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Highlights 34 

• The application of online near infrared MEMS sensor used to monitor progress in 35 

extreme multiphase and high temperature process conditions 36 

• PLS models generated for acid number and viscosity, and MSPC model for detecting 37 

reaction end-point of industrial polyester synthesis  38 

• MEMS-FPI sensor demonstrated to be a robust and cost effective alternative for 39 

sampling and offline testing 40 

 41 

Abstract:  42 

Recent advances in the latest generation of MEMS (micro-electro-mechanical system) Fabry-43 

Pérot interferometers (FPI) for near infrared (NIR) wavelengths has led to the development of 44 

ultra-fast and low cost NIR sensors with potential to be used by the process industry. One of 45 

these miniaturised sensors operating from 1350 to 1650 nm, was integrated into a software 46 

platform to monitor a multiphase gas-liquid process for production of saturated polyester 47 
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resins. Twelve batches were run in a two litre reactor mimicking industrial conditions (24 hr 48 

process, with temperatures ranging from 220-240 °C), using an immersion NIR transmission 49 

probe. Because of the multiphase nature of the reaction fluids strong interference produced by 50 

process disturbances such as temperature variations and the presence of solid particles and 51 

bubbles in the online spectra required a robust pre-processing algorithms and a good long-term 52 

stability of the probe. These allowed partial least squares (PLS) regression models to be built 53 

for the key analytical parameters acid number and viscosity. In parallel, spectra were also used 54 

to build an end-point detection model based on principal component analysis (PCA) for 55 

multivariate statistical process control (MSPC). The novel MEMS-FPI sensor combined with 56 

robust chemometric analysis proved to be a suitable and affordable alternative for online 57 

process monitoring, contributing to sustainability in the process industry. 58 

 59 

Keywords 60 

Near infrared spectroscopy; MEMS Fabry-Pérot interferometer; online process monitoring; 61 

high temperature polymerisation; saturated polyester resin; chemometrics   62 
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1. Introduction 63 

The production of saturated polyester resins is a process of global relevance, with large 64 

production volumes and a considerable environmental footprint [1]. These are condensation 65 

polymers, normally formed in a polycondensation reaction between polycarboxylic acids or 66 

their anhydrides and polyalcohols, producing water as a by-product. This is a reversible 67 

equilibrium reaction, industrially performed between 220-240 °C, where the formation of 68 

polyester is promoted when water and low boiling point products are distilled out [2]. The 69 

composition of the polyester resin is critically important in achieving the balance of glass 70 

transition temperature, acid number, hydroxyl number and viscosity of the resin that 71 

characterize the quality of the product [3]. Commercial saturated polyester resins are 72 

manufactured predominantly from a combination of polycarboxylic compounds including 73 

isophthalic acid, terephthalic acid, adipic acid, trimellithic acid anhydride and the polyalcohols 74 

ethylene glycol, neopentylglycol, trimethylolpropane and glycerol. The production process 75 

required to achieve high molecular weight carboxyl-functional saturated polyester resins is a 76 

two stage esterification, in which the first stage involves the preparation of a precondensate by 77 

reacting the acids with excess of diols, and a second stage by reacting the remaining diols with 78 

additional acids.  79 

For polyester production, chemometric modelling has been used to correlate analytical 80 

properties such as acid number [4-8] and hydroxyl number [4, 6-8] with offline NIR spectra. 81 

Offline analysis satisfies the needs for quality control tests, but it is time and labour intensive. 82 

Hence, it is not efficient enough to implement feedback control in an industrial production 83 

process. For continuous process monitoring, in situ NIR methods could offer a better approach. 84 

However, in situ NIR spectra are greatly affected by the physical and chemical variations found 85 

in large-scale reaction systems [9]. For instance, the variation of process variables such as 86 

temperature [10], the presence of two-phase interfaces between liquid and solids [11, 12], 87 
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immiscible liquids and gas bubbles [13], the change in optical properties of the material during 88 

reaction [8], as well as changes in the NIR instrumentation (e.g. temporal variation of 89 

illumination, changes in light transmission due to fiber optics related issues [13]), need to be 90 

addressed on a case-by-case basis. As a result, transferring the advantages of offline NIR 91 

spectroscopy to real time process monitoring remains a challenge for the polyester industry and 92 

for similar applications. 93 

To generate process understanding through online NIR monitoring, chemometric models 94 

including partial least squares (PLS) regression are typically used to correlate the key analytical 95 

properties with the online measured spectra [8]. Likewise, end-point detection models based 96 

on principal component analysis (PCA) for multivariate statistical process control (MSPC) 97 

have been used to control the process evolution through sole spectral variations [14-16]. 98 

Requirements that must be followed in building these models include the need for calibration 99 

data sets to be representative of future process data [17], and that pre-processing steps need to 100 

be applied to prevent the negative effects from process disturbances in the quality of the 101 

spectral signal [18, 19]. When these issues are not addressed, accuracy and robustness of the 102 

chemometric models is compromised [20]. Any action directed to improve the quality of the 103 

spectra acquired, minimising the effect of disturbing factors on the signal and the models, is 104 

highly beneficial [21].  105 

In this context, the quality of the online NIR spectra depends on two main factors: the 106 

interactions of the process disturbances with the process interface, and the method or 107 

acquisition strategy implemented by the spectrometer selected for the application [22]. 108 

Additionally, conventional spectrometers are often installed in safe areas distant from the 109 

process vessels, limited by their size, high cost and mechanical stability to obtain the demanded 110 

performance. These requirements impact in both the instrumentation installation cost and the 111 

quality of the online NIR signal used. 112 



6 

 

A recent alternative to the use of conventional spectrometers are spectral sensors using 113 

miniaturised and low cost MEMS-FPI chips (micro-electro mechanical system – Fabry-Pérot 114 

interferometer) developed for NIR wavelengths. MEMS-FPI are miniaturised tuneable optical 115 

filters that limit the pass of light in a narrow frequency range by using a set of two facing 116 

reflectors separated by an adjustable gap modified with a change in voltage [23]. These micro 117 

devices allow the scanning of specific regions of the spectra relevant to the process application, 118 

without incorporating moving parts such as those found in conventional FTIR spectrometers; 119 

and without diffraction gratings such as those found in dispersive spectrometers. These devices 120 

have additional advantages over conventional systems [24]: the size of the MEMS-FPI chip 121 

and the detector are considerably reduced, the system is position and vibration insensitive, and 122 

the spectral resolution does not suffer from tilting effects. Also, the device is very stable over 123 

time since the fabrication from a single wafer, without any additional assembly steps, creates 124 

a single solid structure with no wearing parts. Finally, thermal stabilization of the detector is 125 

straightforward because only a single-point detector is used, compared to conventional 126 

technologies that normally require linear array detectors [25]. MEMS-FPI sensors have been 127 

used for mid infrared (MIR) [26] and lately for NIR [27] applications, with a wide industrial 128 

application potential [28-30], although they still require further validation under a variety of 129 

laboratory and industrial conditions to understand their limitations and develop their potential 130 

further.  131 

This paper investigates the use of a novel MEMS-FPI spectral sensor to monitor the high 132 

temperature production of saturated polyester resins. The performance of the novel NIR device 133 

was evaluated under the complex multiphase reaction conditions by using the online spectral 134 

information combined with PLS regression models to predict acid number and viscosity, and 135 

to identify the process end-point by using MSPC tools. The potential benefits to the process 136 

industry in terms of miniaturisation and low cost offered by these sensors were also explored. 137 
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2. Materials and methods 138 

2.1 Reaction system 139 

Twelve experimental batches of the saturated polyester resin were synthesised following a 140 

commercial process description at Megara Resins industrial facility in Greece. For the reaction, 141 

industrial grade terephthalic acid, isophthalic acid and adipic acid were the dicarboxylic acids 142 

used; ethylene glycol, diethylene glycol, neopentyl glycol, trimethylolpropane and glycerol 143 

were the polyols used. Butylstannoic acid was used as the esterification catalyst. The reagent 144 

ratios are kept undisclosed for confidentiality. 145 

A 2 litre round flask with external heating and temperature control was used as the reaction 146 

vessel, keeping a continuous stirring rate of 200 rev per min. In order to prevent the 147 

discoloration due to the oxidation reaction, the reactor was continuously purged with nitrogen. 148 

In the first step, the reactant mixture was prepared by adding the fraction rich in diols into the 149 

vessel at approximately 80 °C. Once the diols were melted, the fraction rich in acids was added 150 

to the vessel under constant agitation. The temperature was then ramped up to 180 °C, where 151 

it was held for a 3 hour period, then increasing 20 °C every 3 hours up to reaching 240 °C, 152 

where the first reaction stage proceeds.  153 

A hydroxyl-terminated polyester was formed by reacting the dibasic acids, polyols and optional 154 

branching agents like trimethylolpropane at a temperature in the range of 160 to 240 °C in the 155 

presence of esterification catalyst and colour stabilizer to form a hydroxyl-terminated 156 

prepolymer. At this stage, the water of esterification was collected. When the acid number of 157 

the resin fell below the value determined by the specifications, the first stage of the reaction 158 

was completed, providing a hydroxyl terminal polyester. In the second stage, the hydroxyl 159 

groups were end-capped with carboxylic acids or their anhydrides to form a carboxylated 160 

polyester. The amount of end-capping agent used was determined by the hydroxyl number of 161 

the polyester. The end-capping agent was added to the prepolymer and the esterification was 162 
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continued until the desired acid number was obtained. Vacuum was applied towards the end of 163 

the reaction in order to eliminate volatile products and thus shift the equilibrium towards the 164 

formation of the polymer. Finally, after a period determined by the analytical indicators, the 165 

temperature was lowered to 200 °C to add product enhancing additives and finish the 166 

production process.  167 

2.2 Key analytical indicators 168 

The analytical indicators selected to follow the progress of the reaction were acid number (AN) 169 

and viscosity (µ). Acid number was measured by manual acid-base titration following the 170 

ASTM (American Society for Testing and Materials) method D 1613-03 and it was reported 171 

as milligrams of potassium hydroxide (KOH) per gram of sample. Viscosity (high shear 172 

viscosity) was measured using a cone/plate viscometer model CAP 2000 from Brookfield 173 

(USA), operating at 200 °C following the procedure described in the ASTM method D-4287-174 

00. 175 

The targeted ranges for the first reaction stage were AN 8-12 (mg KOH g-1) and µ 10-14 (P or 176 

g cm-1 s-1); and for the second reaction stage AN 45-63 (mg KOH g-1) and µ 25-45 P. In case 177 

the measurements were out of specifications during any of the stages, additional reactants were 178 

added to reach the desired conditions. During the analytical sampling, online NIR spectra were 179 

collected simultaneously from the reaction vessel.  180 

2.3 MEMS-FPI NIR sensor and data acquisition 181 

A novel spectral sensor model N-Series 1.7 by Spectral Engines (Finland) was used for the 182 

acquisition of the NIR spectra from 1350 nm to 1650 nm. A diagram of the sensor is shown in 183 

Fig. 1. The sensor has a single element extended InGaAs detector, with a tuneable MEMS-FPI 184 

filter acting as the spectral element. The sensor had an integrated light source model LS-PRO 185 

equipped with a miniature tungsten vacuum lamp as the illumination source. Additional details 186 

about the scanning mechanism used by the sensor can be found in the appendix section. 187 
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The spectral sensor was connected to a stainless steel NIR immersion probe (transmission 188 

mode, 5 mm optical pathlength) model Excalibur 20 by Hellma Analytics (Germany). The 189 

probe has two 2 m fibre optic cables, connecting one end to the light source and the other to 190 

the spectral sensor. The probe was designed to operate from ambient temperature up to 260 °C, 191 

and it was immersed with the transmission gap positioned towards the centre of the vessel 192 

(facing the vessel agitator) during the entire reaction time, without observing solids depositing 193 

into the probe for any of the batches performed. 194 

For all experiments, the energy output for the lamp was set to 25% of the maximum level. This 195 

value was selected for the specific polymerisation system investigated, since higher values 196 

saturated the maximum input of the sensor and lower values were attenuated by the sample. 197 

The sensor integration time was set to 0.1 ms and the wavelength step set to 1 nm (301 points 198 

obtained from the operational sensor range).  199 

The software used to operate and record NIR data from the spectral sensor was an in-house 200 

application developed by the University of Leeds using LabVIEW 2015 (ChemiView V 3.4 201 

[31]). Process temperature readings were acquired using a TC-08 temperature reader from Pico 202 

Technologies (USA), using K-type immersion temperature probes from Omega (UK). For 203 

batches 1 to 10, a single NIR spectrum was obtained every 5 s as the average of 50 sensor 204 

readings (internal FPI scanning sequence implemented by the sensor, delivering 1 raw spectra 205 

every 5 s).  For batches 11 and 12, each NIR spectrum was obtained every 0.83 s from a single 206 

FPI scanning sequence (minimum possible). The information for all batches is included in 207 

Table 1, with batches labelled according to the sequence of acquisition. 208 

2.4 Process data treatment 209 

Multivariate calibration models using PLS regression to determine AN and µ parameters and 210 

PCA-based MSPC models for end-point detection were created from the online NIR data. In 211 

both cases, modelling and validation were carried out with in-house routines programmed in 212 



10 

 

Matlab R2017a (Mathworks, USA) and PLS_Toolbox 8.2.1 (Eigenvector Research, USA) 213 

running under Matlab.    214 

For each batch, the influence of process disturbances in the quality of the NIR signal was 215 

considerable (discussed within results). In order to attenuate these effects, a pre-processing step 216 

was introduced. In this, 13 raw spectra (as delivered by the sensor) were averaged into a single 217 

spectrum, emulating the averaging that can be instrumentally obtained by increasing the 218 

number of FPI scans. This action reduced the number of spectra and the noise in the signal, at 219 

the expense of introducing a small delay time of 65 s per usable spectrum. Afterwards, the 220 

resulting averaged signal was transformed to absorbance. Since artifacts could not be 221 

completely removed, a moving average filter was applied to the absorbance spectra in the time 222 

dimension. Each spectrum was replaced by the average of itself and the N = 30 previous 223 

spectra, where N was chosen as a compromise between small prediction delay and good 224 

quality. This means 30 absorbance spectra are required to build-up the moving average before 225 

the data can be used for monitoring purposes, which occurs at the beginning of the process at 226 

a stage in which predictions are not required (latent phase, discussed in results). Finally, a 1st 227 

order Savitzky-Golay derivative [32] followed by column mean-centring was applied to correct 228 

baseline variations before submitting the resulting dataset to the PLS algorithm or to the end-229 

point detection model. Under these conditions, the models deliver 1 prediction every 65 s. 230 

(a) PLS regression models: The polymerisation process has two very distinct reaction stages, 231 

the first stage to form the hydroxyl-terminated prepolymer, and the second reaction stage to 232 

form the final carboxilated polyester. Therefore it was not possible to develop a single PLS for 233 

each property (AN and µ) that could provide predictions accurate enough for the entire process. 234 

The solution was to develop a PLS model for each property and for each stage, resulting in four 235 

multivariate calibration models relating the calibration spectra to AN and µ using PLS 236 

regression [33]. The averaged absorbance spectra corresponding to the times when samples 237 
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were collected during the reaction (known acid number and viscosity) were placed as the rows 238 

of data matrix X (samples × wavelengths). The reference values of acid number and viscosity 239 

made up column vectors yav (samples × 1) and yvi (samples × 1), respectively, and a separate 240 

model was completed to relate each of these properties to the NIR information. Because there 241 

are two clear different stages in the process, X, yav and yvi were split in two sets, one for the 242 

first stage of the reaction (X1, yav,1 and yvi,1 ), and another for the second stage of the reaction 243 

(X2, yav,2 and yvi,2). Pre-processed NIR spectra from batches 1 to 5 were used to generate the 244 

training set for the PLS models, with 7 additional batches used as external validation set.  245 

(b) MSPC models: To build MSPC models, a data set formed by NIR spectra collected at the 246 

end of each stage from normal operating condition (NOC) batches were used. All the end-point 247 

spectra were organized in a data matrix 𝐗NOC (number of end-point NIR spectra × 248 

wavelengths). A PCA model was built with these data to set the statistical boundaries of the 249 

experimental domain (space) of end-point NIR spectra [34, 35]: 250 𝐗NOC = 𝐓NOC𝐏NOC
T + 𝐄NOC 251 

where 𝐓NOC is the scores matrix of all end-point spectra (spanning the valid experimental 252 

domain for on-specification measurements in the space of principal components) and 𝐏NOC
T is 253 

the loadings matrix (which is the link between scores and original NIR spectra). 𝐄NOC describes 254 

the residual variation unexplained by the PCA model. The number of components used in the 255 

PCA model was established by cross-validation [36]. From the PCA model, a Q-statistic 256 

control chart Qstat was built, the boundary of which was based on the residual part of the process 257 

variation not explained by the PCA model. The control limit for the Qstat chart, Qlim, was set 258 

according to the Jackson and Mudholkar equation [37]. For any new (pre-processed) spectrum 259 

acquired in an online monitored batch, 𝐱𝑖,new, the PCA model obtained above was used as 260 

follows (additional details can be found in appendix section): 261 𝐭𝑖,new = 𝐱𝑖,new𝐏NOC 262 
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For this study, data from on-specification batches 2 to 5 were used to extract NIR data to build 263 

an initial end-point detection model. Subsequently, data from batches 2 to 9 were used to build 264 

an updated version of the same model. The remaining batches out of their modelling sets were 265 

used for cross-validation. The pre-processed NIR spectra used were collected during the last 266 

15 minutes before the end of each reaction stage for each batch. Two matrices with 60 spectra 267 

(4 batches x 15 spectra) were generated with the selected end-point NIR spectra to build two 268 

separate end-point MSPC models for stages 1 and 2 of the process. Spectral pre-processing 269 

was performed as explained above.  270 
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3. Results and discussion 271 

3.1 Saturated polyester resin production process and online NIR sampling  272 

The production of saturated polyester resins progressed as a multiphase reaction, in which gas 273 

bubbles and suspension solids considerably affected the spectral measurements during all the 274 

process stages. Fig. 2 (top) shows images of the different reactions periods relating the presence 275 

of bubbles, solid particles, while Fig. 2 (middle and bottom) presents related fluctuations in 276 

temperature and the NIR signal by these process disturbances in the time domain. 277 

For instance, at the beginning of the process, the carboxylic acids were solids in suspension 278 

forming the liquid polymer as the reaction progresses. The solids totally attenuated the NIR 279 

signal over the initial 10-12 hours of the process (also known as latent phase; Fig. 2, a), which 280 

gradually changed as the carboxylic acids reacted and the solution became transparent to NIR 281 

light at the beginning of the first reaction stage (Fig. 2, from a to b), clearing further towards 282 

the end of this (Fig. 2, c). During the latent phase, light absorption and scattering produced by 283 

the particles were the predominant effect. This phenomenon occurred again when the chemicals 284 

for the second reaction stage were added (a large fraction of carboxylic acids in solid form), 285 

and also when performing small corrections (adding small quantities of the same solids) 286 

required to drive the analytical properties towards the desired values (Fig. 2, d). 287 

Simultaneously, as the reaction progressed, gas bubbles were generated due to the formation 288 

of water and low boiling point products resulting from the transesterification reactions, and 289 

also due to the nitrogen stream passing through the reaction mixture. These bubbles tended to 290 

remain in the system for extended periods of time due to the high viscosity of the mixture, 291 

which dissipated slowly when reaching the surface of the vessel or forced to leave when a 292 

vacuum was applied to the system. The last action also contributed to drive the key analytical 293 

properties towards the desired values. Bubbles scattered the NIR light, but still allowed a usable 294 

signal to reach the detector. Bubbles appeared at the intermediate phases of each reaction stage, 295 
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when the solids had completely reacted. Towards the end of each reaction stage, bubbles also 296 

gradually disappeared, with the sample becoming fully transparent (Fig. 2, e).  297 

Finally, the temperature of the reactor also fluctuated around the set point of the heating control 298 

as shown by the temperature readings and mirrored by the NIR spectra, particularly noticeable 299 

during the latent phase (Fig. 2, blue line). Fluctuations were due to the limitations of the heating 300 

element control. When none of these phenomena disturbed NIR acquisition, the signal had a 301 

stable amplitude and was very repeatable between scans, especially at the end of the reaction 302 

process (Fig. 2, f).  303 

Compared to previous reports using offline NIR spectra to correlate key analytical properties 304 

[6], the fluctuations produced by process disturbances in the NIR spectra were the main 305 

obstacle to perform online monitoring. The attenuation effect produced by solid particles was 306 

the main restricting factor that limited the time window to obtain useful NIR measurements in 307 

transmission mode. On average, the complete reaction process takes approximately 25 hours 308 

per batch, from which the first 12 to 14 hours corresponded to the latent phase (non-309 

transparent), with periods of approximately 5 hours for each reaction stage (transparent). Under 310 

these conditions, the time frame for measuring useful NIR spectra that could be correlated to 311 

the key analytical properties was 3-6 hours for each stage. Fig. 2 illustrates the NIR monitoring 312 

window observed for batch number 5. 313 

Fig. 3 shows groups of five consecutive NIR scans (raw intensity spectra, thin blue lines) and 314 

their corresponding average (red dashed lines), obtained for specific periods of the first (i) and 315 

second (ii) reaction stages during the NIR monitoring window. These groups correspond to 316 

similar time periods for the specific process conditions shown in Fig. 2. As observed from Fig. 317 

3, the intensity of the signal tends to increase as the reaction progress, with the exception of 318 

the transition period between stages one and two, when a large fraction of solids was added 319 

causing the signal to drop. Regarding the active NIR groups for the polyester system relative 320 
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to the spectral range of the NIR sensor used, the wavelength range 1400 – 1500 nm relating to 321 

first overtone of -OH vibration was the most important for prediction. It also allowed 322 

differentiating clearly between reaction stage 1 and stage 2 of the process. Although 323 

wavelengths longer than 1500 nm are less important for prediction, they allowed a better outlier 324 

detection and, therefore, the full wavelength range covered by the NIR spectral sensor was 325 

found useful for modelling purposes (an absorbance plot for the same spectra and time periods 326 

shown in Fig. 3 is available in Appendix). 327 

3.2 Prediction of key analytical properties using PLS and MSPC models  328 

For the 12 batches performed, the analytical indicators measured at the end of each stage and 329 

the final process outcome are listed in Table 1. Two out of twelve batches ended up out of 330 

specification in relation to the commercial product, after a reasonable number of attempts to 331 

correct the direction of the process towards the desired analytical control parameters. The time 332 

difference observed between batches was due to the number of chemical adjustments carried 333 

out for each case. After each chemical correction, it was necessary to wait for thermal 334 

stabilization of the system and the reaction of the solids in suspension before obtaining the next 335 

analytical measurement. 336 

Fig. 4 compares the acid number determined offline (circles) and the continuous prediction 337 

generated from the online NIR spectra after applying the PLS models for six batches (batches 338 

3 to 5 used for calibration, and batches 7 to 9 used for validation were included in this figure. 339 

Similar plots for all twelve batches can be found in Appendix). The analytical measurements 340 

and the predictions shown in these figures were obtained during the NIR monitoring window, 341 

in which the time gap between reaction stages corresponded to the addition of the second stage 342 

chemicals (solids).  343 

Continuous predictions obtained from the PLS models against the offline viscosity 344 

measurements are shown in Fig. 5, illustrating the same batches used for Fig. 4. For both 345 
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process stages, viscosity values always increase due to the increasing length of the polymer 346 

branches formed and the PLS model predictions followed this trend. 347 

For both acid number and viscosity predictions, sharp variations between consecutive spectra 348 

due to bubbles and solids in suspension were the most important data issue to be solved when 349 

building and implementing PLS models. These variations affected the transmission of light 350 

both in the wavelength dimension and in the time dimension randomly e.g. one spectrum may 351 

suffer artifacts at certain wavelengths, while the next was affected at different wavelengths (as 352 

shown in Fig. 3). Normally, the referential analytical properties vary slowly during the reaction, 353 

except when adding chemical corrections to the system or when changing operational 354 

parameters such as the flow of inert gas. Under normal conditions, it is expected that the model 355 

predictions should also evolve slowly, although in this case process interferences still created 356 

fluctuations that could not be completely attenuated. Spectrum averaging compensated these 357 

undesired effects to a large extent, but could not completely remove them. The spectral moving 358 

average over time improved the stability of the predictions, and the remaining fluctuations were 359 

considered to be acceptable, taking into account the complexity of the data, and followed the 360 

evolution of the process satisfactorily.  361 

Regarding to the accuracy of the predictions obtained, Fig. 6 compares the acid number and 362 

viscosity measured for the 12 batches against the predictions obtained from the PLS models. 363 

From these figures, it is evident that both key parameters differed considerably for the second 364 

reaction stage relative to those predicted for the first stage. Although the process fluctuations 365 

observed in both cases were very similar, changes in the first reaction stage were slower and 366 

observed at the end of longer time period (latent phase + first reaction stage). Conversely, for 367 

the second reaction stage, changes were more vigorous and produced in a shorter time interval, 368 

which led to slight increases to the variations on the NIR spectra and resulting predictions.  369 
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Results generally indicated that acid number predictions were more precise for the first stage 370 

than those obtained for the second stage. This difference can be explained by the chemistry of 371 

the system, which has smaller changes during the first stage, as it reacts under an excess of 372 

diols, with acid number ranging from 5 to 20 mg KOH g-1. For the second reaction stage, the 373 

end groups contributing to the acid number were targeted, with a variation fluctuating between 374 

50 to 70 mg KOH g-1, almost an order of magnitude higher compared to the first stage range. 375 

Finally, it is noted that viscosity predictions were more precise and accurate relative to those 376 

obtained for the acid number. This difference may simply be due to the higher repeatability of 377 

the analytical measurements obtained using the cone viscometer, compared to reference acid 378 

number obtained by manual titration that had greater higher variability. 379 

Models for acid number and viscosity were developed with the data obtained from batches 1 380 

to 5 (from February 2017), and predictions for batches 6 to 12 considered new data (collected 381 

in September 2017). As a consequence, there was some increase in prediction variability for 382 

batches 6 to 12. Some of the slight reduction in predictive performance may have been due to 383 

some introduced systematic bias, because the system had to be reinstalled in Megara after a six 384 

month period. Even though the optical components e.g. fibre optic cables and sensors were the 385 

same, the system setup was not absolutely be identical e.g. fibre bending radius and ambient 386 

temperature was not exactly the same. However, even accounting these differences, the model 387 

prediction was within an acceptable range e.g. within the intrinsic error of the wet chemistry 388 

analysis, and highlighted the real potential to use the NIR system for process monitoring. 389 

Additionally, information from the PCA models obtained directly from the sole NIR spectra 390 

(without using calibration samples) provided another perspective to evaluate the use of the 391 

MEMS-FPI sensors. Fig. 7 shows the end-point detection MSPC model predictions obtained 392 

for all the batches during the NIR monitoring window, using an initial model created with 393 

batches 2 to 5 (black symbols). For a better visualization of the control chart and the related 394 
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limit, reduced Q-statistics (Qred), expressed as, Qred = Qstat/Qlim, were used. In this way, the limit 395 

in all Qred charts is equal to 1. An initial qualitative analysis from the profiles suggests a clear 396 

decreasing pattern of the Qstat values as the process progresses towards completion. Although, 397 

the overall final end-point values obtained could be more precise, given the complete 398 

experimental set, initial model performance was acceptable, considering the small number of 399 

available batches used to build the PCA model. 400 

However, in order to improve the definition of the process end-point, the PCA-based MSPC 401 

models were updated to include a larger number of batches (2 to 9). Batches 10 to 12 were not 402 

included in the updated model and used for external model validation. Predictions using the 403 

updated model are also shown in Fig. 7 (red dots). Analysing the validation batch 10, we can 404 

observe that its second stage did not reach the end-point control limit, which agrees with 405 

experimental observation reported in Table 1, where this batch was considered as out of product 406 

specification. Although on specification batches 11 and 12 did not cross the end-point control 407 

limit for long time, they showed trend towards it, which indicates that these batches could be 408 

accepted according to these observations. The results suggest that a larger number of batches 409 

will improve the repeatability and robustness of the control models implemented, and that the 410 

sole online NIR information obtained from the sensor was sensitive enough to detect the 411 

process end-point.  412 

The effect of the process disturbances was also observed for the PCA-based models, although 413 

its influence in the identification of the end-point reached for each stage was limited. This is 414 

explained by the quality of the selected NIR spectra used to build the end-point detection 415 

model, which correspond to the last 15 minutes of each stage. This particular time interval of 416 

the process had two key distinctive differences; firstly, the NIR spectra collected have a higher 417 

optical transmittance since the presence of bubbles and solids present was minimum at the end 418 

of each stage (Fig. 2, c and f). Secondly, there was a clear difference in the shape of the 419 
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absorbance spectra at the ending period compared to the initial reaction interval, which 420 

produced more intense NIR profiles with stronger peak association (Fig. 3 illustrated this).  421 

The use of a large number of averages to minimise the influence of process disturbances in the 422 

NIR spectra had a small impact on the response time of the MSPC model predictions. However, 423 

it was not great enough to hide the fluctuations produced by adding corrective chemicals to the 424 

reaction vessel (emphasized in Fig. 7 for batches 1 and 10, although this action was performed 425 

for most of the batches) to drive the key analytical parameters to their control values. Since the 426 

anticipated outcome for this model was a single parameter to identify the process end-point, 427 

the implementation was simpler than predicting the analytical properties over short time 428 

intervals and required only NIR spectra for generating the training set, without any additional 429 

experimental calibration.  430 

Finally, the results obtained from the PLS prediction of viscosity and acid number can be used 431 

together with the MSPC control chart to provide additional supporting information to the end-432 

user. Although using the PLS models as an alternative to the traditional offline analytical 433 

analysis still need to be further demonstrated, the results obtained show clearly the NIR sensor 434 

performance, even when challenged by severe process fluctuations encountered in the pilot 435 

scale process. Under these conditions, predicted viscosity and acid number were within the 436 

acceptable limits required for monitoring the synthesis of saturated polyester resins.  437 

In addition, the miniaturised size was a distinctive characteristic of the MEMS-FPI sensor, 438 

which enabled its installation attached to the reaction vessel, minimising the use of fibre optics 439 

cables for transmitting the NIR light. Instead, a standard electrical signal was transmitted from 440 

the sensor to the computer, reducing the installation and maintenance costs considerably. 441 

Another factor to consider was the stability observed for the MEMS-FPI sensor during the 442 

experimental trials, allowing to maintain the calibration for the PLS-based and end-point 443 

models. In this study, the whole system was dismounted and reassembled between the two 444 
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experimental campaigns and, although updated models offered better results, predictions based 445 

on the models initially built were still acceptable for the 7 new batches. 446 

Besides, access to affordable process monitoring and control technologies for small and 447 

medium enterprises (SMEs) has been identified as a contributing factor to improve process 448 

sustainability [38]. For the synthesis of polyester resins (or similar challenging reactions), real-449 

time access to the key process indicators can minimise the number of manual sampling points 450 

collected from the high temperature reaction vessels, helping to reduce the risks associated to 451 

a minimum. Also, this low-cost information can help to improve batch-to-batch consistency 452 

e.g. observing the development of detrimental disturbances in real-time, and implementing 453 

control actions faster than using the off-line data (time delayed); avoiding the loss of materials 454 

and equipment due to batch failure. Finally, access to online monitoring tools can help SMEs 455 

to implement more advanced process optimisation strategies, saving cycle time by reducing the 456 

number of off-line controls, and bringing further reductions in material consumption and 457 

energy savings. 458 

The use of this new generation of MEMS-FPI NIR sensors appears to be a suitable alternative 459 

to traditional spectroscopy systems, and particularly adapted to harsh industrial environments 460 

such as the production of saturated polyester resins.461 
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4. Conclusion 

A new MEMS-FPI NIR sensing technology combined with suitable chemometric data 

processing was used for effective monitoring of multi-phasic production of saturated polyester 

resins. This process presented several challenges, which are often encountered in similar 

industrial applications, including variations between spectra, due to the presence of bubbles 

and solids particles in suspension, and temperature fluctuations. These process disturbances 

affected the transmission of light both in the wavelength and in the time domains, and also 

limited the time window to observe the reaction in NIR transmission mode. These issues where 

addressed by extensive pre-processing and allowed satisfactory implementations of PLS and 

PCA-based end-point detection models. In addition, the stability of the optical system over a 

long time period, achieved by the single frame MEMS-FPI chip architecture and integrated 

light source, helped to generate a high quality and robust NIR signal. Hence, the combination 

of the notable optical properties of the sensor combined with chemometric tools to address 

process-related signal distortions, provided excellent results for monitoring of the key 

analytical properties (acid number and viscosity) as well as end-point control. This new 

generation of NIR sensors presented a number of advantages over traditional spectral systems, 

such as miniaturisation, low cost and stability, providing an affordable alternative to improve 

process performance, reduce costs and contribute to sustainability in the process industry. 
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Table 1 

Summary of analytical parameters measured, total reaction time and NIR spectra acquired 

Batch ANa,c µa,d ANb,c µb,d Final process outcome Reaction time 
NIR scans per 

single spectrum 

Number of 

spectra 

1e 8.4 7.0 - - Out of specification 21 h, 40 min 50 averaged in 5s 16427 

2 6.0 16.0 49.9 36.4 Within specification 21 h, 10 min 50 averaged in 5s 16753 

3 8.4 13.6 48.0 50.3 Within specification 26 h, 25 min 50 averaged in 5s 20052 

4 7.9 14.5 55.6 36.7 Within specification 21 h, 25 min 50 averaged in 5s 16456 

5 7,8 14,1 54.0 38,4 Within specification 22 h, 30 min 50 averaged in 5s 17230 

6 8.4 9.6 51.0 29.9 Within specification 22 h, 20 min 50 averaged in 5s 16199 

7 8.9 9.5 54.0 42.5 Within specification 22 h, 55 min 50 averaged in 5s 16621 

8 9.5 12.3 54.0 39.1 Within specification 22 h, 5 min 50 averaged in 5s 15940 

9 9.0 12.1 53.3 41.0 Within specification 24 h, 50 min 50 averaged in 5s 17970 

10f 8.7 10.1 56.0 53.7 Out of specification 24 h, 15 min 50 averaged in 5s 17149 

11 8.3 10.3 55.0 31.7 Within specification 24 h, 45 min 1 scan in 0.83s 104987 

12 7.6 10.8 51.0 36.2 Within specification 21 h, 05 min 1 scan in 0.83s 92204 

a At the end of the first reaction stage; b at the end of the second reaction stage; c AN in mg 

KOH g-1; d µ in Poise; e batch 1 ended out of specification after first reaction stage; f batch 10 

ended out of specification after the second reaction stage. 
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Fig. 1. Diagram of the NIR spectral sensor base (a) with the MEMS-FPI tuneable filter (b). 

The assembled sensor weight 125 grams, with the metal chassis measuring 58 mm length by 

57 mm width by 27 mm high. 
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Fig. 2. Images showing typical process conditions (top): a) bubbles and solids in suspension 

during the latent phase; b) bubbles in suspension in the middle of first stage; c) homogeneous 

solution at the end of the first stage; d) bubbles and solids in suspension after adding second 

stage chemicals; e) bubbles in suspension in the middle of second stage; f) final product. The 

influence of temperature fluctuations (middle, blue line) mirrored by the absorbance NIR 

spectra for 5 selected wavelengths (bottom; for batch 5, similar to all batches) as a function of 

time, for the final 11 hours of the process. 
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Fig. 3. Example NIR spectra shown for six different process periods, displaying the 

disturbances generated by bubbles and solids particles in suspension. i) First reaction stage: a) 

bubbles and solids in suspension during the latent phase; b) bubbles in suspension in the middle 

of first stage; c) homogeneous solution at the end of the first stage. ii) Second reaction stage: 

d) bubbles and solids in suspension after adding second stage chemicals; e) bubbles in 

suspension in the middle of second stage; f) final product. Data from batch number 5, and 

similar to all other batches. Groups of five consecutive raw spectra (thin blue lines), and red 

dashed lines corresponding to the average spectrum obtained for each group. Absorbance plot 

for the same spectra is available in Appendix.  



29 

 

 

Fig. 4. Experimental acid number obtained (red dots) compared to continuous PLS model 

predictions based on NIR measurements, for the first and second reaction stages. Batches 3, 4 

and 5 used for model making; batches 7, 8 and 9 used as external validation. 
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Fig. 5. Experimental viscosity values obtained (red dots) compared to continuous PLS model 

predictions based on NIR measurements, for the first and second reaction stages. Batches 3, 4 

and 5 used for model making; batches 7, 8 and 9 used as external validation. 
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Fig. 6. Acid number and viscosity compared against NIR model predictions using calibration 

and validation batches for the two reaction stages. 
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Fig. 7. PCA-based end-point detection MSPC Qred charts predictions for all batches. Black dots 

indicate Qred predictions from model developed using batches 2 to 5; red dots indicate Qred 

predictions from updated model developed using batches 2 to 9; discontinuous red line 

indicates the end-point control limit. 

 

 

 


