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Abstract— Data centers are the infrastructure that underpins 
modern distributed service-oriented systems. They are 
complex systems-of-systems, with many interacting elements, 
that consume vast amounts of power. Demand for such 
facilities is growing rapidly, leading to significant global 
environmental impact. The data center industry has conducted 
much research into efficiency improvements, but this has 
mostly been at the physical infrastructure level. Research into 
software-based solutions for improving efficiency is greatly 
needed. However, most current research does not take a 
holistic view of the data center that considers virtual and 
physical infrastructures as well as business process. This is 
crucial if a solution is to be applied in a realistic setting. This 
paper describes the complex, system-of-systems nature of data 
centers, and discusses the service models used in the industry. 
We describe a holistic scheduling system that replaces the 
default scheduler in the Kubernetes container system, taking 
into account both software and hardware models. We discuss 
the initial results of deploying this scheme in a real data center, 
where power consumption reductions of 10-20% were 
observed. We show that by introducing hardware modelling 
into a software-based solution, an intelligent scheduler can 
make significant improvements in data center efficiency. We 
conclude by looking at some of the future work that needs to be 
performed in this area.  

Keywords- kubernetes, docker, containers, energy, power, 
efficiency, data center, scheduling, behavior, modeling, analytics, 
holistic, PUE, interference 

I.  INTRODUCTION  
In recent years there has been a huge increase in the use 

and proliferation of distributed service-oriented applications. 
This has been driven by many factors, including increasing 
numbers of users, IoT devices, streaming audio and video 
services, cloud storage, and the rising popularity of 
microservices. Furthermore, growth is predicted to accelerate 
as driverless vehicles [12], connected devices, and smart 
infrastructure become increasingly common [13][14]. 

These applications are typically hosted in data centers – 
large facilities containing compute, storage, and network 
resources. Data centers are digital factories that process 
electrical power into digital services and generate enormous 
quantities of waste heat that requires additional power to 
remove. They are complex systems of systems, with many 
interacting elements. 

The data center industry currently consumes 2-3% of 
global electrical power, with global data traffic more than 
doubling every four years [15]. At the same time, the 
utilization of any one data center is typically estimated to be 
between 10-20% [1][2]. As the size and number of data 
centers increases, their environmental impact (such as power 
consumption and carbon emissions) and the impact of their 
relative inefficiency becomes increasingly important. 

Traditionally, the data center industry has addressed 
inefficiencies primarily through hardware innovation – more 
efficient CPUs, better cooling solutions, improved power 
distribution systems, etc. However, there is huge scope to 
offer better efficiencies through software-only solutions – 
examples include more powerful monitoring and analysis of 
data center systems [16], predictive capacity planning [17], 
CFD-based floor layout tools [18], and intelligent scheduling 
mechanisms [19]. One common factor that is necessary when 
developing real-world solutions in this space is the need for 
multi-disciplinary, holistic thinking – it is not enough to view 
such a system in isolation; instead solutions need to consider 
the interactions between the physical systems, software 
systems, business processes, and user behaviors. 

In this paper, we look in detail at the complex nature of 
the data center infrastructure behind service-oriented systems 
and discuss a number of the challenges faced by academia 
and the industry. We discuss the need for improved metric 
collection and monitoring, the need for better mathematical 
models of hardware behavior, and the potential for better 
scheduling mechanisms within data centers. We conclude by 
describing in detail two case studies where improved 
scheduling mechanisms were developed using advanced 
hardware modelling to significantly reduce power 
consumption in a realistic setting. 

II. DATA CENTERS 
Although data centers are the fundamental infrastructure 

on which service-oriented computing is based, to date there 
has been relatively little work [3][4][5][6] in the literature 
that considers them in a truly holistic manner – with 
hardware systems influenced by software and vice versa. 
Such an approach is crucial if theoretical research is to be 
translated into practical, real-world technology.  

A. Data centers as systems-of-systems 
A data center is a complex, interacting system of 

systems, each of which is typically the concern of a different 



discipline (computer science, mechanical engineering, 
electrical engineering, etc.)  Figure 1 identifies these 
interactions at a high-level; from this view, the components 
of a data center can be categorized into: 

1) Physical infrastructure. The fundamental hardware 
components that process data in a data center are servers. 
Servers consist of a variety of components, the most 
important of which are: CPU, Disk, Memory, and Network 
interfaces. They consume electrical power and generate 
heat. Servers are typically stored in racks, which are 
enclosures consisting of multiple servers (typically with a 
network switch). Racks are sometimes organised into pods, 
and arranged into aisles to improve the efficiency of cooling 
systems. Cooling systems typically (in the case of “air 
cooling”) take heated air and through a variety of 
mechanisms, cool this down before recirculating it. Some 
systems use liquid cooling to a variety of degrees. Cooling 
systems themselves consume a significant amount of 
electrical power [7]. 

2) Power infrastructure. The physical infrasturcture of a 
data center consumes significant amounts of power. In 
addition to the power requirements of servers, physical 
infrastructure needs include conversion from AC to DC 
supply, backup generation systems, distribution systems, 
and ancilliary functions such as lighting. Electrical power 
may cost different amounts at different times of day, 
offering opportunities for intelligent scheduling of non-

urgent software jobs; this will increasingly be a factor when 
Smart Grid technology becomes more widespread. 

3) Virtual infrastructure. This category is comprised of 
all software systems running on the physical infrastructure 
of the data center. This includes supervisory systems (often 
known as DCIM – Data Center Infrastructure Management) 
that monitor the physical infrastructure to ensure that 
services are available, that service-level agreements (SLAs) 
are maintained, and that no anomalous events have 
occurred. Virtualisation software is typically also present; 
this serves to create, manage, migrate and remove the co-
located containers and virtual machines that contain user 
jobs, and also to ensure that security constraints (particularly 
integrity and confidentiality) are maintained. 

4) Business processes. Any solution proposed to alter 
the working environment of a data center needs to be 
compatible with the business processes and requirements of 
that system. These include the (often variable) service-level 
agreements offered to users, the decision making process 
(holistic solutions can often struggle as budgets for facililty 
and operations may be siloed, creating difficulty in 
determining at which level the solution sits), and the public 
perception of the data center. 

These complex, interacting systems consume extremely 
large amounts of electrical power. Although data centers 
currently consume approximately 2-3% of the global 
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Figure 1. A Data Center as a complex system of systems 



electrical supply, there is much speculation that this figure 
will rise significantly in the coming decade. We now look at 
some of the trends in data center energy consumption, as 
well as the metrics used to gauge efficiency in the industry. 

B. Energy usage of data centers and PUE 
Figure 2, based on [15] shows an “expected case” 

projection of energy usage for networks, consumer devices, 
ICT production, and data centers. This predicts that data 
center energy use will consume approximately 8% of global 
electrical power by 2030 (approximately 8000 TWh.) It is 
notable that in the same work, the “worst case” estimate 
predicts that data centers will consume 20% of the global 
electrical supply by 2030. 

Currently, the data center industry measure energy 
efficiency primarily through the use of a single metric – PUE 
(Power Usage Effectiveness.) PUE was first proposed by [8] 
and is the ratio of total facility energy used by a data center 
to the energy delivered to computing equipment (e.g. 
servers). Any resource in a data center that consumes energy 
but is not a computational device is considered to contribute 
to facility energy. PUE is therefore expressed as: 

 
The largest consumer of facility energy is typically the 

cooling systems within a data center; as racks of servers 
produce waste heat, mechanisms are needed to cool this 
down – often at considerable energy cost. A recent survey of 
over 1200 data centers [9] showed that respondents, on 
average, had a PUE of 1.89 – in other words, for every 1 watt 
of energy used to power IT equipment, another 0.89 watts 
was spent on facility energy (cooling, power distribution, 
etc.) Separately, a recent technical report by the European 
Commission [10] showed an average surveyed data center 
PUE in the EU of 1.64. The industry generally perceives that 
the lower a data center’s PUE score is, the more efficient that 
data center is. This has been reflected by a sustained series of 
innovations in the industry that has sought to continually 
reduce PUE; figure 3 (also [10]) shows the downward trend 

in average PUE values for surveyed data centers between 
2009-2016. 

 It is notable that PUE is usually heavily affected by the 
external environment of a data center; the warmer the 
location of a data center, the higher the PUE (primarily due 
to the need for more powerful cooling.) As efficiency 
improvements at a facility level slow due to diminishing 
returns as PUE gets closer to its minimum value of 1.00 (at 
which point all facility power would be devoted to IT 
equipment), research into IT equipment energy reduction 
becomes increasingly important. 

However, there are significant problems with the PUE 
metric: for example, a single metric such as PUE cannot 
differentiate between different carbon footprints (e.g. use of 
renewable or non-renewable energy), water consumptions, 
etc. Most notably, data center innovations which seek to 
improve efficiency through reductions in IT energy 
consumption may actually cause a PUE score to become 
worse (higher) – if total facility energy remains at a similar 
level, but through better resource management IT equipment 
energy consumption can be reduced, PUE will increase. This 
poses a significant barrier to the adoption of software-
based operational efficiency solutions in the current 
climate. This is a consideration that must be addressed by 

 
Figure 2. Expected global electrical power usage (%) 2010-2030 

 
Figure 3. Long-term downward trend in average data 

center PUE [10] 



future research – possibly through the introduction of 
improved efficiency metrics, etc. 

Given the increasing importance of reductions in IT 
equipment energy consumption within a data center, we 
discuss in section 4 a case study into how software solutions 
- utilizing a holistic approach to all aspects of a data center - 
can offer potentially large reductions in power consumption. 

III. DATA CENTER TYPES 
Data centers come in many different types and 

categories, which can be differentiated by size, ownership, 
and service model. The category of a data center 
significantly affects the type of software-based efficiency 
solutions that can be placed on them. 

A major distinction is between private (only accessible to 
those within a single organisation and sometimes selected 
partners) and public (accessible by many parties, who may 
not be known to the data center owner.) Additionally, data 
centers may be purposed in different ways. For example: 

 Co-locational data centers require customers to 
supply their own IT hardware. This hardware is 
placed in the facility and provided with physical 
security, cooling, and power, but the data center 
provider has no control over the servers themselves 
(either the software running on them or their power 
status, BIOS status, etc.) 

 Telecoms data centers are facilities used by 
telecommunications providers; these typically 
feature very high connectivity requirements, running 
specialised software services. 

 Dedicated-hosting data centers provide server 
capacity to single customers, with no sharing of 
machines (this is sometimes known as “bare metal”, 
or MaaS.) Again, these data centers typically do not 
have any control over the software running on the 
servers themselves (although this can vary, 
depending on the facility).  

 Managed hosting data centers provide servers and 
storage systems for customers, typically with a 
platform-as-a-service (PaaS) or software-as-a-
service (SaaS) model. Services offered may include 
database storage, web hosting, systems monitoring, 
etc. Servers may be owned by the customer or the 
data center, and the extent of control provided to 
each party can vary significantly. 

 Shared hosting data centers (of which cloud data 
centers are an example) typically provide virtualised 
and multi-tenant resources for multiple customers to 
use. Such data centers typically provide user 
interfaces that allow customers to automatically 
deploy virtualised resources; the underlying physical 
location of these resources is determined by the data 
center’s scheduling software.  

 Edge. Edge data centers are typically smaller than 
traditional data centers and are located closer to 
where data is generated – thus reducing delay and 
cost in network transmission. Edge is considered a 
significant growth area, driven by Internet-of-
Things, wireless sensor networks, streaming video 
uptake, etc. 

 Hybrid. A data center facility containing more than 
one of the above service models. 

There is an increasing trend in the data center industry for 
the software running on physical servers to be virtualised and 
co-hosted (and thus, a trend towards shared hosting data 
centers). This offers a significant opportunity for 
software-based efficiency solutions, as the resource 
management within such systems is centralised, providing 
realistic opportunities for metric collection and analysis, and 
improved scheduling mechanisms. 

A. Virtualised resources 
From a user perspective, it is preferable to develop 

applications and services that are agnostic to the underlying 
system or geographic location. Additionally, users demand 
configurable deployments of services, incorporating all 
required resources, that are able to scale to demand. 
Virtualisation solves this for computing by packing 
applications alongside required libraries, for networking by 
allowing reconfigurable software defined networks (SDN) 
and for storage by allowing users to expand storage with 
their requirements.  

From the perspective of a data center, virtualisation 
increases the value of individual servers by allowing multiple 
users to be seamlessly collocated on a single physical 
machine (PM). Virtualisation allows sharing of the PM while 
ensuring isolation between users without any complicated 
configuration requirements from the users – thus greatly 
increasing capacity (i.e. the ability to take on far more users 
than there are physical machines). Indeed, deployment and 
migration between machines can become an automated 
process, greatly reducing management overhead. 
Furthermore, a failure of a virtualised resource is contained 
and will (or at least should) not affect the running or 
operation of any other virtual resource located on the same 
physical host. 

The two primary types of virtualised computing resource 
used in modern data centers are virtual machines and 
containers (operating system-level virtualisation). Virtual 
machines are packages that include an operating system, set 
of applications, and associated data. They function on top of 
a hypervisor, which is located upon a base operating system 
and both emulates a PM and provides isolation for each VM.  

Containers are a similar concept but remove the need for 
a hypervisor: a container image includes a set of applications 
and library dependencies, occasionally alongside user data 
but does not contain an operating system. Multiple 
containers are hosted on a single operating system with the 
operating system itself providing isolation between each 
container. A container can be deployed on any machine that 



runs the operating system it targets.  The exclusion of an OS 
provides a significant reduction in image size and thus means 
that containers can be created, deployed, and destroyed in a 
much faster manner. Furthermore, since the host OS 
manages containers the density (the number of containers 
capable of running simultaneously) can be far greater than 
with virtual machines where the hypervisor often requires a 
1-to-1 mapping from physical to virtual resources. Figure 4 
shows a high-level architectural comparison of containers 
and virtual machines. 

Within the cloud community, there has been a significant 
movement to container-based technology. Figure 5 shows a 
normalised comparison of google searches between the term 
“virtual machine” and “docker” (the most popular container 
type, chosen for this comparison to reduce semantic 
uncertainty in the search result) between 2014-2019. 
Although this is only an indication of interest, the trend is 
marked and significant. Interest in containers has been 
fuelled by rising use of microservice-based architectures, 
which are becoming increasingly common, especially in 
connected sensor-based systems such as those found in 
internet-of-things solutions [11]. 

IV. A HOLISTIC SOLUTION FOR IMPROVING EFFICIENCY 
As has been discussed, there is not only a great need but 

also great potential for software-based solutions for 
improving efficiency within data centers. It is important to 
consider that different types of data center require different 
approaches, which need to take a holistic view of the data 
center (including at least its physical and virtual 
infrastructures) if they are to be applicative in real-world 
scenarios. As an example of the effectiveness of a focused, 

holistic software innovation, we now present a solution we 
have developed that targets shared hosting data centers. 
Specifically, we assume: 

 The target data center will be a shared hosting 
facility that uses virtualized resources 

 The virtualized resources will be packaged within 
Docker containers 

 We can gain access to detailed metrics with regard 
the data center environment (specifically: air 
temperature) and servers. 

 Kubernetes is used as the underlying container 
orchestration system. 

Kubernetes (https://kubernetes.io/) is an open-source 
container orchestration system, originally developed by 
Google and now maintained by the Cloud Native Computing 
Foundation. Although the Docker system 
(https://www.docker.com/) is becoming the de-facto standard 
for hosting software containers, there are a number of 
competing systems that automatically scale, manage, update 
and remove containers across distributed resources. 
Kubernetes is the market-leader and the standardized means 
of orchestrating containers and deploying distributed 
applications; uptake is growing rapidly across many 
organisations, and increasing numbers of data centers are 
using it to build distributed container infrastructures. 

A. Intelligent scheduling in Kubernetes 
By default, the Kubernetes system attempts to load-

balance all the nodes (physical servers) in the cluster that it 
manages by spreading containers evenly across it. This 
makes logical sense when considering the system from the 
perspective of its virtual infrastructure only, as it reduces the 
likelihood of individual nodes becoming unduly resource 

 

Figure 5. Google searches: virtual machines and 
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constrained while others are relatively lightly loaded. In 
reality, the underlying physical hardware in a cluster will 
react to load (in other words – resource utilization - 
particularly of the CPU, but also disk, memory, and network 
transfer) in a wide variety of ways. Different levels of 
hardware load will cause differing amounts of waste heat to 
be generated, and different amounts power to be consumed, 
depending on the type of server, the BIOS settings of that 
server, and even the ambient temperature of the server 
location. 

We propose that with a significantly better understanding 
of the hardware response of each server within a data center, 
and a predictive capability to assess the impact of each 
incoming container within a system, an intelligent 
scheduling mechanism can be created whereby containers 
are allocated to nodes in a more optimal fashion – tuned to 
either reducing power consumption, increasing performance 
(instructions-per-cycle), or to a balance in-between. 

To achieve this, we need to establish detailed server 
models, predictive container behaviour models, and detailed 
knowledge of the environment of the data center. Each of 
these is a complex task and requires a different solution. 
Figure 6 shows the broad strategy to our scheme; hardware 
behaviour to a range of different loadings is modelled at a 
test facility. This is used to forecast the impact (in terms of 
performance and power consumption) of container 

placement within the target cluster, the outcome of which is 
used to optimally place a container within the cluster. 
Simultaneously, live metrics are collected from the system 
and fed into container prediction models – using historical 
and online learning to more accurately predict the behaviour 
of each incoming software container (i.e. what resources it 
will use at what time period, etc.)  

B. Hardware modelling 
One of the benefits of modelling server hardware 

behaviour is that it allows us to treat a data center (or a 
cluster of machines) as an optimisation problem whereby the 
goal, be it to decrease power consumption or increase 
performance, can be mathematically or analytically solved. 
This is true whether a data center is made up of multiple 
different kinds of servers or a homogenous set of servers.  

To achieve this, it is necessary to experimentally 
determine the link between multiple attributes - including 
thermal environmental, power consumption, and internally 
logged server metrics – before condensing these down into a 
form of multivariate polynomial equation that can be acted 
upon in machine learning. 

To achieve this, we placed a server (specifically a Dell 
R430) into an instrumented wind tunnel (see figure 7). We 
controlled and monitored the thermal environment of the 
server while running computational benchmarks within the 
server to test components such as CPU, memory, disk, and 
network. These tests satisfy a design of experiments of 
varying complexities, depending on time availability and 
accuracy requirements.  

One of the biggest challenges we faced is being able to 
properly explore the design space that is required to model 
the behaviour of a server without dedicating an unreasonable 
amount of time to testing. This is in part because such a 
complicated system requires multiple variables to describe it, 
and each additional variable has an exponential impact on 
the size of the design space; additionally, the relationship 
between the variables and the model is almost always of an 
order higher than one, and each increase in order is a further 
increase in the size of the design space. The issue is further 
compounded by the amount of time required for each 
individual test to achieve a steady state for one or more of 
the variables. For this reason, a full factorial exploration of 
such a space is unfeasible, and so specific Designs of 
Experiments are employed that sample the space at required 
points to capture the order of behaviour previously 
determined experimentally, plus interactions and a margin to 
allow for the unexpected.  

The process of creating these models is being continually 
updated. Contemporary models include metrics that were 
only added when previous models were found to be missing 
a variable that could describe their full behaviour at the time. 
The counterpoint to this is that models existing currently 
may also include variables that are in practice not 
statistically significant in modelling behaviour for a certain 
server, or even all servers in general. The evolution of this 
understanding is an ongoing process. 
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C. Software metric collection 
In addition to hardware metric collection, it is also 

necessary to collect a large number of metrics from the 
containers running across a distributed cluster; through 
analysis of these metrics, predictions can be made about the 
behaviour of newly submitted container jobs, which 
combined with an appropriate hardware model, can inform a 
more intelligent scheduling solution. However, this is not a 
simple task – not only does the collection of metrics impose 
a significant overhead itself on each node within a cluster, 
but the amount of data generated for analysis can be 
extremely large. There are many research challenges to be 
addressed when deciding what metrics are of most 
significance to predictive algorithms, and at what granularity 
these should be collected (as often as required to give an 
acceptable level of accuracy, but not so often as to impose 
too much overhead in terms of either storage or analysis). 

At first, creating a metric collection system seems to be a 
simple task: many system metric collectors exist and are 
“pluggable” in the sense that they could attach various extra 
components and publish data into various storage systems. 
However, this is not as simple as it first appears. An 
important requirement to any metric collection system is to 
have a very low resource footprint (ideally no more than 5% 
of a CPU core), and little memory impact. Being able to 
store metrics in an appropriate database for analysis is also 
important. 

There are a host of metric collection systems for 
Kubernetes. A number of vendor specific solutions exist, 
such as Datadog, and open source solutions, such as Elastic 
Stack with Metricbeat (https://elastic.co/products 
/beats/metricbeat). When considering a generic Kubernetes 
setup consisting, typically, of Docker engines running 
containers and using Linux cgroups for resource accounting 
and constraints, the host level metric collectors are not as 
informed as required. Ideally, a system needs to monitor the 
host resources as well as those for individual Kubernetes 

specific cgroups to provide both details of machine 
utilisation and potential container contention. 

Initially we looked at the native “out-the-box” solution, 
Heapster. Now discontinued, Heapster pulls node specific 
metrics from the Kubelets (Kubernetes node agent) at regular 
intervals and can push these into a limited number of 
databases. We used Heapster, Kafka and Kafka stream 
processors initially to perform distributed power model 
calculations for the scheduling component. However, it was 
clear that the Heapster model would not scale, causing metric 
lag. The time to detect newly started pods (collections of 
containers) was poor, leading to poorer scheduling decisions. 

Making the predictions and collecting metrics needed to 
happen as close to the source as possible, before providing 
scheduling scores. Rather than cannibalise an existing system 
to do this, or set up a further complex processing pipeline, 
we made a decision to create our own metric collector. 

The Edgetic metric collector is written in the Go 
programming language, with a very simple set of 
abstractions allowing additions of collector types and 
publisher types to be added/removed when required. The 
metric agent runs on every node, monitoring node stats, 
cgroups, performance events, etc. We can run models 
generated from benchmarking directly within the agent.  

Once the metric collector is in place, the next step is to 
create a storage infrastructure. This is easy to achieve when 
benchmarking a few servers with a timeseries database 
publisher or similar; however, when storing metrics for a 
large cluster, we need to leverage a queuing system system 
(such as Kafka) to deal with back pressure and network 
latency, before shipping the metrics into long term storage. 

We use open source technology (such as Fluentd) to store 
high resolution metrics, featuring hundreds of data points per 
cycle depending on how many pods are running, at relatively 
high frequency. Metric data compresses well, due to its 
structured nature, and can be stored in time order for later 
retrieval. As an example, a week of compressed metric logs 
during one set of our experiments was approximately 800GB 
compressed, and roughly 8TB when decompressed.  
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Figure 7. Wind tunnel used to generate server hardware behaviour models 



Exposing this data for processing is a different matter. In-
cluster databases such as Elasticsearch or Prometheus can be 
used for short term visibility and alerting, but the indexes 
will quickly become very large, requiring frequent clean-up. 
Long term analysis of data is a significant challenge; it is 
possible that Spark or similar Map-reduce systems on top of 
distributed storage may be most effective. 

V. RESULTS 
To test the effectiveness of our holistic approach, we 

implemented the system described above and tested it in two 
stages. Both stages of experimentation were performed in a 
real data center: RISE SICS North in Lulea, Sweden. 

A. Holistic scheduler experiment I 
We applied our initial solution to a cluster of 56 Dell 

R430 servers running Kubernetes, where server behaviour 
was modelled using the wind tunnel and metric collection 
methods above. As an example of how server settings 
change the nature of behaviour within a data center, we 
modelled and tested the servers using two distinct BIOS 
settings: “performance mode” whereby the CPU and fans run 
at full speed irrespective of server utilisation (in other words, 
maximum performance and power consumption at all times), 
and “power saving mode” whereby the CPU is scaled up 
using DVFS (dynamic voltage frequency scaling) dependant 
on load – this setting offers much reduced power, but at the 
price of slow CPU performance and response at low 
utilisation.  

Workloads of known resource requirements were 
submitted to the cluster and allocated based on the optimal 
placement suggested by the hardware models; performance 
and power consumption were measured and then compared 

against the same workloads running on the default 
Kubernetes scheduler. As workloads were deterministic, the 
performance metrics for our scheduler were measured as the 
percentage increase/decrease in workload completion time 
over the default Kubernetes scheduler. Experimental runs 
were made across both BIOS modes. 

Results from the experiment demonstrate potentially 
huge gains in overall energy efficiency (measured as 
improvement in performance plus reduction in power 
consumption – i.e. instructions-per-watt), although this is 
dependent on overall data center / cluster utilisation. Results 
shown for different levels of CPU utilisation across both 
BIOS types are show in Figure 8.  

One significant finding is that by using an intelligent 
scheduler that utilised an accurate hardware model, we could 
schedule containers onto physical machines in a way that 
maintained performance even when in the “power saving” 
BIOS mode. This allows us to make an idealised comparison 
between the relative performance and efficiency of a data 
center using the Edgetic scheduler in power-saving mode vs 
the Kubernetes default scheduler in performance mode 
(shown as the “Overall” result in Figure 8). 

It should be noted that these results are idealised - there is 
a strong assumption that the workload coming into the data 
center is deterministic and known in advance; in reality, this 
will almost never be the case, and so the results from the 
holistic scheduler I experiments serve primarily as an 
indication of what may be achieved with sufficiently 
accurate workload prediction. 

Following the success of these experiments, we began to 
look at not only increasing node scale (to measure the 
feasibility of our metric collection routines) but also 
loosening the deterministic workload assumption.  

   

Figure 8. Energy efficiency improvement: a) Edgetic vs. Kubernetes default scheduler in power-saving mode; 
b) Edgetic vs. Kubernetes default scheduler in performance mode; 

c) Edgetic scheduler in power-saving mode vs, Kubernetes default scheduler in performance mode 



B. Holistic scheduler experiment II 
For our second set of experiments, we targeted a 

Kubernetes cluster running on 215 machines at RISE SICS 
North. All the servers in this cluster were made up of OCP 
(Open Compute Project) hardware – low-cost machines that 
are often used in large (hyperscale) data centers. We 
modelled the OCP server in our wind tunnel system, using an 
improved model creation system based on feedback and 
analysis from our first set of experiments. Furthermore, we 
extended our scheduler to make basic predictions on 
workload based on historical submission. This allowed us to 
create a range of experimental workloads that could be 
submitted in a deterministic fashion but did not need to be 
known in advance by our scheduler. 

 Based on the findings of our new hardware model, the 
Edgetic scheduler loaded fewer OCP servers to a higher level 
(to the optimum level described in the model), keeping the 
remaining servers in the cluster at idle until required. Over 
the course of the experiment, an increasing number of 
synthetic workloads were submitted to the data center in 
batches that approximately corresponded to 10% total 
utilisation, from 10% to 70% approximate total utilisation. 

The batches were additive, so the 10% batch ran for the 
whole experimental duration, while the 70% batch only ran 
for the last period of the workload. The experimental 
workloads were submitted to the default and Edgetic 
schedulers in sequence, with a small delay to allow the 
datacenter to return to an approximate steady-state. 

The results of these experiments were extremely 
encouraging; although performance remained at a similar 
level on both the Edgetic scheduler and the default 
Kubernetes scheduler, the Edgetic scheduler lowered the 
power consumption of the cluster by 10-20% (shown in 
Figure 9.) This was achieved purely through optimizing 
container placement based on the hardware model. 

Figure 10 shows the distribution of jobs across the server 
racks for each batch. Here you can see the differing effects of 

the Edgetic and Kubernetes schedulers. Notably, as the 
Edgetic scheduler takes into account server inlet temperature 
in its calculations we can see that certain locations in the 
datacenter are preferred. These correspond to the cooling 
outlet which is located closest to servers at index (10,10) in 
the diagram. 

A surprising result was discovered in the power 
utilisation for each workload; the Edgetic workload 
consistently uses less power even when the datacenter 
becomes highly utilized, and the performance advantage of 
the Kubernetes scheduler starts to disappear.  

VI. CONCLUSIONS  
Data centers are the fundamental infrastructure on which 

modern distributed systems are constructed, and lend 
themselves heavily to cloud and micro-service based 
systems. However, as the size of data centers increases, their 
power consumption is becoming an increasingly important 
part of the global electrical supply, with significant financial 
and environmental ramifications. Research into software-
based solutions for improving efficiency in these systems is 
greatly needed; however, most existing work considers only 
virtual infrastructure. To be applicable in the industry – and 
to maximise effectiveness – it is essential that solutions take 
a holistic view, considering virtual and physical 
infrastructure as well as business processes.  

We describe the complex, system-of-systems nature of 
data centers, and provide a category of data center service 
models; the selection of an appropriate service model is 
crucial for any research into providing infrastructure 
management software in the data center space. To illustrate 
the effectiveness of a holistic approach, we describe a new 
scheduler we have developed for Kubernetes-based clusters 
and data centers, that considers both physical and virtual 
infrastructures. We discuss the server modelling we 
performed as part of this work, as well as the metric 
collection tools we developed to model workload behaviour. 
The developed scheduler was then tested in two experiments 
performed at the RISE SICS data center in Sweden, on 50 
and 215 physical servers respectively. 

Our initial results demonstrate power consumption 
reductions of between 10-20% depending on data center 
utilisation. This shows that by using hardware modelling 
alone, an intelligent scheduler can make significant 
improvements in data center efficiency, even before further 
optimisations are introduced. 

A. Future work 
There is much future research to be done in this space. A 

particularly important strand of research is that of QoS and 
performance interference modelling and prediction. 
Multi-tenant servers in cloud data centers may run 
heterogeneous workloads such as latency-critical services 
(typically encapsulated in Kubernetes containers or virtual 
machines) alongside other batch-like jobs with lower-
priorities. Some jobs in a cluster are allocated resources (i.e., 
provisioned) to handle maximum loads and unexpected load 
spikes. As a result, a cluster might remain under-utilized. To 
enable a fully utilized cluster system, thereby maximizing 

Figure 9. Holistic scheduler experiment II power 
consumption comparison between the Edgetic 

scheduler and the Kubernetes default 



the pay back of capital investment, temporarily unused 
resources from over-provisioned workloads can be used for 
running best-effort jobs. 

There is a trend whereby increasing numbers of cloud-
based stateful applications may overwhelm conventional 
batch jobs, particularly boosting the requirement for strict 
QoS guarantees and performance interference throttling.  
This type of interference can occur on almost any type of 
shared resource, including CPU, storage, network, etc. A 
typical way of minimizing the interference is to allocate 
dedicated cores for applications and avoid oversubscribing 
the cores. However, different cores may share the same 
processors, which still leads to a great amount of resource 
contention.  In particular, the last-level cache (LLC) can 
have a severe impact on the end-user experience, again 
highlighting the need for better hardware understanding. 

To quantify interference, we can deploy fine-grained 
system counters to monitor and collect the application 
performance information.  Platform-level Performance 
Monitoring Units (PMU) and performance-metric based 
early detection can help achieve this goal.  For instance, by 
using kernel-level counters, interference indicators such as 
average cycles per instruction (CPI), a certain percentile 
response latency (e.g., 99 percentile tail latency), Last Level 
Cache (LLC) misses, and especially misses per kilo 
instructions (MPKI), can greatly help to detect the 
emergence of performance interference.   

Normally it is the case that such metrics have fairly 
consistent values across running instances and time periods. 
It is therefore possible to detect outliers from regular 

behaviour; once the monitored value of one of these counters 
surpasses the performance threshold of Service Level 
Objectives (SLO) from a user’s perspective, an alert can be 
used to quickly locate anomalies. Given the precise 
prediction of interference level, a resource manager can 
perform the runtime QoS-aware scheduling underpinned by 
non-invasive performance isolation through fine-grained 
resource control. An external QoS controller can 
continuously monitor the resource allocation, resource usage 
and other environmental variables This has a significant 
applicability into the resource management of data centers: 

 Resource estimation.  A node agent can leverage a 
QoS prediction model to calculate how many resources 
should be reserved in order to meet a specific SLO 
target. For instance, if a user can tolerate 5% 
performance degradation, then the QoS target can be 
slightly reduced to 95%. According to the QoS model, 
we can roughly estimate a safe resource allocation 
given the environmental condition. 

 Resource oversubscription. If we want to target the 
QoS goal, how many resources should be assigned -- 
calculate how many resources should be strictly 
allocated to the pod (regular resource binding as default 
scheduler did) and how many resources can be spared 
and borrowed by other low-prioritized jobs/best-effort 
jobs/other pods (flexible over-subscription). 

 Interference-aware resource sharing. Furthermore,  
through detecting the interference producers, we can 
ideally throttle them rapidly and facilitate the 

 
Figure 10. Comparison of cluster server utilization per job batch, using the 

default Kubernetes scheduler and the Edgetic scheduler 



performance recovery of performance victims.  Given 
this, the system can allow best-effort jobs even if they 
slightly break the SLO violation of other co-resident 
workloads.  

 Energy-efficient scheduling with performance 
considered. We can integrate the performance 
interference consideration with the energy efficient 
scheduling. Although, the QoS-sensitive policy may 
conflict with the policy towards energy efficiency, we 
can still leverage the performance indicators to shortlist 
QoS-safe sub-candidates based on the primary energy 
efficiency selection. 

To better aid holistic approaches in future, there are also 
significant challenges to be solved to improve the 
performance overhead of metric collection in data center 
servers. Current approaches, especially with perf event 
metrics are slow and resource heavy. Due to this, it may be 
necessary to look into lower level abstractions such as Linux 
extended BPF (eBPF) tracing tools so that metrics can be 
captured in the kernel. 

Furthermore, when considering modelling of physical 
infrastructure, there are concerns about how feasible it is to 
rely on accurate external sensors being part of the model. 
Currently a key attribute in each model is the temperature of 
air going into the server, but this relies on the data center the 
model is being employed upon to be well instrumented with 
temperature sensors. Most servers include temperature 
sensors of varying number and quality and a move to 
utilising those instead of requiring external sensors would be 
beneficial. However, issues with this will undoubtably arise 
from a lack of uniformity regarding internal sensors. 
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