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Abstract: 

In the present paper, the notch critical plane method proposed by the authors is extended from 

2D- to 3D-cases. The plane passing through the assumed critical point and experiencing the 

maximum variance of the resolved shear stress is defined as the the notch critical plane. The 

linear-elastic stress fields around the notch root are fitted via polynomial functions. The 

relationship between critical distance, l, and fatigue damage, Db, under variable amplitude 

loading blocks is proposed. Susmel’s parameter and a specific multiaxial cycle counting method 

are incorporrated into this approach to estimate multiaxial variable amplitude fatigue life. 

Numerous fatigue data generated by testing five different notched metallic materials were 

collected from the literature to check the accuracy of the proposed approach. This validation 

exercise allowed us to demonstrate that this method is highly accurate, with the majority of the 

predicted experimental results falling within an error band of 2. 
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NOMENCLATURE 

a,b Material constant 

A,B Material constant 

D Fatigue damage 

Dcr The critical fatigue damage 

E Young’s modulus 

1f  The range of the fully reverse axial fatigue limit 

G Hessian matrix  

thK
 The range of the stress intensity factor threshold value 

l0 The critical distance in TCD 

l The critical distance in modified TCD 

m The index to consinder the effect of mean stress 

Nf the number of cycles to failure 

r The distance at notch root 

σ1 The maximum principal stress 

σ-1 The uniaxial endurance limit 

σn The maximum normal stress on critical plane 

σn,m The mean value of normal stress on critical plane. 

σn,max The maximum value of the normal stress on the critical plane 

σx The normal stress component 

τ-1 The torsional endurance limit 

τa The shear stress amplitude on the critical plane 

'

f  Fatigue ductility coefficient △εn The amplitude of normal strain on critical plane 

ABBREVIATION 

AM Area method 

CA Constant amplitude 

FCP Fatigue critical point 

FEM Finite element method 

LEFM Linear elastic fracture mechanics 
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LM Line method 

MVM The maximum variance method 

MVRSS The maximum variance of resolved shear stress 

NCP Nocth critical plane 

PM Point method 

SED Strain energy density 

SFI Stress field intensity 

TCD The theory of critical distance 

VA Variable amplitude 
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1 Introduction 

In industrial applications of practical interest, engineering structures and their components 

are subject to complex variable amplitude (VA) load histories which have high risk of causing 

fatigue failures [1–5]. Furthermore, fatigue cracks often initiate from notches, that is, from those 

regions experiencing localized stress/strain concentration phenomena. In this context, not only 

stress gradients, but also multiaxial stress states exist at the notch root even under uniaxial 

fatigue loading [6–9]. The effect of stress gradients, loading non-proportionality, stress 

multiaxiality, and profiles of the load spectra at the notch root should be taken into account to 

evaluate the fatigue lifetime of notched components under in-service VA load histories. The 

advanced volumetric approaches, such as the Strain Energy Density (SED) approach [10–12], the 

Stress Field Intensity approach (SFI) [13, 14] and the Theory of Critical Distances (TCD) [15] 

were proposed to assess the effect of stress gradients. In recent years, these approaches have 

been reviewed in detail in numerous technical articles – see, for instance, Refs [8, 16]. Among 

the above advanced volumetric approaches, the TCD is certainly the simplest one to be used in 

situations of practical interest. The TCD calculates the critical stress to be used to assess fatigue 

damage either at a point, along a line, over an area, or over a volume. The way the TCD works 

when used in the form of the Point Method (PM), Line Method (LM) and Area Method (AM) is 

schematically shown in Figure 1, with the different formalisations of this theory being 

formulated mathematically as follows: 
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EL Haddad equation：
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In the above definitions, the critical distance, l0, is defined via El Haddad’s empirical equation 

[17] where 1f  and thK  are the range of the uniaxial endurance limit and the range of the 

threshold value of the stress intensity factor (SIF), respectively. 
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Figure 1. Visualisation of the Point Method, Line Method and Area Method. 

 

Susmel and Taylor [2] have devised a novel method to estimate the fatigue lifetime of notched 

components under multiaxial VA cyclic loading based on their previous work. To assess fatigue 

damage, this approach makes use of Susmel’s critical plane criterion [18–20] and the TCD PM. 

In this approach, the plane experiencing the maximum variance of the resolved shear stress 

(MVRSS) is regarded as the “critical plane”. Then, the Three-Point Rain-Flow Cycle counting 

method is applied to count the cycles of the resolved shear stress. Besides, recently, Faruq and 

Susmel [3] further extended this design phylosophy by combing the modified Manson-Coffin 

curve method [21, 22] with the shear strain-maximum variance method [22, 23] and the 

elasto-plastic TCD [24, 25]. 

 Similar to what was done by Susmel and co-workers, Gates and Fatemi [5, 26] recently have 
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proposed to combine the PM with a pseudo stress-based plasticity model to formulate an 

approach suitable for modelling the detrimental effect of local stress/strain gradients in the 

vicinity of notchs. In particular, Fatemi-Socie’s equivalent parameter based on the critical-plane 

approach was applied to quantify damage under multiaxial VA fatigue loading. Having defined 

the plane experiencing the maximum fatigue damage as the critical plane, Wu et al. [27, 28] 

proposed to use a simple multiaxial cycle counting method based on Wu-Hu-Song (WHS) 

multiaxial parameter [29] to quantify fatigue lifetime under VA load histories. Hertel et al. [30] 

extended the short-crack model originally devised for multiaxial constant amplitude loading to 

multiaxial VA fatigue situations. In this approach, the plane with the maximum crack growth rate 

was defined as the critical plane. Tao et al. [31] combined the non-proportionality factor and 

Wang-Brown’s multiaxial cycle counting approach [32–34] to predict multiaxial VA fatigue 

lifetime by calculating the elastic-plastic stress/strain fields around the notch tips. 

In this paper, the notch critical plane approach (NCP) [9, 16] presented by the authors for the 

constant amplitude (CA) multiaxial fatigue case is initially extended from 2D- to 3D-situations 

and then applied to predict fatigue lifetime of notched components under complex VA fatigue 

loading. In this setting, the NCP is the plane experiencing the MVRSS and is taken coincident 

with that material plane passing through the assumed fatigue critical point (FCP) [7] - i.e. 

through the assumed crack initiation point at the notch root. Having defined the orientation of the 

NCP, the load history in terms of resolved shear stress amplitude and in terms of maximum 

normal stress on this plane are recorded. Then, the multiaxial cycle counting method proposed by 

the authors in Ref. [35] is used to count the fatigue cycles. Besides, the relation between critical 

distance, l, and fatigue damage, Db, under multiaxial VA loading is proposed to modify the TCD. 

Over 120 experimental results generated by testing five different notched metallic materials were 

used to check the accuracy of the approach being proposed, with the majority predictions being 
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seen to fall within an error band of 2. 

 

2  Determination of the NCP for 3D notches 

2.1 NCP for notched specimens based on the MVM 

In Refs [9] and [16], the notch critical plane at notch root was suggested to be defined as that 

material plane passing through the fatigue critical point and experiences the maximum amplitude 

of the shear stress. The NCP is based on the assumption that the initiation of micro-cracks is 

driven by the shear stress. By testing under CA multiaxial fatigue loading a large number of 

specimens made of 2297 lithium-aluminium alloy, Luo et al. [16] demonstrated that the 

orientation of the NCP is the same as the orientation of the crack initiation at the notch root. 

Further, the NCP was seen to be sucesfull in estimating the multiaxial CA fatigue lifetime of 

notched components, with different critical-plane multiaxial fatigue criteria, such as Susmel’s 

criterion or ZY’s parameter [36], being used to quantify the fatigue life. 

The NCP was originally proposed for 2D-notched components under multiaxial CA cyclic 

loading. In the present study, the NCP is extended from 2D- to 3D-cases to assess fatigue 

damage in notched components under multiaxial VA cyclic loading based on the maximum 

variance method (MVM). The MVM can easily determine the orientation of the critical plane by 

using the standard optimization algorithms that are available in different commercial codes, for 

instance, Matlab®. The traditional approach to determine the orientation of the critical plane is to 

calculate the shear stress amplitude or other mechanical quantities on a large number of different 

planes. Unfortunately, this modus operandi is very time-consuming, especially in the presence of 

3D components. The MVM is can be applied along with standard optimization algorithms and 

the critical plane is defined as the plane experiencing the MVRSS [23, 35]. 

To simplify the process of determing the NCP in the vicinity of notches, the plane passing 
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through the FCP and experiencing the MVRSS is regarded as the NCP. The first step to locate 

the orientation of the NCP is to determine the FCP which is nothing but the crack initiation point, 

where, usually, cracks initiate from the surface of the notched components being designed. 

Analytical solutions around the notches can be obtained for standard notches, such as circle holes 

or V-notchs. In contrast, the numerical solutions around non-standard notches can be obtained by 

the FEM. 

The idea to determine the FCP is to estimate the fatigue damage of the whole potential points 

around the notch, then the point exoeriecing the maximum value of the fatigue damage is defined 

as the FCP. The details to locate the FCP were introduced in Ref. [7] where a large number of 

notched specimens made of of 2297 luminium-lithium alloy and GH4169 nickel-base superalloy 

were tested under multiaxial fatigue loading to verify the accuracy of FCP around the notches 

being investigated. In this context, it should be noticed that suitable cycle counting methods had 

to be used to estimate lifetime under multiaxial VA fatigue loading. 

A notched specimen under multiaxial VA fatigue loading is shown in Figure 2 where the point 

O is the FCP. Point O is regarded as the origin in Figure 3(a), where O-xyz is the global system 

of coordinates and O-abn is the local system of coordinates. Besides, O- r is the spherical 

system of coordinates referring to O-abn. n is the normal vector of plane △. Vector r is the 

vector n in the local spherical coordinate O- r . The resolved shear stress, τq(t), on the plane △ 

is the projection of the shear stress τn(t) along a direction which is at angle α to axis a. Unit 

vectors n and q are expressed as follows: 
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http://dict.youdao.com/w/crack%20initiation/#keyfrom=E2Ctranslation
http://dict.youdao.com/w/numerical%20solution/#keyfrom=E2Ctranslation
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Figure 2. The notched specimen under multiaxial VA fatigue loading. 
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(a)                          (b)  

Figure 3. The illustration of the local spherical coordinate O- r  and the resolved shear stress. 

 

The resolved shear stress τq(t) is determined as: 

T

q ij(t) ( , , , ) = ( , , , t)

x xy xz x

x y z xy y yz y

xz yz z z

n

r t q q q n r
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where ij  is the local stress tensor field around the FCP. 



 

10 

 

 

2

TT

1
2

2

3

4

5

6

1
sin sin 2 cos sin sin 2 cos

2

1
-sin sin 2 cos sin sin 2 sin

2

1
- sin sin 2= = =

2

1
sin sin 2 sin 2 cos cos 2 sin

2

x x

y y

z z

x y y x

x z z x

y z z y

n qD

n qD

D n q

D n q n q

D n q n q

D n q n q

     

     

 

     



  
   
  
  
  

  
      

     

D

T

sin cos cos 2 cos sin cos

sin sin cos 2 cos cos cos

     
     

 
 
 
 
 
 
 
 
 
 
 
 
 

  

         (5) 

1

2

3

4

5

6 y

( , , , )

( , , , )

( , , , )
( ) =

( , , , )

( , , , )

( , , , )

x

y

z

xy

xz

z

r ts

r ts

s r t
t

s r t

s r t

s r t

  
  

  
  
  
  

  
  
  
  
   
  
  
  
     

s                             (6)

 

The variance of the resolved shear stress is: 

   

    

6

q

1

6
2 T

1

T

Var ( ) Var ( ) =Var

= Var Var

= ( , , )

k k

k

k k

k

t t D s

D s

r



 





         

   

 





D s

D s D

D C D

                  (7) 
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Matrix C in Eq.(7) depends on the orientation of plane △ and the distance, r, between the 

FCP and the selected point Q (see Figure 2) at the notched root. However, matrix C for plain 

specimens is a constant matrix only depending on the loading history because of the uniform 
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stress field [35]. 

The distance, r, gives a measurement of how large the fatigue damage area is at the notch 

root. In the authors’ opinion, the fatigue damage area is nothing but the process zone whose size 

depends on both material morphology and characteristics of the damaging process taking place. 

In this context, continuum mechanics is not suitable to model the crack initiation phase because 

the assumption of continuous and homogenous material is no longer valid. The local stress and 

the local micro-structure deeply influence the direction of crack initiation. Besides, a conclusion 

has been drawn in the authors’ recent research that the maximum length of crack initiation is the 

critical distance l0 of TCD [16]. 

According to the above analysis that the maximum length of crack initiation is l0 so that 

Eq.(2) is introduced into Eq.(7) as follows: 

T

q 0( , , )=Var ( ) = ( , , )f t l          D C D                        (12) 

 

The plane passing through the FCP and experiencing the MVRSS is defined as the NCP in 

the presence of notches. Therefore, the orientation of the NCP is given by the angle m m( , )   

which results in the maximum value for qVar ( )t   . The gradient optimization algorithm can be 

used to find the maximum of Eq. (12). Two classical gradient optimization algorithms, i.e., the 

Conjugate Gradient Method and Newton’s method, were used by the authors in Ref. [35] to find, 

in the absemce of gradient, the critical plane experiencing the MVRSS. Newton’s method is 

taken as an example to show how the gradient optimization algorithm is used to find the 

maximum of Eq. (12). The flow chart of the searching process by using the Newton method is 

shown instead in Figure 4. 
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Figure 4. the illustration of the Newton method to search NCP for notched specimens. 

 

It should be noticed that the difference between plain and notched materials when it comes 

to searching for the critical plane via gradient optimization algorithm lies in matrix C. In the 

absece of notches, Matrix C can be regarded as a constant matrix during the iterative solution 

and it only depends on the stress tensor history. In contrast, the matrix C needs to be updated for 

each iterative step for notched specimens because it not only depends on the local stress tensor 

history, but also on the orientation of the selected plane. Therefore, the calculation process to 

determine the critical plane of notched components is more complex than that required for 

smooth components. 

 

2.2 Approximate analytical solutions for the local elastic stress fileds at the notch tip 

 As mentioned above, in Eq. (4) ( , , , )r t s  are the analytical solutions for the local elastic 
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stress fileds at the notch root. However, it is very diffcult to solve the analytical solutions 

( , , , )r t s  around the notch root especially under multiaxial fatigue loading. Although the 

numerical stress fileds around the notch can be calculated by the finite element method (FEM), 

these solutions are the stress states of discrete nodes around the notch root. The solutions of FEM 

are not convenient for the iterations shown in Figure 4.  

A simple method to get the approximate analytical solutions of local elastic stress fileds at the 

notch root is introduced based on linear elasticity and the superposition principle. This method 

can also reduce the computational time especially in the presence of VA load histories. 

The way the superposition principle is employed is shown in Figure 5. In particular, two 

functions f1A(x,y,z) and f2A(x,y,z) are used to fit the discrete stress fields calculated by the FEM 

around the point A under unit forces F1 and F2, respectively. 

According to linear elasticity and the superposition principle, the fitted stress field around 

point A under n1F1+ n2F2 is: 

σA(x,y,z)=n1F1f1A(x,y,z)+n2F2f2A(x,y,z)                 (13) 

F1

F2

=

F2

F1

+A A A

 

Figure 5. the illustration of superposition principle. 

 

The fitted functions of the local stress field have many different forms, which are based on the 

notch type. However, independently of the notch type, polynomial function can always be used 

to fit the stress filed around the notch. A fitted function is suggested as follows: 

       ij , , sin cosi i i

i i i
r a r b c                              (14) 

http://dict.youdao.com/w/polynomial%20function/#keyfrom=E2Ctranslation
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The parameters in Eq.(14) can easily be solved by using the Least Squares Method as 

implemented, for instance, in Matlab. It is worth noting that Eq.(14) is only the approximate 

analytical solution for the local elastic stress fileds around the notches under investigation. The 

fitting precision depends on the number of parameters in Eq.(14). Fifteen parameters (three 

variables r, and   up to the fourth power) are enough to accurately fit the elastic stress fields at 

the notch root. 

The notched specimen under tension-torsional VA loading shown in Figure 6 is taken as an 

example to explain how Eq. (13) works. The elastic stress fields around the notch root under 

force F0 and T0 are  
0F ij , ,r    and  

0T ij , ,r    respectively. According to linear elasticity and the 

superposition principle, the stress field around the notch root under both the force F(t) and force 

T(t) at time t is:  

     
0 0ij F ij T ij

0 0

( ) ( )
, , , , , , ,

F t T t
r t r r

F T
                         (15) 

R

F(t) T(t)

 

Figure 6. Notched specimens under tension-torsional VA loading. 

 

It is simple and effective to obtain the elastic stress field around the notch root at any time 

under VA loading because only several basic elastic stress fields around the notch root need to be 

analyzed using the FEM and fitted functions.  

 

3 The relation between critical distance and fatigue damage 

Based on Linear Elastic Fracture Mechanics (LEFM), the TCD was initially proposed to 

predict fatigue damage in the high-cycle fatigue regime [15]. Susmel et al. [37] extended the use 
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of the TCD from the high-cycle fatigue to the medium/low-cycle fatigue regime by assuming 

that a power function exists between the critical distance, l, and the number of cycles to failure, 

Nf, i.e.: 

 f

b
l a N                                  (16) 

where, a and b are two material parameters to be determined experimentally. In particular, 

parameters a and b can be determined by two S-N curves separately. One is the S-N curve from 

the plain specimens and the other is the S-N curve from specimens containing a known 

geometrical feature [37]. The S-N curve of the plain specimens can be obtained by conducting 

fatigue tests under simple uniaxial loading.  

The ‘stress-distance’ curve at the notch root is assumed to be like the one seen in Figure 7 and 

the fatigue lifetimes of two notched specimens under different fatigue loadings are assumed to be 

N1 and N2, respectively. The S-N curve of the plain specimens is: 

 f

B
S A N                                  (17) 

Notch

Stress

Distancel1     l2

S1   

S2  

Figure 7. ‘Stress-distance’ curve at the notch root. 

 

 It should be noticed that stress S1 and S2 corresponding to N1 and N2, respectively, can be 

calculated from the S-N curve in Eq.(17). l1 and l2 are the effective critical distance values for 
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two notched specimens with different fatigue life in Figure 7. The parameters a and b in Eq.(14) 

can be derived as follows: 

 
1 2

1 2

1 2

1 2

1

lg lg

lg lg
1

lg lg

lg lg

l l

N N

l l
b

N N

l
a

N









                                 (18) 

 Moving to VA situations, the number of loading blocks Nb represents the fatigue life under a 

given VA load history. Besides, under CA fatigue loading, the high-cycle fatigue regime and the 

low-cycle fatigue regime can be distinguished via the number of cycles. In contast, they can not 

be distinguished via the number of cycles under VA fatigue loading. Thus, Eq.(16) can not be 

applied for VA loading because the length and magnitude of different VA loadings are not 

unified. According to Miner’s rule, fatigue damage can be quantified as: 

cr cr

f b

=   =
D D

D or D
N N

                             (19) 

where, Nf and Nb are the cycles to fatigue failure under constant amplitude and VA loading 

respectively. Dcr is the critical value of the damage sum. 

 Eq. (19) is introduced into Eq. (16) as follows: 

cr=

b
D

l a
D

 
 
 

                                 (20) 

 In the above equation, D is equal to the critical fatigue damage, Dcr, when the fatigue block 

under VA loading is one. Eq. (20) can be applied for VA loading and the length of l depends on 

the fatigue damage of one loading block. 

 The process to estimate the fatigue lifetime of notched specimens under multiaxial VA 

loading is shown in Figure 8. Susmel’s parameter [18–20], one of the multiaxial damage 

parameters based on the critical plane approach, is applied to assess fatigue damage. The plane 

experiencing the maximum amplitude of the shear stress is taken as the critical plane [18–20]. 

Susmel’s criterion can be formulated as: 
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   eq 1 1 0 lim/ 2 min ,
a

                                   (21) 

n,max n, n,

0 =
a m

a a

m  


 


                       (22) 

1

lim

1 1

=
2 -




 


 
                            (23) 

where σ-1 and τ-1 are the uniaxial endurance limit and the torsional endurance limit, respectively. 

m is the index suitable for consindering the effect of mean stress and m can be obtained by 

running ad hoc tests. τa is the shear stress amplitude and σn,max is the maximum value of the 

normal stress on the critical plane. 
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Nominal stress tensor σnij(t)

Local stress field  σij(t,r,θ,  )

FEM and fitted stress field

The direction of NCP [θ0,     ,α0]

Modified MVM

lpm=l/2

cr

b
D

l a
D

   
 

Normal Stress σn(t) and shear stress 

τq(t) history  on the NCP 

Assume D=Da

Multiaxial cycle counting method

The calculated  fatigue damage Dc

Dc=Da

End

σn(t)=σn(lpm,t,θ0,   )

τq(t)=τq(lpm,t,θ0,   ,α0)

Da=Dc

Yes

No

Multiaxial damage parameters 

based on critical-plane approach

Nb=Dcr/Dc

Determine the FCP

FEM 



0

0

0

 

Figure 8. the process to estimate the fatigue life of notched components under multiaxial VA 

loading. 
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It should be noticed that there are several approaches suitable for counting fatigue cycles 

under multiaxial VA loading, such as, Bannantine-Socie’s method [38], Wang-Brown’s solution 

[32–34] and Carpinteri’s approach [39]. The multiaxial cycle counting method recently proposed 

by the authors [35] is used in what follows to verify the robustness and accuracy of the 

methodology summarized in Figure 8. The one-dimensional resolved shear stress on the NCP is 

taken as the first channel and the normal stress on the NCP is taken as the second channel in the 

multiaxial cycle counting method. The first channel, i.e., resolved shear stress τq, is counted by 

using the Rain-Flow Cycle Counting Method and the maximum and the minimum of the normal 

stress within the cycle of τq are recorded to obtain the mean and the amplitude of the normal 

stress on the notch critical plane. The way this multiaxial cycle counting method works is 

illustrated in Figure 9 where the resolved shear stress amplitude △τa between time 1 and 5 is 

counted by the Rain-Flow Cycle Counting Method and the maximum and the minimum normal 

stress between time 1 and 5 are σn,max and σn,min respectively. 

τq σn

0     1      2      3      4     5      6      7      8     9    10 Time

S
tr

es
s 

△τa

σn,min

σn,max

 

Figure 9. the illustration of the multiaxial cycle counting method [35]. 

 

4 Evaluation and Validation 

4.1 Test data collected 
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 Multiaxial VA fatigue data generated by testing five different metallic materials (C40 [2], 

TC4 [40], En8 [3], S460N [30, 41], 2024-T3 [4, 5, 26]) were gathered from the published 

literature and used to verify the accuracy of the design approach being proposed. The mechanical 

and fatigue properties of the considered materials are summarized in Table 1. Dimensions and 

the FE models of the notched specimens being investigated are shown in Appendix 1. 

 

Table 1. The mechanical property parameters  

Materials E/GPa σb/MPa σ-1/MPa τ-1/MPa 

C40 209 850 292.8 231.7 

TC4 108.4 945.2 248.3 192.4 

En8 210 701 223.3 179.6 

S460N 208.5 643 243 220 

2024-T3 73.7 495 168 120 

 

4.2 Analysis of collected fatigue test  

 The multiaxial VA fatigue damage associated with the collected notch results was estimated 

according to the procedure shown in Figure 8. It should be noticed that the linear-elastic FE 

models were used to analyze the local stress fields around the notch roots by using software 

Patran 2012. Miner’s linear cumulative damage rule was used to estimate VA fatigue damage. 

Although it is equal to one in Miner’s rule, the critical damage, Dcr, is always difficult to 

quantify accurately. In fact, Dcr usually ranges from 0.02 to 5 and the only way to determine it is 

by running specific experiments. On the basis of a large number of tests, Sonsino et al. [42–44] 

proposed that Dcr should be taken equal to 0.37 for aluminum and to 0.27 for the steel to always 

reach the wanted level of safety for the component being designed. The predicted fatigue 

lifetimes of the considered notched samples are listed in Figure 10. The majority of the predicted 

numbers of cycles to failure falls within an error band of 2, with all the estimates falling into 

error band of 4. The error of prediction is mainly due to the limitations associated with the 
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linear-elastic stress field around the notch root. The accuracy can be improved if elastic-plastic 

FEM analyses are introduced. However, it is time-consuming to analyze the elastic-plastic stress 

fields around notch roots especially for 3D notched components. The predicted lifetime is 

acceptable and the process is quick and simple based on linear-elastic FEM. 
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Figure 10. Predicted multiaxial VA fatigue life for the nocthed specimens being considered. 

 

5 Conclusion 

(1) The NCP method is extended from 2D to 3D-situations based on the MVM. The plane 

passing through the FCP and experiencing the MVRSS is defined as the notch critical plane. 

(2) The relevant elastic stress fields are obtained based on linear elasticity and the superposition 

principle. Polynomial function are used to fit the elastic stress fields at the notch root and 

only linear-elastic FEM is needed for notched specimens. 

(3) The relation between critical distance l and fatigue damage Db is applied to estimate VA 

fatigue damage by combing Susmel’s parameter and the multiaxial cycle counting method 

recently raised by the authors. 

(4) Multiaxial VA fatigue test data from five notched metallic materials were collected to check 

the accuracy of the proposed approach. The majority of the predicted lifetime was seen to 

fall within error band of 2 and the error is mainly due to the assumption of linear-elastic 

stress fields around the notch root. 

 

http://dict.youdao.com/w/polynomial%20function/#keyfrom=E2Ctranslation
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Appendix 1 Dimensions and FE models of the notched specimens being 

investigated 
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(b) The notched specimens made of TC4 
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(c) The notched specimens made of En8 
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(d) The notched specimens made of S460N 
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(e) The notched specimens made of 2024-T3 

Figure A2.1 The dimensions of collected notched specimens 
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(a) The FE model of notched specimens made of C40 
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(b) The FE model of notched specimens made of TC4 
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(c) The FE model of notched specimens made of En8 
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(d) The FE model of notched specimens made of S460N 
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Figure A2.2 The FE models of collected notched specimens 

 


