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Data Fusion of Activity and CGM for Predicting Blood
Glucose Levels

Hoda Nemat andHeydar Khadem* andJackie Elliott? andMohammed Benaissa

Abstract. This work suggests two methedsoth relying on  minutes. Zhu generated a dilated deep convolutional neural network
stacked regression and data fusion of CGM and actidibypredict  fed by CGM, insulin, and carbohydrate intake as inputs. Xie applied
the blood glucose level of patients with type 1 diabetes. Method dy autoregression with exogenous inputs approach to predict BGL
uses_hlstorles of (_:GM_ data ap_pended with the average of act_mBg exploiting current and past information of CGM data.

data in the same histories to train three base regressions: a multilay rPhysicaI activity is a critical factor in diabetes management.

perceptron, a long short- term memory, and a partial least squatr: . R - : L
regression. In Method 2, histories of CGM and activity data are used'€T€fore, investigation of the activity data in BGL prediction

separately to train the same base regressions. In both methods, T#els is encouraged [13]. However, developing models with high
predictions from the base regressions are used as features to cres@6@iracy using activity and CGM data is challenging, and limited
combined model. This model is then used to make the finatudies have been done in this area. Data fusion of activity and CGM
predictions. The results obtained show the effectiveness of bottata normally result in models with a performance not comparable

methods. Method 1 provides slightly better results. with those using CGM alone.
This paper proposes two novel CGM and activity data fusion
methods to generate BGL prediction models with performance
1 INTRODUCTION g b P

comparable with those using CGM data alone.

The literature emphasises the importance of the management of type
1 diabetes mellitus (T1DM) in reducing complications associate
with the disease [1], [2]The key role in TLDM management is to % DATASET
control blood glucose level (BGL) to remain in a normal range [3]To develop BGL predictioralgorithms, we used the OhioT1DM
[4]. dataset [14]. The dataset contains eight weelarth data ofl2

The prediction of BGL from current and past information can beyeople with TLDM. The data of six patiemtas released in 2018 for
a useful contributor [5]. BGL prediction could provide early the first BGL prediction challenge [15] and data for additional six
warnings concerning inadequate glycaemic control to prevent thgatients (referred by ID 540, 544, 552, 567, 584, and B26)
occurrence of an adverse glycemic status [6], [7]. released for the second BGL prediction challenge in 2020 [14]. In

BGL prediction models could be classified into three mainthis work, we used the data of the latter six pasient
groups: physiological models, data-driven models, and hybrid The dataset includes data of CGM sensor, physical activity band,
models. Data-driven models explain the relationship between thshysiological sensor, and self-reported life-event. Among the
present and past information to BGL prediction. In this regarddifferent collected data, we explored CGM and activity data which
machine learning and time series approaches have been widely us@ste collected every 5 and 1 minutes, respectively. Detailed

[5] information about the sensors and devices as well as characteristics
Many studies have proposed data-driven BGL predictiorf the patients has been published [14], [15].
methodologies. Mirshekarian et al. [8], Bertachi dt [9], In the dataset, there are three types of activity data consisting of

Martinsson et al. [10], Zhu et al. [11] and Xie et al. [12aéparate  galvanic skin response, skin temperature, and magnitude of

studies, developed prediction models to forecast BGL with acceleration. In this work, we only used the data of the magnitiid

prediction horizon of up to 60 minutes. acceleation. Hereafter, for simplicity, ‘magnitude of acceleration’
Mirshekarian’s model was based on a recursive neural networkis referred to as ‘activity’.

(RNN), which utilised long short- term memory (LSTM) units.

CGM, insulin, meal, and activity information were inputs of their

model. Bertachi used physiological models of insulin, carbohydrate?,‘ METHODOLOGY

and activity on board to train an artificial neural network (ANN). ;g section presents the information about data preprocessing and
Martinsson proposed an RNN model trained on historical bIooqi}.|e methodologies developed for the prediction of BGL.
glucose information to predict BGL in two horizons of 30 and 60

This papeiis submittedto the second Blood Glucose Level Prediction Chade2@PQthe 5th International Workshop on Knowledge Discoveiyealthcare
Data.
! Department of Electronic and Electrical Engineerldgiversity of Sheffield, UK, email addresgésda.nemat@sheffield.acJikkhadem@sheffield.ac.lik

Im.benaissa@sheffiels.acjuk
2 Department of Oncology and Metabolism, University loéfeld, UK, email addredselliott@sheffield.ac.uk

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).


mailto:hoda.nemat@sheffield.ac.uk
mailto:h.khadem@sheffield.ac.uk
mailto:m.benaissa@sheffiels.ac.uk
mailto:j.elliott@sheffield.ac.uk

3.1 Preprocessing hidden layers used RelLU as the activation function. Mean squared

e . . . o . _error wa the loss function, Adam was the optimiser. The model
Missing data in the training set is imputed using linear interpolation, ;i o4 with 100 epochs with a learning rate of 0.01
For the testing set, on the other hand, linear extrapolation is usegd. Partial least squares regression (PLSR) o

This is to assure that future data is not seen by the modethaind p| g carries considerable popularity in different applicationdy suc
the model can be used for a real-time application. Thuspweert as glucose sensing.§]. In this work, PLSR was applied @s

CGM and activity data to regular time series without any m'ss'ngegression tool. Different values were considered for the number of

data in 5-minute and 1-minu_te intervals, rgspectively. ... components—ranging from one to the length of the input window.
The next step was to unify the resolution of CGM and actVitye o oh time. the predicted residual sum of SqUaRRESS) was
data. To do so, we downsampled the activity time series data to Rilculated ’as follows

minute intervals by capturing theaest activity data to each CGM
data and discarding the rest. N
There were a considerable number of unavailable activity data &RESS = v —9)? (1)
the beginning and/or end of training and/or test set. This was due to i=1
the difference in wear time of CGM and activity sensors. For these
points average of activity data in the training set is used rather th Where,N is the size of the evaluation set, ands the reference
linear interpolation or extrapolation. Tallleshows the number of value, andy; is the predicted value.
unavailable activity data for each patient ID. The number of componentd)(resulting in the minimum value

) . ) o for PRESS/(N — A — 1) is then selected [19].
Table 1 The number ofon-existent activity data points training and

testing sets per data contributor.

Patient ID  testing set training set 3.2.2 Stacked regression
222 537 13215 Stackeq regressiqn is applied to enhanc.e Fhe performance of BGL
. 622 505 predlctloq [20] This technique uses predlctloqs from a number of
models—first-level models—as features to train a new model
567 0 108 secondlevel model. In this work, a stacked regression structure was
222 830 11283 employed where the three base regressions mentioned in 2.3.1 were

set as its first-level models and a PLSR as the second-level model

: . ,gFigure 1).

Another data preprocessing step was to reframe a time series
problem to a supervised learning task. To this end, time series data
were transformed into samples with lag observations as input and First-level models
future observations as output. We use a rolling window with a 1 Second-level model
history length of 6 or 12 data points for the input, which has the
information of 30- or 60- minutdistory, respectively. Also, the
output of each sample is a vector with 6 or 12 data points 7., 7,, and?; prediction?
corresponding to prediction horizons of 30- and 60- minute, '
respectively.

) Figure 1. Diagram of the developed stacked regression.
3.2 Regression tools

Three base regressions and a stacked regression technique are used
as bols to develop the final prediction models. 3.3 Prediction methods

We developed two different methods using the stacked regression
3.2.1 Base regressions structure mentioned above to fuse CGM and activity data. Using
these methods, models were then created to predict BGL of each

MLP [16] is an ANN that can be used for time series forecasting. | atl_ent for both horlzons of 30 and 60_m|nutes. For _eacdhqmm. .
. . . orizon, two histories of 30 and 60 minutes were tried for training
this work, a single-hidden-layer MLP model was used. The mode UIDOSES
comprised a dense layer of 100 nodes with an activation furaftion U '
rectified linear unit (ReLU) followed by an output layer. Adam and
mean absolute error were used as an optimiser and a loss functi@n3.1 Method 1

respectively. The learning rate was 0.01, and the model was fitted . .
with 100 epochs. This method used the average value of activity data added to the

window of CGM data to train the first-level models.

e  Multilayer perceptron (MLP)

e Long shortterm memory (LSTM)

RNN is also an artificial neural network suitable for working with
sequential data. We used a vanilla LSTM recurrent network [173 32  Method 2

with vector output which is used for multi-step ahead forecast. The

model was composed of a hidden layer with 200 dolkswed by a  In this method, the first-level models were trained twice. Once using

fully-connected layer with 100 nodes and an output layer. Bot@ history of CGM data, and once using a history of activity data, thus
producing six first-level models rather than three.



Table 3.Evaluation results of the first-level models of MatHousing a history of 30 minutes.

patient ID Model s PH: 30 min TS e PH: 60 min o

PLSR 22.13 1660 4109 31.74
540 MLP 2196+0.29 1646+ 0.21 4053+ 038 3095+ 033
LSTM 2122+0.12 15.82 + 008 39.65+ 028 3038+ 0.28

PLSR 18.08 1333 31.80 24.71
544 MLP 17.95 + 007 1287 £0.13 3161+032 2427+071
LSTM 1762+ 0.20 1260+ 032 30.79+ 029 23.02 +0.67

PLSR 16.76 1277 30.23 23.67
552 MLP 1696+ 019 1269+ 021 30.38+0.36 2342+ 061
LSTM 1644+ 017 12.18 + 022 29.89+0.47 2253+ 040

PLSR 2097 1504 3741 2815
567 MLP 2144+ 063 1560+ 0.76 37.96+1.45 2901+135
LSTM 2061+ 0.20 1464+ 032 36.36+ 031 2708+ 043

PLSR 2207 16.21 36.85 27.85
584 MLP 2160+0.12 1561+ 014 36.54 £0.74 27.27+089
LSTM 2155+ 0.26 1558+ 0.27 36.75 + 169 27.62 + 208

PLSR 17.79 12.76 29.63 22.05
596 MLP 18.01+0.16 1299+ 0.17 29.75 + 069 2193+038
LSTM 17.23 £ 017 1225+ 0.29 29.17+022 21.29+032

PLSR 1963 1445 34.50 26.36
Average MLP 1965+ 024 1437+ 0.27 34.46 + 066 2614+ 071
LSTM 1911+0.19 1385 +0.25 33771054 25.32 £0.70

i Wherey;, ¥;, and N have the same meaning as )n (1
3.4  Evaluation Vi, Vi gas)n (

In the Ohio dataset, the last 10 days’ worth of data for each 4 RESULTS AND DISCUSSION
contributor was allocated as the testing set and the rest as training

[14]. To train and evaluation purposes, we used the training and In this section, the results of RMSE and MAE for prediction
testing sets, respectively. Extrapolated data and, the first 60 minutemdels are provided for both prediction horizons of 30 and 60
of the test set was excluded when calculating the evaluation metricainutes. Models with a performance dependent on random
The latter is because the testing set starts immediately after thetialisation ran five times, and the mean and standard deviation of
training set, and they are chronologically close to each otheresults are reported. We have used the acronym PH for the prediction
Summarised statistics of the testing set for each patient is given lirorizon in the tables.

Table2.
Table 2. The statistics othe patientstesting set.
patient ID Original Imputed  Evaluation 4.1 Method 1
data point _ datapoint _ data point Table 3displays the evaluation results of the first-level modéls
540 2896 3066 2884 Method 1 when a history of 30 minutes is used for training. Based
544 2716 3136 2704 on the RMSE and MAE values, in both prediction horizons, LSTM
552 2364 3950 2352 had the best prediction performance forpatients except 584~or
567 2389 2871 2377 this patient, MLP had the best result. PLSR, as a simple linear
584 2665 2995 2653 regressor, produced results comparable to the non-linear neural
596 2743 3003 2731 network models.

Root mean square error (RMSE) and mean absolute error (MAEJable 4. Evaluation results of the second-level model of Iddth using a

were calculated as follows and considered as evaluation metrics. history of 30 minutes.
Patient ID PH: 30 min PH: 60 min
SN (y; — 912 RMSE MAE RMSE MAE
RMSE = |[=:=— -—~ 2 540  2119+0.07 15.73+0.09 3941009 3004%0.15
N 544 1740+ 008 12.45+008 3048+007 22.90+ 008
552 16.25+0.07 1202+0.05 2932+0.09 2221+0.02
567 2040+ 0.07 14.44+0.07 3612+002 2712+007
MAE - I lyi — 9l @ 584 2154006 15.62+0.06 3627+0.15 2717+0.16
N 596 1717+010 1213+0.09 2877026 20.80+0.17

Average 1899+0.08 13.73+0.07 3339+0.12 2504+0.11




Table 5. Evaluation results of the first-level models of MatHousing a history of 60 minutes.

patient ID Model s PH: 30 min TS VT PH: 60 min =

PLSR 2210 1658 4110 3176
540 MLP 2158+ 0.28 1612+0.22 4053+1.23 31.12 £ 091
LSTM 2111+0.18 1556+ 0.11 39.18 + 037 3000+ 0.33

PLSR 18.09 1333 31.83 2471
544 MLP 1809+ 003 1305+ 008 3234+1.00 2480+ 1.76
LSTM 1804+ 035 1306+ 048 30.79+ 0.39 2315+ 0.68

PLSR 16.79 12.78 30.25 23.67
552 MLP 17.58 + 046 1339+ 070 30.16 + 043 2289+ 014
LSTM 16.97+0.78 1259+ 055 30.69 +0.70 2319+ 0.55

PLSR 2099 1503 3751 2821
567 MLP 2171+£0.92 15.80+ 1.06 3734+ 0.78 28.02 £ 076
LSTM 20.74+ 050 1475+ 059 36.67+0.98 2752 + 106

PLSR 2204 16.19 37.04 27.97
584 MLP 2210+ 0.25 1598+ 0.23 3713+ 0.74 2768+ 089
LSTM 2166+ 0.10 15.63 + 012 36.76+ 046 2718+ 044

PLSR 17.62 1266 29.48 21.97
596 MLP 18.05+0.29 1271+ 0.27 29.71+£0.35 21.83+021
LSTM 1758+ 0.19 1255+ 034 2955 + 052 2163+034

PLSR 19.60 1443 34.53 26.38
Average MLP 1985+ 037 1451+ 0.43 3454+ 0.75 26.06+0.78
LSTM 1935 +0.35 1402+ 036 3394+057 2544+ 057

Table 4 shows the evaluation results of the second-level mbdel
Method 1 when a history of 30 minutes was used for training,
Comparing these results with those in Tableh& second-level 4.2 Method 2

model resulted in better prediction performance than all the first- | this section, the evaluation result of Method 2 is presented. To
level models for all patients and both prediction horizons. Thige concise, the results of the second-level model only are réporte
means that the stacked regression technique helped improygich are the final predictions of the method.
prediction performance. . . Table 7 shows the evaluation results of Method 2 using a 30-
Table 5 displays the evaluation results of the first-level models gfinute history. Comparing these results with those in Tabllee4
Method 1, when a history of _69 minutes was used for training. ABrediction performance of Method 2 was comparable with that of
results show, for both _prgdlctlon horlzo_ns, LSTM had the besiethod 1 for all patients, except patient 552. Fhisybe due to the
performance for a majority of the patientss éverall, PLSR  gxjstence of a large number of missing activity data points in this

provided the second-best results. Eatient’s data (as can be seen in Table 1).
The evaluation results of the second-level model of Method

using 60-minute history are shown in Table 6. In comparison with Taple 7. Evaluation resultsfethod 2 using a history of 30 minutes.
Table 5 it can be observed that the stacked regression technique PH: 30 min PH: 60 min
advanced the prediction performance for all patients for this hjstoryPatient ID RMSE VIAE RMVISE VIAE
too%Also' n Corr?par.'tson "él”th ;.alt’le Meftg%d 1.hatd a &etter Oh‘(etra” . 2126 +009 1589+007 39.48+0.16 3026+0.19
performance when It used a history of 59 minutes than a istory ot 5, 1759+0.11 1262+0.12 3068+0.15 2314+020

60 minutes. 552  1985+451 1265+046 3570+332 2376+040
567  2052+0.12 14.49+012 36.39+0.20 27.14+019

history of 60 minutes, 584  2172+017 15.78+010 36.53+013 27.45+ 008

T30 STy 506  17.24+011 1219+0.07 2883+011 2103+0.13

Patient ID RMSE MAE RMSE VAE Average 1970+085 1394+0.16 3460+0.68 2546+0.20

540 2098+0.13 1550+014 3905+0.17 2968+0.18
544 1766+0.09 1266+0.08 3042+036 2282+0.42
552 1630+ 009 1204+006 2938+0.24 2226+0.21
567 20.52+017 1454+010 36.52+010 2731+014
584 21.62+017 15.63+0.08 3701+0.28 2764+0.20
596 1745+ 008 12.27+0.09 2892+027 20.92 019
Average 1909+0.12 1377+009 33.55+x024 2511+023

Table 6.Evaluation results of the second-level model of Mdétl using a

Table 8 lists the evaluation result of Method 2 using a history of
60 minutes. Comparing these results with those in Table 6, the
evaluation results for both methods were close to each other. Also,
comparing these results with those in Table 7, Method 2 made better
predictions using a history of 60 minutes than a histon8®f
minutes.




Table 8.Evaluation results of Method 2 using a history @héinutes.

PH: 30 min PH: 60 min (6]
RMSE MAE RMSE MAE

540 2089+ 0.05 1549+0.11 39.30+0.35 2980+021
544 1770+ 014 1268+013 3071+022 23.25+0.29 7]

552 1673+051 12.3+0.18 3467+351 2347+058

567 2057+0.14 1463+011 3670+0.30 2748+018
584 2172+0.06 15.71+005 3685+0.09 27.69+0.13 (8]

596 17.53+£0.21 12.26 £0.18 2888+0.21 2102+0.17

Average 1919+018 1385+013 3452+078 2545+0.26

Patient ID

Bl
5 SUMMARY AND CONCLUSION

This work contributes to the prediction of BGL by proposing two
methodologies for data fusion of CGM and activity using stackeL0]
regression.

In the first method, the average value of activity data added to a
window of CGM data was used as input to train prediction model:hl]
Initially, three base regression models consist of MLP, LSTM, and
PLSR were trained. Subsequently, predictions from these base
models were used as features to train a new PLSR model which then
made final predictions. 12

In the second method, the same base regressions were trained
once using windows of activity data and once using CGM data. The
predictions of all trained base models were then fed as features t¢13]
new PLSR model for its training process. The new PLSR was used
to make refined predictions.

The results obtained show that Method 1 (average value of
activity data added to the window of CGM data) had a slightly bettefi 4]
performance than Method 2 (first-level models trained twice, once
with a history of CGM data, once using a history of activity data). In
overall, Method 1 using a history of 30 minutes had the bastses [15]
by providing a RMSE of 18.99 and 33.39 for the prediction horizon
of 30 minutes and 60 minutes, respectively. [16]

17
6 SOFTWARE AND CODE 1

18
To implement the models, we used Python 3.6, TensorFlow 1.15!0 ]
and Keras 2.2.5. Also, Pandas, NumPy and Sklearn packages of
python were used. The codes were run on a commodity laftep.

codes of our implementation are  available : at 19
https://gitlab.com/Hoda-Nemat/data-fusion-
stacking.git [20]
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