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ABSTRACT Addressing intra-class variation in high similarity shapes is a challenging task in shape

representation due to highly common local and global shape characteristics. Therefore, this paper proposes a

new set of hand-crafted features for shape recognition by exploiting spectral features of the underlying graph

adaptive connectivity formed by the shape characteristics. To achieve this, the paper proposes a new method

for formulating an adaptively connected graph on the nodes of the shape outline. The adaptively connected

graph is analysed in terms of its spectral bases followed by extracting hand-crafted adaptive graph spectral

features (AGSF) to represent both global and local characteristics of the shape. Experimental evaluation

using five 2D shape datasets and four challenging 3D shape datasets shows improvements with respect to

the existing hand-crafted feature methods up to 9.14% for 2D shapes and up to 14.02% for 3D shapes. Also

for 2D datasets, the proposed AGSF has outperformed the deep learning methods by 17.3%.

INDEX TERMS Shape recognition, graph signal processing, graph spectral theory, adaptive graph connec-

tivity, hand-crafted features, graph spectral feature learning.

I. INTRODUCTION

Object recognition in terms of shape analysis has recently

received a great attention in the field of computer vision [1]

and applications, such as, security [2], medical imaging [3]

and human activity and pose understanding [4]. The detection

of shape appearance, part-structure, occlusion, articulation,

and local details play an important role in the ways of shape

classification. Representation of these characteristics is par-

ticularly significant when it comes to distinguishing highly

similar shapes. This is often the case in many existing shape

data-sets which consist of similar and complex shapes leading

to ambiguity in shape recognition [5]. For example, although,

various shapes in FIGURE 1 can be easily distinguished

by human vision, it is challenging for shape classification

algorithms due to the similarity in global structures and indis-

tinguishable local variations of these shapes. Thus, the cap-

turing small local details and prominent parts as well as the

global structure into shape models is an important factor in

The associate editor coordinating the review of this manuscript and

approving it for publication was Donato Impedovo .

distinguishing between different objects. Further, this

becomes even more difficult for 3D shapes due to the com-

plexity and different view-points of shapes. This challenge

has motivated us for this work to exploit the shape structure in

terms of protrusions and fine details present within the global

shape to propose a novel model for shape representation.

Previous work on shape classification include a wide range

of methods such as graph matching [6], inner-distance [7],

complex-network [8], short-cut [1], shape contexts [9],

variable-dimensional local shape descriptors (VD-LSD) [10],

point feature histogram (PFH) [11] and fast point feature

histogram (FPFH) [12]. A comprehensive review of these

methods can be found in [13] and [14]. These studies aimed to

achieve the optimal representation of shapes by considering

their outlines. However, main limitations of these approaches

are high computational complexity, restrictions on some

shape sizes [6] and sensitivity to noise [7]. Psychophysical

and neuro-physiological studies have proposed a hypothesis

for a structural representation of shapes in terms of object

structures, parts and their positional relationships [15]. Fur-

ther, studies on human vision have highlighted the importance
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FIGURE 1. Challenging objects belonging to four different classes that
have high conceptual similarity structures (top row) and their associated
adaptively connected graph representation using the proposed method
(bottom row). The new connections are highly concentrated at
protrusions.

of capturing the local details of the shape surface for the

human visual perception of shapes [16]. More importantly,

another study on human vision suggests that the visual cortex

perceives and understands shapes by representing the shape

boundary as a connected set of nodes [17], which has inspired

us for our proposed method in this paper.

Inspired by the human vision literature, in this paper

we propose a novel approach for shape representation by

considering the shape as a connected graph, whose node

connectivity is formulated adaptively, and analysing the spec-

tral properties of the resulting graph. The proposed concept

of adaptive formulation of connectivity, firstly computes a

threshold to build a graph from shape nodes to capture com-

plex shape structures and details. As shown in the bottom

row of FIGURE 1, our method forms a graph with adaptive

connectivity of nodes with connections (shown in red) highly

concentrated at protrusions. Early stages and results of our

proposed method [18] and a case study on application of

it in 3D shape recognition [19] were presented as recent

conference publications. In the present paper, we present a

methodology representing both 2D and 3D shapes, by incor-

porating a new method to determine the threshold to build an

adaptively connected graph and proposing additional features

for classification. We also show rigorous experimental evalu-

ation of the method using several 2D and 3D datasets leading

to analysis and discussion of the recognition accuracy and

system complexity including ablation studies. By 3D shapes,

we refer to the shapes perceived by point clouds of 3D objects.

The main contributions of this paper are:
1) Proposal of a novel graph-based representation of 2D

and 3D shapes.

2) A new method for graph formulation with adaptive

connectivity to represent shapes capturing their local

and global characteristics.

3) Proposal of a new set of graph spectral features based

on the node distribution of the adaptively connected

graph for shape representation. Herein, we call them

Adaptive Graph Spectral Features (AGSF).
The rest of the paper is structured as follows: Related works

are reviewed in Section II. The proposed method is presented

in detail in Section III followed by the performance evaluation

in Section IV and concluding remarks in Section V.

II. RELATED WORK

Shape representation work in the literature can be categorized

into five different groups: deep-learning methods, model-

based methods, view-based methods, feature-based methods,

and graph matching methods. Deep-learning-based methods

[20]–[22] shown excellent performance in terms of recogni-

tion accuracy levels. The input features of these works are

based on: exploitation of metric space distances (PointNet

++) [20], X-transformation (PointCNN) [21], and Kernel

Point Convolution (KPConv) [22]. Deep learning methods

often have high training times, high computational complex-

ity and requires large training data. However, our focus in

the present work is to propose a handcrafted features-based

methodology, which does not require large training data.

Model-based methods include two types: shape-skeleton

and shape-contour. The former constructs a tree model using

object edges to form a shape descriptor, where the similar-

ity measurement is based on tree matching approaches. For

example, different methods are implemented by creating a

shape descriptor prototype using short-cut [1], correspond-

ing points [23], and skeleton pruning [24]. On the other

hand, shape-contour models have relied on the boundaries

of silhouette images, whose edges efficiently characterize

the global structure of the object with a single closed curve

provided there are no holes inside the object. An early study

used Fourier descriptors to represent the shape [25], while

the latest studies are based on convex details [26], circle view

shape signature (CVS)withmulti-views [27], and progressive

shape-distribution-encoder [28]. In general, these approaches

provide rich knowledge about shape structure in different

strategies. However, the main issue in model-based methods

is that the local details are omitted or completely neglected

in their model. In other words, most model-based methods

ignore the small protrusions or dense areas and focus on the

global object structure instead. For each method, a specific

dynamic program was used to identify the matching similar-

ities between patterns. In some cases, even if the algorithm

is not optimized, the matching program may increase the

recognition score.

View-based methods measure the similarity between two

objects based on different view angles. Particularly, they are

based on analyzing and understanding the shapes rendered,

distinguishing the models considering their visual similarity.

Typical approaches based on view method includes multi-

view depth line [29], and symmetric branch [30]. The main

concern in these approaches is computing the view similarity

for samples, which have different topology details as can be

seen in the SHREC2010 dataset.

Feature-based methods involve extracting a set of features

that provide an optimal representation of the shape struc-

tures followed by machine learning algorithm for classifi-

cation processes. Feature-based matching typically requires

more than one feature to describe a complex structure.

Such features may include: a Scale Invariant Feature Trans-

form (SIFT) [31], tree union [32], local phase [33], con-

tour feature [34], distance [35], full shape [36], virtual
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retrieval [37], bag of words [38]. [10], variable-dimensional

local shape descriptors (VD-LSD) [10], point feature

histogram (PFH) [11], and fast point feature histogram

(FPFH) [12]. The classification process is usually imple-

mented using the Bayesian classifier [31], the Nearest Neigh-

bors (NN) [33] or Support Vector Machines (SVM) [36].

Graphs and complex networks display useful topological

features such as degree distribution, clustering coefficient,

and hierarchical structure. Several methods have been pro-

posed to explore the maximum probability of correspondence

mapping between two patterns through the weight matrix

based on the Eigen domain weighted graph matching [6],

node degree [8], polynomial characterization [39], the cen-

ter of clusters [40], spectral relaxation [41], higher order

constraints [42] and Kronecker product of the graph adja-

cency matrices [43]. Recently several approaches have been

proposed for large scale 3D point cloud representation. For

example, the method in [44] presents a supervised 3D shape

segmentation based on graph and deep learning. Similarly,

the work in [45] proposes a deep learning approach-based

on super point graph (SPG) for segmentation purposes. This

method involves partitioning the 3D shape, down-sampling

and embedding process followed by a graph convolution

neural network to classify the shapes. However, both these

methods aim to achieve an efficient cut of shapes using

graphs, as opposed to modelling shapes using graphs as in

our work.

In our recent work, we proposed graph spectral domain

feature-based recognition for numbers [46]. The graph spec-

tral feature-based methods that are primarily based on a fully

connected graph formed by the shape were successful in

recognizing global shape structures, but not on accurately

representing local variations, as shown in FIGURE 1. To for-

mulate the problem, we start with converting each shape into

a set of nodes (for 2D by sampling the edges of silhouettes

and for 3D by down-sampling the surface using Growing

Neural Gas (GNG) [47]). The assumption is that the nodes

at protrusions to have a high connectivity with each other

compared to the nodes at the global shape boundary where

less variations are present. The connectivity is defined as

the number of nodes that one node is connected with. The

existing graph node connectivity can be categorized into three

types:

1) Full connectivity: when each node is connected to all

other nodes in the graph. [46]. This type of connectiv-

ity provides an efficient characterization of the global

outline of the shape.

2) Special connectivity: for specific applications, vertices

have their own connectivity without the ability to

change it. An example of this is a graph connecting

major cities with a road network.

3) K-Nearest Neighbour: where each node is linked to the

nearest K nodes, and each node has K connections [48].

As graph spectral theory uses the edge distribution for each

node for converting graphs into their spectral domain, in order

to provide an accurate spectral representation, accurate

FIGURE 2. Main steps of the proposed AGSF methodology.

formulation of the connectivity for each node capturing the

shape characteristics is important. Therefore, the main prob-

lem we aim to solve is how to determine the adaptive con-

nectivity for each node in a shape. In this work, we propose

to formulate an adaptively connected graph by forming con-

ditional connectivity, where nodes are connected if a certain

condition is satisfied as in Section III-C. Early stages and

results of our proposed method [18] and a case study on use

of it in 3D shape recognition [19] were reported as conference

publications. In the current paper, we present a methodology

representing both 2D and 3D shapes, by incorporating a new

method to determine the threshold for conditional connec-

tivity to build an adaptively connected graph and proposing

additional spectral domain features for classification.We also

show extended experimental evaluation of the method using

several 2D and 3D datasets leading to analysis and discussion

of the recognition accuracy and system complexity, including

ablation studies.

III. THE PROPOSED METHOD

Our proposed method can be summarized into four steps as

shown in FIGURE 2. The AGSF framework begins either

by representing the shape as a collection of nodes or points.

In the next step, these nodes are formulated into a graph with

adaptive connectivity among nodes using the newly proposed

adaptive graph formulation algorithm. This is followed by

the spectral decomposition of the graph connectivity structure

and feature extraction on graph spectral bases. Finally, these

features are classified for recognizing the underlying shape.

A. SHAPE CONVERSION INTO NODES

2D shapes in datasets are usually given as silhouette or as

an outline image. In this approach, we convert silhouettes

to an outline, so that all input 2D shapes can be considered

as a contour path. The resulting contour path, P, is usually

a smooth curve with N number of pixels. To reduce the

complexity of the subsequent graph spectral decompositions,

we choose n number of nodes, where n < N , to form a new
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FIGURE 3. 3D shape representation using Growing Neural Gas.

down-sampled shape contour, P̂, as follows:

P̂(k) = P

({

Nk

n

})

, (1)

where k = 0, 1, . . . , n−1 is the new node index and {.} is the

rounding to the nearest integer operator. P̂ is then used as the

nodes of the 2D shape, which will be later used for generating

the graph with adaptive connectivity.

3D shapes are usually given as a point cloud with large

number of points representing surfaces of the 3D shape.

In order to make them manageable in the graph spectral

decompositions, we down-sample the 3D shapes using the

Growing Neural Gas (GNG) algorithm [47] due to its excel-

lent quality, flexibility, and rapid adaptation to perform 3D

surface representation of different objects. GNG is a simple

unsupervised procedure to select the optimal pixels based on

their distance, and it does not create any new pixels. The main

characteristic of GNG is that the output neurons represent

the topology of the shape with a fewer nodes. Although the

GNG algorithm, outputs a connected graph, in this work

we considered only coordinates of the nodes, ignoring the

connectivity generated by GNG.

GNG starts with two nodes, randomly selected from a set

of existing nodes. Then, it generates a signal based on the

probability density between these nodes. After that, it finds

the nearest node to both initial nodes. Based on Euclidean

distance, the edges between these nodeswill be updated based

on the error function, which represents the difference in dis-

tance. These steps are repeated until the n nodes are selected.

The use of GNG links is ineffective because it creates addi-

tional and unnecessary links outside the shape surface. For

example, it creates links between different fingers, which are

outside the geometry of the hand. Therefore, we cannot rely

on GNG links. At the end of the training process, the GNG

should satisfactory cover the shape regions as can be seen in

FIGURE 3. Since GNG selects nodes regularly based on an

unsupervised optimization process in such a way that these

nodes have a uniform distribution inside the shape, the noisy

pixels are removed by the GNG process. Node ordering is

implemented from left to right for the 2D shapes, and bottom

to top, and then left to right for the 3D shapes.

B. GRAPH SPECTRAL DECOMPOSITION PRELIMINARIES

AND NOTATIONS

We start with the preliminaries of graph spectral decomposi-

tion and our notation. Let G = {V, E,A} an undirected graph

comprising V , nodes or vertices, connected by E , set of edges

and represented by A ∈ R
n×n, adjacency matrix comprising

edge weights. We define the weight value,Ai,j corresponding

to an edge, ei,j connecting vertices i and j is as follows:

Ai,j =
|e(i,j)|

1
n

∑n−1
i=0

∑n−1
j=0 |e(i,j)|

, (2)

which is the Euclidean distance e(i,j) between the vertices, i

and j, normalised with the total lengths of edges in the graph

averaged per node. We define the signal r : V → R, where

the ith component represents the Euclidean distance from the

center (0,0,0) to the vertex i in V . We also define, the node

degree, 8i, as the number of edges incident on each node on

Vi. The combinatorial graph Laplacian matrix, L, is defined

as

L = D − A, (3)

where D is the diagonal matrix of vertex degrees, whose

diagonal components are computed as follows:

D(i,i) =

n−1
∑

j=0

A(i,j), i = 0, 1, . . . , n− 1. (4)

Since, L is a symmetric positive semidefinite matrix, from

spectral projection theorem, there exists a real unitary matrix,

U, that diagonalizes L, such that Ut
LU = 3 = diag{λℓ} is a

non-negative diagonal matrix [49], leading to an eigenvalue

decomposition of L matrix as follows:

L = U
t3U =

n−1
∑

ℓ=0

λℓuℓu
t
ℓ, (5)

where uℓ, the column vectors of U, are the set of orthonor-

mal eigenvectors of L with corresponding eigenvalues,

0 = λ0 < λ1 ≤ λ2 . . . ≤ λn−1 = λmax [50].

C. THE PROPOSED ADAPTIVELY CONNECTED

GRAPH FORMULATION

Now, we consider 2D and 3D shapes converted to a set of

nodes (in Section III-A), which are the vertices, V in the

graph formulation. The rest of this subsection will focus on

how to generate the representative graph, i.e., to define E

forming adaptive connections of vertices (in this sub-section),

followed by computing A for spectral decomposition and

spectral domain feature extraction inSection III-D.

As discussed in Section II, although a fully connected

graph provides an efficient representation of the global out-

line of the shape [46], the major drawback of this type is that

local details are not reliably captured compared to the global

outline. In addition, K-Nearest Neighbour connectivity does

not reflect the topology structure, especially when using a

small value of K, where nodes are only connected to their

neighbours. Since we aim to classify more complex shapes,

an appropriate connectivity is required to represent complex

shapeswithin the Euclidean space. Thus, in this work, we pro-

pose adaptive connectivity, where vertices are connected if a

certain condition is satisfied. In other words, Vi is connected

VOLUME 8, 2020 182263
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FIGURE 4. Conditional connectivity for a random graph showing vertices
within the specified distance t are connected and others not connected.

FIGURE 5. Graph construction using different threshold values showing
how the graph connections grow.

to Vj, if and only if they satisfy the condition, |ei,j| < t ,

where t is a threshold distance. Using this connectivity type,

there is no fixed number of connections at each vertex and

the number of connected elements depends on the condition

and the topology of the graph vertices. FIGURE 4 shows

an example of how vertices are connected using a given

threshold of distance between nodes.

The adaptive connectivity means that each vertex is con-

nected to other vertices that fall in less than a certain dynamic

distance. The dynamic threshold starts as a small distance

value, then it steadily grows up till reaching a certain level

to satisfy a certain conditions as explained in the rest of

this section. This means that not all nodes are connected to

each other, instead, the nodes that are close to each other

tend to have strong connections. As a result, local details

and the protrusions on the edge result in nodes with higher

connectivity, which is captured by the Adjacency matrix and

then by the spectral bases, where the spectral features are

extracted.

As an example, FIGURE 5 shows generation of different

graph connectivity using four different threshold values (t):

6, 7, 8 and 9 unit pixels to get graphs A, B, C, and D

respectively. The corresponding graph eigenvalues (λℓ) of L

for the 4 graphs A, B, C, and D listed as vectors VA, VB, VC

and VD, respectively are shown below:

VA = [0, 0, 0, 0, . . . , 0.50, 1.86, . . . . . . ., 24.97],

VB = [0, 0, 0, 0, 0.01, 0.06, . . . . . . . . . . ., 34.54],

VC = [0, 0.030, 0.050, . . . . . . . . . . . . . . . . ., 49.94],

VD = [0, 0.031, 0.054, . . . . . . . . . . . . . . . . ., 60.49].

Graph eigenvalues depend on the connectivity of the and

thereby, reveal important characteristics of the underlying

shape. Our method for choosing the threshold, t is formulated

as below. To find the optimum t , we consider a range of

thresholds, tδ , as follows:

tδ = t0(1 + δ), (6)

where t0 ∈ R
+ is the initial threshold for the minimally

connected graph and δ ∈ N is an increment distance with unit

steps in the range 0 ≤ δ < (n− 1). Here we have chosen n as

the upper limit of δ. However, depending on the resolution

of shapes in datasets we do not need to compute for all n

as will be evident in the rest of this section. Since Eq. (6)

reduces to tδ = t0 + t0δ, it allows us to choose t0 according to

the sampling rates of data in different datasets and keep the

integer increments for δ.

1) FINDING t0

The number of connected vertices for a graph with condi-

tional connectivity depends on the threshold distance, t , and

the topology of the graph vertices. This property of two graph

structures can be compared by comparing their corresponding

last eigenvalues, λn−1. The higher the λn−1, the higher the

number of connections i.e., the connected nodes. Further,

it can be observed that increasing t leads to increasing λn−1,

as seen in the four examples in FIGURE 5 and their corre-

sponding λn−1. Thus, we can summarise as λn−1 ∝ t .

For a given t value, there may be some instances where

some nodes are not connected to any other node or only hav-

ing one edge leaving gaps in the shape outline. In such cases,

we can see clusters of connected vertices as in examples A

and B in FIGURE 5. The number of clusters of connected

vertices (ω) can be determined by counting the number of

zero eigenvalues of the resulting graph structure for a given

t [50]. As an example, the graph structure A in FIGURE 5

shows a dog with ω = 39 clusters. Such a graph leads to

λ0 = · · · = λ38 = 0 eigenvalues. Similarly, for B and VB has

ω = 4 and λ0 = · · · = λ3 = 0. For both C and D, it can be

seen all nodes are connected as a single cluster with ω = 1

and only one zero eigenvalue, λ0 = 0. We can also see that

more local details and protrusions are captured by means of

edges when increasing the threshold values from VA to VD.

We define t0 as the minimum threshold distance that all

vertices are connected as a single cluster i.e., ω = 1. Initially,

we start creating graphs over the shapes using a small distance

to link the nodes. This usually creates unconnected graphs

and ω > 1 because of the small t . Therefore, t is gradually

increased until the nodes are connected as a single group with

ω = 1. The minimum t to form such a minimally connected

graph gives us t0.

The value of t0 is associated with the total number of nodes

(n) in the sub sampled shape. The higher the n the smaller the

value of t0. Hence, we can summarise as

t0 ∝
1

n
. (7)

FIGURE 6 demonstrates the relationship between n and t0
using the same shape with n = 40 and n = 400 nodes,

respectively.

182264 VOLUME 8, 2020
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FIGURE 6. Two examples of ω = 1 for a large number of nodes n = 400
(left) and a small number of nodes n = 40 (right). Nodes are shown in
blue and the graph connections in red.

FIGURE 7. An example of three different levels of connectivity (in column
1) corresponding to various thresholds starting from t0 to increasing δ

values (from top to bottom rows) with their corresponding node degree
8

δ plots (in column 2). A video showing growing graph connections and
corresponding node degree vector evolution is available in Graphical
Abstract.

Note that we cannot define t0 as the largest distance

between any two nearest pair of nodes since the distance

between the nodes in 3D shapes is not linearly related.

2) FINDING δ

For a given shape, the algorithm firstly finds t0, the minimum

threshold distance that all vertices are connected as a single

cluster i.e., ω = 1. We recall the graph node degree (8) is a

vector comprising of number of connections (edges) for each

vertex of the graph (shape outline). The node degree, 8δ , for

each tδ is computed for each formulated graph connectivity

corresponding to each δ. An example of graph edges and 8
δ

vectors for various δ values for a shape in the Tools dataset

are shown in FIGURE 7. The first row in FIGURE 7 shows

the graph corresponding to t0 and 8
0. The following rows

show snapshots of the graph edges and the set of 8
δ vectors

up to the given δ. They show how the number of connections

for each vertex grow with increasing δ. Now we need to

analyse the shape of 8
δ to determine the most suitable graph

connectivity for representing the shape. For t0 and for fully

connected graphs, 8δ show less variation. As δ is increased,

each node grows new connections resulting in 8
δ vectors

showing more variations as in FIGURE 7. As connections

grow, local details and the protrusions of the shape, where

more nodes are densely present, result in higher connectivity

for nodes at those locations. As δ increases, 8δ vectors show

growing number of connections making peaks corresponding

to nodes at protrusions and local shape variations. For this,

we analyse the amount disorder in8
δ . Firstly, the normalised

node degree, Eδ , is computed as follows:

E
δ =

8
δ

max(8δ)
. (8)

This is followed by computing the metric we call weighted

semi log normalised energy, S, as follows:

Sδ =

n−1
∑

i=0

E
δ
i log2

(

1

E
δ
i

)

. (9)

The metric S is a measure of the degree of disorder of the

normalised node degree vector, Eδ . This is inspired by the

computation of entropy in information theory. We do not

call it entropy as it does not involve probabilities. The S

value increases when the variations in the vector are high and

decreases when the variations are low. We choose the δ that

corresponds to maximum Sδ to determine the threshold T for

graph formulation as follows:

T = t0(1 + argmax
δ

S). (10)

Examples of Sδ for various δ values and their correspond-

ing maximum points are shown for 4 shapes in FIGURE 8.

The node degree vectors corresponding to maximum Sδ and

the resulting graph connections are shown in FIGURE 9.

Our experiments show that despite the rotation angles of

view, different shapes in the same class result in similar

δ values producing the maximum S values. In this way,

we find the adaptively connected graph for each shape. As a

result, local details and the protrusions on the shape result

in nodes with higher connectivity, which is captured by the

Adjacency matrix and then by the spectral bases as shown

in Section III-D. Also note that of the shapes are rotated,

the distance between the nodes remains unchanged. There-

fore, the connection between the nodes is not affected. As a

result, Sδ are not affected by rotation either.

D. PROPOSED ADAPTIVE GRAPH SPECTRAL

FEATURE (AGSF) EXTRACTION

After each shape is converted to its adaptively connected

graph representation, we propose the following features to

extract from the spectral representation of the formulated
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FIGURE 8. Examples of semi log normalised total energy, Sδ curves with
their maximum points (shown using ·) for different δ values.

FIGURE 9. Examples of normalised node degree vectors, Eδ , (left column)
for the δ corresponding to maximum S in FIGURE 8 and the resulting
graph connections (right column).

graph structure. We select the rotation invariant features that

can represent both global shape outline and local details.

We propose a feature vector, F, comprising of the following

3 components: F1, F2 and F3.

1) We capture the features from global outline of the

shape by considering the distance vector r, with ri

representing the distance to node i from the central

point (0,0,0). Although ri represents the global shape,

in order to improve the discrimination among classes

by considering the local variations, we modulate rwith

corresponding eigenvalues λi inV corresponding to the

adaptively connected graph formulated in the previous

section for the given shape sample, as follows:

F
1
i = riλi, i = 0, . . . , n− 1. (11)

Here, r represents spatial property of the shape, and λ

corresponds to the spectral properties. Then, by modu-

lating we aim to obtain spatial and spectral properties

into the feature vector.

2) To compute F
2, we consider the node degree, 8

1,

of the adaptively connected graph for the shape sample,

where 1 = argmaxδ S. Since it corresponds to the

adaptive connectivity graph formulation, this vector

captures local details adequately. The normalised vec-

tor, E1, is used as F2.

F
2 = E

1. (12)

3) The final feature component,F3, consists of a variety of

other statistics of81, the node degree corresponding to

the adaptively connected graph for δ = 1 as follows:

F
3 =

{

µ(81), σ 2(81), ||81||2,S1

}

. (13)

These statistics (mean, variance, L2 norm, and semi log

normalised total energy) provide a set of features that

is invariant to rotations.

The overall length of the feature vector, F is 2n + 4,

which is ≪ N.

E. MACHINE LEARNING

In this final step machine learning is used to learn the fea-

ture vectors generated in Section III-D for classification and

recognition of the corresponding shape class. We have evalu-

ated several classifiers including the Support Vector Machine

with a cubic form as a kernel function (CSVM), the Nearest

Neighbour (KNN), Classification Tree (CT), Discriminant

Analysis (DA), Neural Network (NN). Based on several

experiments conducted to select the optimal classifier, the

Nearest Neighbour (KNN) with K= 1 shows the best per-

formance compared to other classifiers in terms of accuracy

and time processing, as shown in Section IV.

IV. PERFORMANCE EVALUATION

This section evaluates the performance of the proposed graph

spectral features extracted from adaptively connected graph

formulation from shapes on recognition of various 2D and

3D shapes with various sizes, orientations, articulation and

scales from various datasets. All algorithms were imple-

mented using MATLAB R2018a on a PC with Intel 3.6 GHz

processor and 16 GB RAM.
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TABLE 1. Overall accuracy rates (%) for AGFS compared to the related work.

A. DATASETS

The experiments were based on the following four 2D shape

datasets and two 3D shape datasets:

1) ETU10 silhouette dataset is one of the most well-

known 2D datasets [51]. This dataset has 10 classes

with 72 shape samples in each class i.e., 720 total

images. Each class contains instances of different views

of the shape leading to at least 5-degree rotation dif-

ference for each instance. The ten classes: Bed, Bird,

Fish, Guitar, Hammer, Horse, Sink, Teddy, Television

and Toilet are numbered 1 to 10, respectively.

2) The tool dataset [63] is one of the most challenging

2D datasets, as it has a conceptual similarity within

its shape classes. It consists of 35 articulated silhouette

shapes, which are classified into four classes: 10 scis-

sors, 15 pliers, 5 knives and 5 pincers respectively.

3) Kimia 99 dataset [64] consists of 9 classes with

11 shape samples in each class leading to 99 shapes.

The nine classes, numbered from 1 to 9, in Tool dataset

correspond to Fish, Hand, Human, Aeroplane, Ray,

Rabbit, Misk, Spanner and Dog, respectively.

4) Kimia 216 dataset [65] consists of 18 classes with 12

2D silhouette samples in each class, i.e., 216 images.

The 18 classes, numbered in 1 to 18, correspond to

Bird, Bone, Brick, Camel, Car, Children, Classic, Ele-

phant, Face, Fork, Fountain, Glass, Hammer, Heart,

Key, Mink, Ray and Turtle respectively.

5) MPEG-7 CE-Shape-1 PartB (MP7-shape) dataset [66]

consists of 70 classes with 20 samples in each class,

i.e., 1400 2D silhouettes in total.

6) SHERC2010 dataset [67] consists of 10 point cloud

object classes with 20 samples in each class leading

to 200 3D objects in total. These samples are taken

from McGill Articulated Shape Benchmark dataset.

The classes, numbered from 1 to 10, include Ants,

Crabs, Hands, Humans, Octopus, Pliers, Snakes, Spec-

tacles, Spiders and Teddy respectively.

7) 3D shape benchmark dataset [68] consists of 19 classes

with 20 samples per class totalling 380 3D shapes.

Objects were presented in different orientations, scales

and articulation, and that makes it one of the most

challenging datasets. These classes, numbered 1 to 19,

include Human, Cup, Glasses, Air plane, Ant, Chair,

Octopus, Table, Teddy bear, Hand, Plier, Fish, Bird,

Mech, Bust, Armadillo, Bearing, Vase and Four Leg

respectively.

8) ModelNet10 dataset [61] consists of 10 classes of 3D

shapes formed as a CAD model of the point could.

The number of training and validation samples for

each class vary from 106-889 and 50-100, respectively.

These classes, numbered 1 to 10, include Bathtub,

Bed, Chair, Desk, Dresser, Monitor, Night-stand, Sofa,

Table and Toilet, respectively.

9) ModelNet40: [61] consists of 40 classes with the num-

ber of training and validation samples for each class

vary from 64-889 and 20-100, respectively.

B. RECOGNITION PERFORMANCE OF THE

PROPOSED METHOD - AGSF

TABLE 1 shows accuracy rates of the proposed method using

different classifiers with 2D and 3D datasets using n = 80

and n = 200, respectively. All accuracy rates shown in this

paper for the first 7 datasets use the average accuracy rates

obtained from the k-fold cross validation scheme, using the k

values shown in TABLE 1. Since ModelNet datasets provide

separated training and testing samples, k-fold cross validation

was not used for them. As can be seen, NN and KNN (with

the normal Euclidean distance) classifiers result in the best

accuracy rates among all classifiers. It must be also noted that

KNN is faster than NN.

C. COMPARISON OF RECOGNITION RATES WITH THE

EXISTING METHODS

TABLE 1 also compares with the performance of our previ-

ous work [18], [19], the existing hand-crafted features based

methods and deep learning based methods. Our proposed

hand-crafted features (AGSF) outperform the existing hand-

crafted features based methods for 7 of the datasets. It also

demonstrates that the use of the proposed energy function

improves the performance compared to the variance in [19].

The confusion matrices showing recognition accuracy for

each class in datasets that provide less than 100% over-

all accuracy rates for 2D and 3D datasets are shown in

FIGURE 10 and FIGURE 11, respectively.

Although, there is a significant similarity among the

classes in ETU10 and Tool datasets, the proposed method
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FIGURE 10. Confusion matrices of the 2D datasets, where the X and Y
labels refer to the classes, which are described in Section IV-A.

manages to distinguish them well. For both Tool and

Kimia99 datasets, shape samples are classified correctly with

100% accuracy. Although Tool dataset provides high simi-

larity structures, the proposed method is found to be highly

efficient in discriminating them as evident by the signifi-

cant improvement in the accuracy rate. Similarly, despite

having shape samples with different angles of views in

ETU10 dataset, the proposed features outperform the existing

methods with minimum confusion in recognising different

classes. Kimia216 and MP7-shape are the most challenging

2D datasets due to having a small number of samples in

each class compared to the total number of classes. For

MP7-shape, the proposed hand-crafted AGSF even outper-

form deep learning [53].

FIGURE 11. Confusion matrices of the 3D datasets, where the X and Y
labels refer to the classes, which are described in Section IV-A.

For 3D datasets, the proposed hand-crafted features exceed

performance of existing hand-crafted features based methods

by 3.04% for SHERC2010 dataset, by 5.53% for the 3D shape
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benchmark dataset and by 14.02% for ModelNet10 dataset.

As shown in FIGURE 11, the proposed method recognises

all shape classes in SHREC2010 dataset with a high accuracy

rate of 94%. Themain confusing shape class is octopus (num-

ber 5), which is matched with spider class (number 9) due to

its similarity graph structure leading to very similar eigen-

values and connected node distributions. Although, the 3D

benchmark dataset is a very challenging dataset due to various

angles of views, the proposed method has outperformed the

existing hand-crafted features based methods. The Model-

Net10 is a large dataset and usually used to evaluate deep

learningmethods. However, the proposedAGSF has achieved

an overall recognition accuracy rate of 87.11% significantly

outperforming the other hand-crafted features basedmethods.

According to the confusion table, the most confusing class

is the Night-stand (number 7) due to its structural similar-

ity to Chair (number 3) and Desk (number 4). Also, a few

errors appear in the Bathtub (number 1) class confused with

the Dresser (number 5) class. For ModelNet40 our method

achieves an overall accuracy rate of 86.43%. The accuracy of

each class varies between different classes based on the num-

ber of training samples and the similarity among samples. As

this dataset has mostly been used for evaluating deep learning

based methods, no results for existing hand-crafted features-

based methods have been reported in the literature.

Although our proposal is on hand-crafted features, we have

included deep learning based methods for comparison. Out of

all 2D shape datasets, used in our evaluation, deep learning

results has been reported only for MPG7-shape dataset. Our

proposed hand crafted AGSF has outperformed the deep

learning based method by 17.3% for this dataset. However,

for 3D datasets deep learning based methods have shown

improvements of around 2% for smaller datasets and around

7% for large datasets.

D. COMPUTATIONAL COMPLEXITY

The computational complexity of forming adaptive connec-

tivity, graph spectral decomposition and feature extraction

stages are O(n2), O(n2), and O(2n2), respectively. Then the

overall complexity of the proposed method can be considered

asO(n2) excluding the pre processing and classification steps.

We also show the execution times of our method in TABLE 3.

It includes the average time taken for the feature extraction,

training and testing for 12 instances. In general, the average

time taken to test a new sample is around 12 milliseconds,

which reflects the real-time performance of our proposed

method.

E. ABLATION STUDIES

The effect of different parameters of out method including,

k-fold cross validation, t , n, the adaptive connectivity and the

proposed features are evaluated as follows:

1) K-FOLD CROSS VALIDATION

TABLE 2 shows the system performance based on different

k-fold values for the datasets in FIGURE 10. In reporting the

results, the best k for each dataset has been used.

TABLE 2. Average accuracy rates in % for different k values k-fold cross
validation. (The k value is shown in brackets next to the accuracy rate
values).

FIGURE 12. An example of node degree vectors for different(δ) values (in
green) and quantised threshold levels (τ ) (in brown) for n = 200.

2) THE PROPOSED THRESHOLD VS. NUMBER OF NODES

In FIGURE 6, we showed that, for the same shape, the mini-

mum threshold value (t0) depends on the number of nodes (n).

Therefore, we evaluate the proposed method using a wide

range of n and tδ values in order to evaluate the performance

with respect to these parameters. In this experiment, the accu-

racy rates for 30 ≤ n ≤ 200 considering tδ values quantised

into τ levels were obtained. The quantised threshold level τ

is defined as the threshold at which at least one node having

a node degree of 5τ% for τ = 1, . . . , 10 with respect to n.

FIGURE 12 shows an example of identification of τ levels for

n = 200 with their corresponding tδ and 8
δ . We also explore

the optimal value of n that provides the highest discriminative

representation between samples when δ = 0. TABLE 3

shows that the range between 35-65 nodes is the efficient

number to represent the shapes among all the datasets using

only t0.

3) FULLY CONNECTED GRAPH VS. ADAPTIVELY

CONNECTED GRAPH

Next, we test the performance using fully connectivity graphs

and the proposed conditional connectivity. TABLE 4 shows

that the adaptively connected graph achieves better perfor-

mance than that for the fully connected graph.
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TABLE 3. Minimum number of nodes at t0 and the corresponding
recognition accuracy rates and time taken.

TABLE 4. Comparison of accuracy rates (%) for fully connected and the
proposed AGSF.

TABLE 5. The individual and combination accuracy rates (%) of the
proposed AGSF + KNN.

4) ELEMENTS OF THE FEATURE VECTOR

We also show a full ablation study of the proposed three kinds

of hand-crafted features. TABLE 5 illustrates the importance

of these features for shape representation. In this table, we can

see that F1 and F
2 have a greater impact on performance

compared to F3.

F. DISCUSSION

TABLE 4 validates the contribution of the adaptively gener-

ated graph in shape representation. For, the large and chal-

lenging 2D silhouette dataset, MPG7, the proposed hand

crafted features have outperformed the deep learning-based

methods by 17.3%. discussed. Our proposed hand crafted

AGSF has outperformed the deep learning based method by

17.3% for this dataset. As discussed in Section IV-C, deep

learning methods have shown some advantage over hand-

crafted features by around 2% and 7% for small and large

datasets, respectively. It can be noted from Section IV-D and

TABLE 3, that our approach has low complexity compared

to the deep learning-based approaches and more suitable for

smaller datasets in that case. Also note that the proposed

hand-crafted features consider only shape features while the

deep learning based methods learn both shape and texture

features.

A few aspects need to be considered when choosing n in

the initial shape sampling for 2D and further downsampling

by GNG for 3D. Sampling should be high enough to capture

the whole shape. For example, some samples in the Mod-

elNet10 dataset show close similarity with some shapes in

other classes after downsampling. Although GNG is useful as

a pre-processing tool, it has several parameters, which have

a direct effect on the quality of the representation, such as,

the required output of n, number of iterations, and the average

distance between nodes. At the GNG step, it is crucial to

carefully select them to give reasonable points cloud to apply

out method.

V. CONCLUSIONS

This paper has proposed a new set of hand-crafted fea-

tures (AGSF) for shape recognition by exploiting spectral

features of the underlying graph adaptive connectivity formed

by the shape characteristics. To achieve this, we have pro-

posed a new method for formulating an adaptively connected

graph to represent shapes with an unique graph structure.

This is followed by proposing graph spectral features to

capture both global and local characteristics of the shape to

train a classifier. The effectiveness of the proposed AGSF is

verified by experiments on five 2D shape datasets and four

3D shape datasets. The proposed AGSF has outperformed

the existing hand-crafted feature methods up to 9.14% for 2D

shapes and up to 14.02% for 3D shapes. Also for 2D datasets,

the proposed AGSF has outperformed the deep learning

methods by 17.3%.
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