructure [14] to measure their interference and energy 
consumption. iVIC provides flexible access to virtual cluster 
computing environments on top of common resources, and 
enables users to dynamically create customized and scalable 
virtual computing environments. Additionally, we perform 
simulation experiments using the CloudSim framework [15] to 
evaluate the overall impact of our proposed model in a highly 
dynamic scenario, also modeled from the Google tracelog. Our 
experimentation shows that our proposed model reduces 
interference by 27.5% and improves energy-efficiency by up to 
15% in contrast with current allocation mechanisms in the 
analyzed environment. In particular, the major contributions of 
this paper are: 



 The first analysis conducted to determine the impact of 
performance interference on energy-efficiency in 
Cloud environments.  

 A novel method that takes into account workload 
heterogeneity in order to reduce the overhead and 
energy waste produced by performance interference.  

The remaining sections are structured as follows: Section 2 
discusses workload heterogeneity and presents a 
characterization of workloads derived from a real scenario; 
Section 3 performs an analysis of performance interference 
impact on energy-efficiency; Section 4 describes the proposed 
model; Section 5 describes the experimental environment and 
results; Section 6 discusses related work; Section 7 presents our 
conclusions and discusses future work. 

II. WORKLOAD HETEROGENEITY  

A workload is a specific amount of work computed or 
processed within the datacenter with defined resource 
consumption patterns. In this context, Cloud computing 
datacenters can be defined as pools of computer resources that 
can host a variety of different workloads ranging from long-
running scientific jobs to transactional operations [16]. In such 
heterogeneous environments, workloads are different among 
them not only because the amount of resources that they 
consume but also because the placement constraints that they 
impose [17]. While task resource requirements describe how 
much resources a task consume, task placement constraints 
specify which resources are consumed and their characteristics. 

To capture this diversity, we have analyzed the Google 
Cloud tracelog [13] and derived a workload classification based 
on length and resource utilization patterns (CPU and Memory). 
The tracelog contains information about 930 different users 
submitting 25 million running-tasks on a cluster composed 
over 12,000 servers for a period of 1 month.  The classification 
presented in Fig. 1 was obtained applying k-means algorithm 
[18] on the day 18th that has highest ratio between number of 
submissions and the work performed in the entire tracelog. 
From the cluster centroid analysis, 3 different types of 
workloads can be outlined. These have been labeled as “Small”, 
“Medium”, and “Large” due to the proportions P of their 3 
dimensions as presented in Table I. Here, the values of Length, 
CPU, and Memory have been standardized based on the 
maximum and minimum values from the tracelog to avoid 
skewed results due to the use of different metric units.  

Regarding to the task constraints, we have assumed the list 
of 21 constraints and their probabilities defined by Sharma et al. 
[17]. This list is composed by the most popular constraints in 
Google computer clusters such as the one from where we have 
derived the classification. Each task can be associated with zero 
or more constraints as represented in Fig. 2 and each constraint 
is defined by a triple of machine attribute, relational operator, 
and desired value. The list includes machine attributes such as 
architecture, number of cores, number of disks, number of 
CPUs, kernel version, clock speed, Ethernet speed, and 
platform family. In combination, task types and constraints 
create a highly heterogeneous workload environment that can 
be exploited to reduce the negative effects of performance 
interference [11]. 

III. IMPACT OF PERFORMANCE INTERFERENCE ON ENERGY-

EFFICIENCY 

The impact of performance interference in virtualized 
environments has been typically measured in terms of QoS 
such as throughput, latency or response time. However, this 
phenomenon also affects other critical factors that include the 
energy-efficiency of the overall datacenter. When performance 
interference occurs, co-allocated workloads essentially fight for 
common resources creating overhead that increase the power 
consumption of individual servers. On the other hand, the 
remaining resources are mainly wasted until the overhead is 
dissolved. To provide an example, we have allocated 3 KVM 
VMs repeatedly running CPU-bounded workloads in the same 
virtualized server for 10 hours while the energy consumption is 
monitored. Each workload computes the 50th Fibonacci 
number using naive recursion to create a high competition for 
CPU time. Running alone, each workload requires in average 
94.5 seconds to be completed but when running all together the 
performance for some of the VMs is reduced approximately 90% 
during some periods of time when interference occurs. In Fig. 
3(a), it is observable that from time 0 to 25000 one VM 
primarily keeps the control of the resources greatly affecting 
the performance of the other two. During this period, the power 
consumption as observed in Fig. 3(b) steadily remains about 
115 Watts in average. However, when the interference is 
reduced from time 25000 to 36000 the average power 

 
Figure 1.    Google task classification plot. 

TABLE I.     TASK TYPE DIMENSIONS AND PROPORTIONS. 

 Length P CPU P Memory P 

S 0.0007 1 0.0149 1 0.0089 1 

M 0.0038 5 0.0810 5 0.0585 6 

L 0.0107 15 0.2206 14 0.2556 28 
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Figure 2.    Task constraints model. 



consumption increases up to 135 Watts. Although the 
increment of power is close to 17%, it is still small in 
comparison to the performance improvement of 90% for each 
affected VM. This suggests that when the interference 
increases, the energy-efficiency is reduced and vice versa. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In order to analyze the impact of performance interference 
on energy-efficiency in real cloud environments, we have 
emulated the 3 task types derived from the Google tracelog in 
Section 2. We have used Sysbench [19] “memory-test” to stress 
CPU and Memory based on the proportions P defined in Table 
I. Sysbench is a modular, cross-platform and multi-threaded 
benchmark tool for evaluating system parameters under 
intensive loads. In our emulation, each workload is defined by 
one or more Sysbench commands that execute a number of 
writing operations on pre-established memory blocks to create 
CPU and memory usage patterns according to the command in 
(1). Additionally, the configuration for each workload type is 
presented in Table II. 

 

 

 

Over a period of 12 hours, we deployed different pair 
combinations of these workloads in a virtualized environment 
using iVIC System [14] which is a KVM-based Virtual 
Computing Infrastructure. While the performance of each VM 
has been recorded using the libvirt API, the transient power and 
total energy consumption has been monitored through a 
Voltech PM3000 Ace power analyzer unit. The effects of 

performance interference in each pair has been measured by 
extending the Combined Score (CS) proposed in [11]  to 
calculate the “Combined Interference Score” (CIS) as 
described in (2). 
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Where n is the total number of VMs co-allocated in the 
server s, Pi is the performance of the VMi when combined with 
other, and Bi is the performance of the VMi when running in 
isolation. Regarding to the energy-efficiency decrement, it is 
calculated as described in (3) where E is the expected energy-
efficiency and A is the actual energy-efficiency obtained for 
each pair. In both cases energy-efficiency is defined as the ratio 
of work (performed or expected) by the total amount of energy 
consumed. The expected work is supposed to be the aggregated 
work of individual VM when running in isolation. 
Correspondingly, the actual work is calculated by the total 
work of each VM when is combined with others. 
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Table III describes the performance and energy 
measurements as long as the values obtained of CIS(s) and 
ΔEE(s) for each combination.  Additionally, Fig. 4 illustrates 
the impact of performance interference on the energy-

efficiency decrements for the analyzed workload combinations.  
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Figure 3.    Interference effects on (a) workload performance and (b) 

Server energy consumption. 

(a) 

(b) 

TABLE II.     WORKLOAD CONFIGURATION. 

Type Length 

(Number of 

Operations) 

Threads 

(Sysbench 

Commands) 

Memory 

Allocation 

(MB) 

Small 1707 1 60 

Medium 8535 5 360 

Large 23898 14 1680 
 

Sysbench --test=memory  --memory-oper=write --

num-threads=1 --memory-block-size=60M run 
(1) 

(2) 

(3) 

TABLE III.    PERFORMANCE AND ENERGY OBSERVATIONS. 

Type Perf Comba Energy 

(Whr) 

CIS ΔEE 

VM1 VM2 

SS 61.36 61.28 1558.92 0.482 0.241 

SM 60.06 62.23 1555.80 0.519 0.259 

SL 59.19 66.38 1535.88 0.516 0.257 

MM 62.23 62.43 1563.60 0.522 0.261 

ML 60.25 66.97 1541.64 0.527 0.263 

LL 66.38 66.38 1538.40 0.496 0.248 
a. The performance in isolation for S, M, L was measured in 80.9, 84.4, 88.3 operations/s 

respectively. 
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Figure 4.     Impact of  performance interference  on  energy-efficiency 

decrements for the evaluated workload pairs. 



As observed, the energy-efficiency almost linearly 
decreases when the interference increases. This is mainly 
caused by reduction of the number of operations executed per 
Watt consumed when interference occurs. This phenomenon is 
observable from Fig. 5 where the interference is characterized 
in terms of both performance and power consumption for a 
sample of combinations. For example, Fig. 5(a) illustrates the 
case of combining Small and Medium workloads. Here while 
the performance of each VM gets close to each other indicating 
the reduction of the interference from time 25,000 to 35,000, 
the power consumption is increased from 130 to 135W. 
However, this is a transient increment that slightly affects the 
overall energy consumption.  This means that when the 
interference is reduced the power increment does not 
significantly affect the energy-efficiency. On the other hand, 
when the interference is strong the resulting performance 
degradation drastically affects the amount of work computed in 
contrast to average Watts utilized for such computation.  The 
same phenomenon is also observable in Fig.5 (b) for the 
combination of Large workloads from time 29,500 to 31,200 

and in Fig. (c) for the combination of Medium and Large 
workloads from time 5700 to 21,700.  

IV. PROPOSED MODEL AND APPROACH 

As observed in Fig. 6(a), the proposed model extends the 
traditional Cloud Management System (CMS) architecture with 
an Interference-Aware Allocation Module (IAA). It evaluates 
the incoming workloads and the datacenter servers to create a 
balanced mixture of workload types. The IAA module is 
integrated by four components: the Workload Classifier 
Service (WCS), the Resource Description Reasoner (RDR), the 
Dynamic Status Monitor (DSM), and the Matchmaker Service 
(MMS). The IAA module is also supported by the Resource 
Information Service (RIS) that provides the data collected from 
monitoring the resource utilization patterns. Fig. 6(b) illustrates 
the interaction of the listed components. 

A. Workload Classifier Service 

The WCS receives the characteristics of the incoming 
workload and determines its membership regarding to the 
classification presented in Section 2. The classifier is 
implemented as a Decision Tree (DT) which is automatically 
constructed based on the entropy measurement of historical 
data using the ID3 algorithm as defined in [20]. ID3 is a 
machine learning technique to construct classification trees 
based on the homogeneity level of the provided training dataset. 
In this context, entropy is used as a measurement to 
characterize the homogeneity of an arbitrary collection of 
examples as specified in (4). 
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Where x is a random variable with n possible values and pi 

is the mass probability function of the outcome i. The proposed 
learning module applies the ID3 algorithm on randomly 
selected cases to separate the data into targeted classes creating 
a workload classification tree. Later, the prediction module 
determines the membership of incoming workloads comparing 

(4) 

 

 

 

Figure 5.     Performance Interference characterization (a) Medium Vs 
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each one their characteristics against the tree nodes previously 
defined. This process is illustrated in Fig. 7(a) and a fraction of 
the derived workload classification is presented in Fig. 7(b). 

Decision Trees present high-classifying speed, strong 
learning ability, and simple construction with a neglectable 
overhead for large training sets [20, 21]. It takes less than 1 
second to construct the classification tree for a training set of 
1000 elements randomly selected from the Google tracelog. 
The tree was evaluated against 100 randomly created test sets 
of 1000 elements from the same dataset. It accurately 
determined the membership of incoming workloads in an 
average of 98.5% of the cases. 

B. Resource Description Reasoner 

The RDR is responsible to preselect a subset of servers that 
fulfill the constraints C= {c1, c2, c3, ..., cn} imposed by the 
incoming workload. It maintains a case library that describes 
all the servers in the datacenter and their features F= {f1, f2, 
f3, ..., fm}. The reasoner takes the server features described in 
the library and the set of workload constraints and determines 
their similarity measuring the spatial distance between them as 
described in (5) and (6). 
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Where d(ci, fi) is the spatial distance between the constraint 
c and the server feature f, w is the constraint importance 
defined by the user, and  D(C,F) is the overall spatial distance 
between the workload with constraints C and the server with 
features F. The RDR returns to the MMS a list of “unique 
identifiers” (uids) of those servers that exactly match the 
requirements or those that have a minimum level of similarity 
defined by the Cloud administrator. 

C. Dynamic Status Monitor 

The DSM is responsible to maintain the status of each 
server in the datacenter. Every time a VM is deployed or 
removed from a specific server, the dynamic characteristics of 
that server including resources availability, energy-efficiency, 
and CIS are determined and stored by the DSM. When required, 
this information is passed to the MMS to select the server with 
available resources and less interference impact. The 
availability A for a server s is determined for each resource r = 
{CPU, memory, disk, and bandwidth} based on the maximum 
server availability Max(r,s) and the sum of current allocation 
for each deployed VM Alloc(r, vm) as defined in (7). 
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The energy-efficiency EE for a server s is calculated as the 
ratio of the work being computed w measured in Millions of 
Instructions (MI) and the used power P(u) in Watts as defined 
in (8) to (10). 
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Where u is the system utilization,  and β are the lower an 

upper utilization levels  ≤ u ≤ β derived from the server 

profiling process as presented by SpecPower [22]. The 
interference score CIS(s) is calculated using (2) defined in 
Section 3. The dynamic status is stored using a Hash Map 
structure in order to perform indexed searches based on the 
servers’ uids.     

D. Matchmaker Service 

The MMS is responsible for orchestrating the previously 
described modules to select the best server based on the 
workload constraints, resource availability, and interference 
impact.  When the MMS receives the workload characteristics, 
it requests the WCS to determine the workload’s membership. 
Then it sends the workload constraints to the RDR to obtain the 
unique identifiers of the servers that fulfill such constraints.  
Afterwards, the server identifiers are sending to the DSM to get 
their current dynamic status. To select the best servers from the 
retrieved subset, the MMS first discard those whose resource 
availability is not sufficient to host the new workload. The set 

Workload Training Set

Length CPU Memory Class

34536

12454

29674

0.0321

0.0024

0.0134

0.0021

0.0032

0.0018

2

1

3

Workload Test Set

Length CPU Memory Class

34523

12324

28654

0.0421

0.0029

0.0154

0.0027

0.0042

0.0020

?

?

?

ID3 Learning 

Algorithm

Learning 

Module

Prediction 

Module

Workload 

Classification 

Model

 

 
 

Mem

Mem
Length

CPU

Class 

2

Class 

2

Class 

1

>0.0074

>0.028

>0.020

<=0.020

>3462550

<=3462550

Mem

CPU

Length

Class 

3

Class 

1
<=0.0074

<=0.0051

>0.0051

<=3462550

<=0.015
 

 

Figure 7.    Decision tree classification mechanism (a) training process (b) 
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of suitable servers S is ranked based on the current weighted 
energy-efficiency WEE of each server s as defined in (11).  
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Then the insertion of the new workload is simulated for each 
server in S until the maximum weighted energy-efficiency 
WEE’ is found. The detailed algorithm for server selection is 
presented in Table IV. 

 

 

 

 

 

 

 

 

 

 

 

 

V. EXPERIMENTAL ASSESSMENT 

The objectives of the conducted experiment are assessing 
the performance interference reductions and energy-efficiency 
improvements obtained by the proposed approach in 
comparison to the current Google’s allocation mechanism. For 
that reason we have configured a simulated environment based 
on CloudSim framework [15]. This allows us to reproduce the 
desired variability and dynamicity of Cloud datacenter in a 
controlled way. The entire workload and user models have 

been derived from the Google’s tracelog while the server 
characteristics and energy models are depicted from 
SpecPower results [22]. The environment consists of users with 
6 different behavioral profiles as listed in Table V submitting 
5000 tasks with the characteristics described in Section 2. The 
cluster is composed by 100 heterogeneous servers from 3 
different platforms with the characteristics described in Table 
VI.  Additionally, the complete energy models are presented in 
Fig. 8. 

A. Experimental Results 

The proposed interference-aware mechanism is contrasted 
against the prioritized First-Come, First-served (FCFS) 
algorithm according to the scheduling system described by 
Google in [23]. Initial results show a significant reduction in 
the levels of performance interference and improvement on the 
datacenter’s energy-efficiency. The “Combined Interference 
Score” (CIS) is reduced in average from 1044.20 to 756.86 
units which represents an improvement of approximately 27.5% 
in comparison to the current scheduling system. This can be 

(11) 

TABLE IV.    SERVER SELECTION ALGORITHM. 

Input: m → New workload membership, 
S →  Set of ranked servers 

Parameters: w → New workload to allocate 

Output: si → Selected server 
(1) MaxWEE’ ← 0 

(2) si ← NULL 

(3) For Each s in S 

(3.1) s ← Insert w 

(3.2) EE’ ← Calculate Energy-efficiency of s (Eq.7) 

      (3.3) CIS’ ← Calculate Interference ratio of m in s (Eq.1) 

      (3.4) WEE’ ← Calculate WEE based on EE’ and CIS’ 
(Eq.10) 

      (3.5) If WEE’ is greater than MaxWEE’ 
MaxWEE’ ← WEE’ 
si ← s 

(3.6) Else break_loop 

(4) Return si 

TABLE V.    USER SUBMISSION PATTERNS. 

User Model 
Profile ID Avg. Submission 

Tasks/second 

1 0.00056 

2 0.00005 

3 0.00432 

4 0.28420 

5 0.17870 

6 1.24700 
 

TABLE VI.    SERVER PLATFORM PROFILES. 

Server Model 
Platform CPU Capacity 

ssj_ops@100% 

Memory 

GB 

Energy in 

Watts 

Idle/Max 

  ProLiant 

DL365 G5 
337,543 8 144 / 268 

PRIMERGY 

RX200 S7 
1,338,554 32 58.6 / 257 

1022G-NTF 793,535 48 70.3 / 213 
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Figure 8.    Energy models of the three selected platforms. 
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Figure 9.    Performance Interference (a) per instant of time (b) per server. 
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observed from Fig. 9(a) where is also evident that the peaks of 
interference have been reduced not only in number but also in 
proportion which is critical when the datacenter utilization is 
high. Furthermore, in Fig. 9(b) it is presented the total CIS 
accumulated per server. It is clear that specific servers produce 
more interference than others, for example servers 59, 60, and 
67 accumulate a CIS over 80,000 units. This is caused by the 
great demand of the server characteristics that fulfill the 
constraints of a significant proportion of the submitted tasks.   

In order to further reduce the effects of performance 
interference it is evident that providers need to balance the 
characteristic of offered infrastructure based on the dimensions 
of the demand. This requires reducing the number of servers 
that produce low interference and increasing those that are 
heavily used. To achieve this, providers need to clearly 
understand the overall datacenter workload and its resource 
utilization patterns as long as its specific placement constraints. 
As was expected, during peak utilization periods the 
interference-aware mechanism increases the number of 
working servers. In Fig. 10(a) we can observe that at time 
5,000 when high utilization occurs the number of active servers 
was incremented from 50 to 63. This is the result the WEE 
evaluation performed in instruction (3.5) from Table IV. When 
the energy-efficiency on a specific server is drastically affected 
due to its current workload composition, the proposed 
scheduling mechanism deploys the newly incoming tasks on 
less utilized servers.   Although this creates transient peaks on 
the energy consumption as observed in Fig. 10(b), it reduces 
the performance impact and therefore the completion time of 
the workload from 45,000 to 30,000 seconds. This time 
difference and its intrinsic savings on energy consumption 
represent an improvement of 15% on the datacenter’s 
efficiency as observed also in Fig. 10(b). From these 

observations we can clearly depict a trade-off between 
performance interference and resource availability. That is 
when performance interference is reduced, the availability of 
servers is impacted and vice versa. The critical aspect is to find 
a balance between both dimensions to reduce the negative 
effects of performance interference while datacenter’s resource 
availability is maintained. In this case the use of resources 
overallocation mechanisms [24] along to interference-aware 
approaches can help to improve the obtained results.   

VI. RELATED WORK 

The negative effect of performance interference in 
virtualized environments has been previously analyzed. This 
section describes and discusses the most relevant related work 
approaching the problem. Younggyun et al. [12],  present an 
study that evaluates the performance impact of co-allocating 
pairs of different applications in virtualized servers by 
analyzing system-level characteristics including CPU, memory, 
and disk utilization. In this paper the authors proposed a model 
to predict the performance of a new incoming application based 
on previous observations. Gupta et al. [25], discuss the sources 
of interference at Xen’s Virtual Machine Monitor (VMM) for 
I/O intensive workloads. They propose a set of primitives 
implemented at hypervisor-level to improve the resource 
sharing mechanisms and mitigate the performance impact 
caused by co-allocated VMs. Pu et al. [11], present a complete 
analysis of performance interference in Xen hypervisor. In this 
analysis they demonstrate that co-allocating different types of 
workloads reduces the performance interference in virtualized 
environments. Additionally, they present a set of performance 
metrics to outline points of conflict among the studied 
workloads.  Govindan et al. [10], also analyze the phenomenon 
of performance interference at Low-level Cache (LLC). They 
propose a technique to predict the performance interference due 
to shared processor cache using synthetic cache loader 
benchmarks to profile the performance of mixed applications. 

It is observable that the main related approaches have been 
focused on QoS aspects completely neglecting the impact on 
energy-efficiency produced by this phenomenon. If this is not 
considered, it can drastically diminish claimed energy-
efficiency improvements by energy-aware mechanisms when 
applied under real conditions. Furthermore, they have only 
considered the amount of resources but not the placement 
constraints imposed by applications. These can also magnify 
the performance interference in real scenarios since they can 
increase the demand of certain servers in comparison to others. 
Finally, previous studies are largely based on unrealistic 
workload characteristics that can lead to misleading results in 
real operational environments. This is mainly caused by the 
lack of tracelogs and their consequently workload analysis 
from real and large-scale Cloud computing environments. 

VII. CONCLUSIONS AND FUTURE WORK 

In this paper we have characterized workload heterogeneity 
derived from a real Cloud environment, and have provided the 
first approach to assess the impact of performance interference 
on a datacenter’s energy-efficiency. Moreover, we have 
presented a mechanism to enhance energy-efficiency by 
exploiting the intrinsic workload heterogeneity that exists in 
Cloud environments. Experimental results show that our 
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Figure 10.    (a)The number of active servers during the experimental time 

(b) Energy consumed by active servers during the experimental.  
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proposed mechanism reduces performance interference by 27.5% 
and increases energy-efficiency by up to 15% compared to 
current allocation mechanisms. From our presented study, the 
following conclusions can be drawn: 

 Interference not only affects the QoS of individual VMs but 
can also affect the energy-efficiency of the overall 
datacenter if not properly handled. This is mainly 
produced by a drastic reduction in the work processed per 
Watt consumed, in comparision to the expected efficiency 
in dedicated servers. 

 Exploiting the inherent workload heterogeneity that exists 
in Cloud environments provides an excellent mechanism to 
improve both the performance of running tasks and 
energy-efficiency. Combining specific workload types can 
reduce the performance impact introduced by virtualization 
as well as its negative effect on energy-efficiency. 

 Task constraints also play an important role, and can 
create bottlenecks that dramatically increase interference 
in specific servers. When specific server characteristics are 
highly popular, but the population of these is low in the 
datacenter, a strong overhead is introduced that affects not 
only performance but also overall energy-efficiency. 

 Relying on real data is critical to understanding the real 
challenges in Cloud Computing and formulating 
assumptions under realistic operational circumstances. 
This is especially true in very dynamic environments such 
as Cloud datacenters, where precise behavioural modeling 
is required to improve environmental efficiency while 
maintainng the QoS offered to customers. 

 As future work, we are planning to perform more 
experimentation to determine what other factors affect 
performance and energy-efficiency in Clouds, such as different 
hypervisors and hardware architectures. Additionally, a deeper 
study about the exposed interference impact on energy-
efficiency needs to be conducted in order to formulate holistic 
models considering hardware, software, and workload patterns. 
Finally, we are also interested in evaluating the impact of 
performance interference on energy-efficiency when resources 
in the Cloud datacenter are over-allocated, in order to improve 
server availability whilst reducing interference effects. 
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