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Data Fusion of Activity and CGM for Predicting Blood 
Glucose Levels* 

Hoda Nemat1 and Heydar Khadem1 and Jackie Elliott2 and Mohammed Benaissa1 

 
Abstract.2 This work suggests two methods—both relying on 
stacked regression and data fusion of CGM and activity—to predict 
the blood glucose level of patients with type 1 diabetes. Method 1 
uses histories of CGM data appended with the average of activity 
data in the same histories to train three base regressions: a multilayer 
perceptron, a long short- term memory, and a partial least squares 
regression. In Method 2, histories of CGM and activity data are used 
separately to train the same base regressions. In both methods, the 
predictions from the base regressions are used as features to create a 
combined model. This model is then used to make the final 
predictions. The results obtained show the effectiveness of both 
methods. Method 1 provides slightly better results. 

1 INTRODUCTION 

The literature emphasises the importance of the management of type 
1 diabetes mellitus (T1DM) in reducing complications associated 
with the disease [1], [2]. The key role in T1DM management is to 
control blood glucose level (BGL) to remain in a normal range [3], 
[4]. 

The prediction of BGL from current and past information can be 
a useful contributor [5]. BGL prediction could provide early 
warnings concerning inadequate glycaemic control to prevent the 
occurrence of an adverse glycemic status [6], [7]. 

BGL prediction models could be classified into three main 
groups: physiological models, data-driven models, and hybrid 
models. Data-driven models explain the relationship between the 
present and past information to BGL prediction. In this regard, 
machine learning and time series approaches have been widely used 
[5]. 

Many studies have proposed data-driven BGL prediction 
methodologies. Mirshekarian et al. [8], Bertachi et al. [9], 
Martinsson et al.  [10], Zhu et al. [11] and Xie et al. [12] in separate 
studies, developed prediction models to forecast BGL with a 
prediction horizon of up to 60 minutes. 

Mirshekarian’s model was based on a recursive neural network 
(RNN), which utilised long short- term memory (LSTM) units. 
CGM, insulin, meal, and activity information were inputs of their 
model. Bertachi used physiological models of insulin, carbohydrate, 
and activity on board to train an artificial neural network (ANN). 
Martinsson proposed an RNN model trained on historical blood 
glucose information to predict BGL in two horizons of 30 and 60 
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minutes. Zhu generated a dilated deep convolutional neural network 
fed by CGM, insulin, and carbohydrate intake as inputs. Xie applied 
an autoregression with exogenous inputs approach to predict BGL 
by exploiting current and past information of CGM data. 

Physical activity is a critical factor in diabetes management. 
Therefore, investigation of the activity data in BGL prediction 
models is encouraged [13]. However, developing models with high 
accuracy using activity and CGM data is challenging, and limited 
studies have been done in this area. Data fusion of activity and CGM 
data normally result in models with a performance not comparable 
with those using CGM alone. 

This paper proposes two novel CGM and activity data fusion 
methods to generate BGL prediction models with performance 
comparable with those using CGM data alone. 

2 DATASET 

To develop BGL prediction algorithms, we used the OhioT1DM 
dataset [14]. The dataset contains eight weeks’ worth data of 12 
people with T1DM. The data of six patients was released in 2018 for 
the first BGL prediction challenge [15] and data for additional six 
patients  (referred by ID 540, 544, 552, 567, 584, and 596) was 
released for the second BGL prediction challenge in 2020 [14]. In 
this work, we used the data of the latter six patients. 

The dataset includes data of CGM sensor, physical activity band, 
physiological sensor, and self-reported life-event. Among the 
different collected data, we explored CGM and activity data which 
were collected every 5 and 1 minutes, respectively. Detailed 
information about the sensors and devices as well as characteristics 
of the patients has been published [14], [15].  

In the dataset, there are three types of activity data consisting of 
galvanic skin response, skin temperature, and magnitude of 
acceleration. In this work, we only used the data of the magnitude of 
acceleration. Hereafter, for simplicity, ‘magnitude of acceleration’ 
is referred to as ‘activity’. 

3 METHODOLOGY 

This section presents the information about data preprocessing and 
the methodologies developed for the prediction of BGL. 
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3.1 Preprocessing 

Missing data in the training set is imputed using linear interpolation. 
For the testing set, on the other hand, linear extrapolation is used. 
This is to assure that future data is not seen by the model, and that 
the model can be used for a real-time application. Thus, we convert 
CGM and activity data to regular time series without any missing 
data in 5-minute and 1-minute intervals, respectively. 

The next step was to unify the resolution of CGM and activity 
data. To do so, we downsampled the activity time series data to 5-
minute intervals by capturing the nearest activity data to each CGM 
data and discarding the rest. 

There were a considerable number of unavailable activity data at 
the beginning and/or end of training and/or test set. This was due to 
the difference in wear time of CGM and activity sensors. For these 
points average of activity data in the training set is used rather than 
linear interpolation or extrapolation. Table 1 shows the number of 
unavailable activity data for each patient ID. 

 
Table 1. The number of non-existent activity data points in training and 

testing sets per data contributor. 

Patient ID testing set training set 

540 547 31 
544 0 125 
552 622 505 
567 0 108 
584 3 123 
596 80 18 

 
Another data preprocessing step was to reframe a time series 

problem to a supervised learning task. To this end, time series data 
were transformed into samples with lag observations as input and 
future observations as output. We use a rolling window with a 
history length of 6 or 12 data points for the input, which has the 
information of 30- or 60- minute history, respectively. Also, the 
output of each sample is a vector with 6 or 12 data points 
corresponding to prediction horizons of 30- and 60- minute, 
respectively. 

3.2 Regression tools 

Three base regressions and a stacked regression technique are used 
as tools to develop the final prediction models. 

3.2.1 Base regressions 

• Multilayer perceptron (MLP) 
MLP [16] is an ANN that can be used for time series forecasting. In 
this work, a single-hidden-layer MLP model was used. The model 
comprised a dense layer of 100 nodes with an activation function of 
rectified linear unit (ReLU) followed by an output layer. Adam and 
mean absolute error were used as an optimiser and a loss function, 
respectively. The learning rate was 0.01, and the model was fitted 
with 100 epochs. 
• Long short-term memory (LSTM) 
RNN is also an artificial neural network suitable for working with 
sequential data. We used a vanilla LSTM recurrent network [17] 
with vector output which is used for multi-step ahead forecast. The 
model was composed of a hidden layer with 200 units followed by a 
fully-connected layer with 100 nodes and an output layer. Both 

hidden layers used ReLU as the activation function. Mean squared 
error was the loss function, Adam was the optimiser. The model 
trained with 100 epochs with a learning rate of 0.01. 

• Partial least squares regression (PLSR) 
PLSR carries considerable popularity in different applications, such 
as glucose sensing [18]. In this work, PLSR was applied as a 
regression tool. Different values were considered for the number of 
components—ranging from one to the length of the input window. 
Each time, the predicted residual sum of squares (ܴܲܵܵܧ) was 
calculated as follows. 

ܵܵܧܴܲ ൌ  ෍ሺݕ െ ො௜ሻଶேݕ
௜ୀଵ  (1) 

Where, N is the size of the evaluation set, and ݕ௜ is the reference 
value, and ݕො௜ is the predicted value. 

The number of components (ܣ) resulting in the minimum value 
for ܴܲܵܵܧȀሺܰ െ ܣ െ ͳሻ is then selected [19]. 

3.2.2 Stacked regression 

Stacked regression is applied to enhance the performance of BGL 
prediction [20]. This technique uses predictions from a number of 
models—first-level models—as features to train a new model—
second-level model. In this work, a stacked regression structure was 
employed where the three base regressions mentioned in 2.3.1 were 
set as its first-level models and a PLSR as the second-level model 
(Figure 1). 

3.3 Prediction methods 

We developed two different methods using the stacked regression 
structure mentioned above to fuse CGM and activity data. Using 
these methods, models were then created to predict BGL of each 
patient for both horizons of 30 and 60 minutes. For each prediction 
horizon, two histories of 30 and 60 minutes were tried for training 
purposes. 

3.3.1 Method 1 

This method used the average value of activity data added to the 
window of CGM data to train the first-level models.  

3.3.2 Method 2  

In this method, the first-level models were trained twice. Once using 
a history of CGM data, and once using a history of activity data, thus 
producing six first-level models rather than three.  

MLP 

LSTM 

PLSR 

෠ܻଵ 
෠ܻଶ ෠ܻଷ PLSR Stacking of ෠ܻଵ, ܻ෠ଶ, and ܻ෠ଷ 

Final 

prediction ෠ܻ Training 

set 

First-level models 
Second-level model 

Figure 1. Diagram of the developed stacked regression. 



 

 

Table 3. Evaluation results of the first-level models of Method 1 using a history of 30 minutes. 

Patient ID Model 
PH: 30 min PH: 60 min 

RMSE MAE RMSE MAE 

540 
PLSR 22.13 16.60 41.09 31.74 
MLP 21.96 ± 0.29 16.46 ± 0.21 40.53 ± 0.38 30.95 ± 0.33 

LSTM 21.22 ± 0.12 15.82 ± 0.08 39.65 ± 0.28 30.38 ± 0.28 

544 
PLSR 18.08 13.33 31.80 24.71 
MLP 17.95 ± 0.07 12.87 ± 0.13 31.61 ± 0.32 24.27 ± 0.71 

LSTM 17.62 ± 0.20 12.60 ± 0.32 30.79 ± 0.29 23.02 ± 0.67 

552 

PLSR 16.76 12.77 30.23 23.67 

MLP 16.96 ± 0.19 12.69 ± 0.21 30.38 ± 0.36 23.42 ± 0.61 

LSTM 16.44 ± 0.17 12.18 ± 0.22 29.89 ± 0.47 22.53 ± 0.40 

567 

PLSR 20.97 15.04 37.41 28.15 

MLP 21.44 ± 0.63 15.60 ± 0.76 37.96 ± 1.45 29.01 ± 1.35 

LSTM 20.61 ± 0.20 14.64 ± 0.32 36.36 ± 0.31 27.08 ± 0.43 

584 

PLSR 22.07 16.21 36.85 27.85 

MLP 21.60 ± 0.12 15.61 ± 0.14 36.54 ± 0.74 27.27 ± 0.89 
LSTM 21.55 ± 0.26 15.58 ± 0.27 36.75 ± 1.69 27.62 ± 2.08 

596 

PLSR 17.79 12.76 29.63 22.05 
MLP 18.01 ± 0.16 12.99 ± 0.17 29.75 ± 0.69 21.93 ± 0.38 

LSTM 17.23 ± 0.17 12.25 ± 0.29 29.17 ± 0.22 21.29 ± 0.32 

Average 

PLSR 19.63 14.45 34.50 26.36 

MLP 19.65 ± 0.24 14.37 ± 0.27 34.46 ± 0.66 26.14 ± 0.71 
LSTM 19.11 ± 0.19 13.85 ± 0.25 33.77 ± 0.54 25.32 ± 0.70 

3.4 Evaluation 

In the Ohio dataset, the last 10 days’ worth of data for each 
contributor was allocated as the testing set and the rest as training 
[14]. To train and evaluation purposes, we used the training and 
testing sets, respectively. Extrapolated data and, the first 60 minutes 
of the test set was excluded when calculating the evaluation metrics. 
The latter is because the testing set starts immediately after the 
training set, and they are chronologically close to each other. 
Summarised statistics of the testing set for each patient is given in 
Table 2. 

Table 2. The statistics of the patients’ testing set. 

Patient ID 
Original 

data point 
Imputed 

data point 
Evaluation 
data point 

540 2896 3066 2884 
544 2716 3136 2704 
552 2364 3950 2352 
567 2389 2871 2377 
584 2665 2995 2653 
596 2743 3003 2731 

 
Root mean square error (RMSE) and mean absolute error (MAE) 

were calculated as follows and considered as evaluation metrics. 

ܧܵܯܴ ൌ ඨσ ሺݕ௜ െ ො௜ሻଶே௜ୀଵݕ ܰ  (2) 

ܧܣܯ ൌ σ ȁݕ௜ െ ො௜ȁே௜ୀଵݕ ܰ   (3) 

 
Where ݕ௜,  ݕො௜, and N have the same meaning as in (1). 

4 RESULTS AND DISCUSSION 

In this section, the results of RMSE and MAE for prediction 
models are provided for both prediction horizons of 30 and 60 
minutes. Models with a performance dependent on random 
initialisation ran five times, and the mean and standard deviation of 
results are reported. We have used the acronym PH for the prediction 
horizon in the tables. 

4.1 Method 1 

Table 3 displays the evaluation results of the first-level models of 
Method 1 when a history of 30 minutes is used for training. Based 
on the RMSE and MAE values, in both prediction horizons, LSTM 
had the best prediction performance for all patients except 584. For 
this patient, MLP had the best result. PLSR, as a simple linear 
regressor, produced results comparable to the non-linear neural 
network models. 

 
Table 4. Evaluation results of the second-level model of Method 1 using a 

history of 30 minutes. 

Patient ID 
PH: 30 min PH: 60 min 

RMSE MAE RMSE MAE 
540 21.19 ± 0.07 15.73 ± 0.09 39.41 ± 0.09 30.04 ± 0.15 
544 17.40 ± 0.08 12.45 ± 0.08 30.48 ± 0.07 22.90 ± 0.08 
552 16.25 ± 0.07 12.02 ± 0.05 29.32 ± 0.09 22.21 ± 0.02 
567 20.40 ± 0.07 14.44 ± 0.07 36.12 ± 0.02 27.12 ± 0.07 
584 21.54 ± 0.06 15.62 ± 0.06 36.27 ± 0.15 27.17 ± 0.16 
596 17.17 ± 0.10 12.13 ± 0.09 28.77 ± 0.26 20.80 ± 0.17 

Average 18.99 ± 0.08 13.73 ± 0.07 33.39 ± 0.12 25.04 ± 0.11 

 



 

 

Table 5. Evaluation results of the first-level models of Method 1 using a history of 60 minutes. 

Patient ID Model 
PH: 30 min PH: 60 min 

RMSE MAE RMSE MAE 

540 
PLSR 22.10 16.58 41.10 31.76 
MLP 21.58 ± 0.28 16.12 ± 0.22 40.53 ± 1.23 31.12 ± 0.91 

LSTM 21.11 ± 0.18 15.56 ± 0.11 39.18 ± 0.37 30.00 ± 0.33 

544 
PLSR 18.09 13.33 31.83 24.71 
MLP 18.09 ± 0.03 13.05 ± 0.08 32.34 ± 1.00 24.80 ± 1.76 

LSTM 18.04 ± 0.35 13.06 ± 0.48 30.79 ± 0.39 23.15 ± 0.68 

552 

PLSR 16.79 12.78 30.25 23.67 

MLP 17.58 ± 0.46 13.39 ± 0.70 30.16 ± 0.43 22.89 ± 0.14 
LSTM 16.97 ± 0.78 12.59 ± 0.55 30.69 ± 0.70 23.19 ± 0.55 

567 

PLSR 20.99 15.03 37.51 28.21 

MLP 21.71 ± 0.92 15.80 ± 1.06 37.34 ± 0.78 28.02 ± 0.76 
LSTM 20.74 ± 0.50 14.75 ± 0.59 36.67 ± 0.98 27.52 ± 1.06 

584 

PLSR 22.04 16.19 37.04 27.97 
MLP 22.10 ± 0.25 15.98 ± 0.23 37.13 ± 0.74 27.68 ± 0.89 

LSTM 21.66 ± 0.10 15.63 ± 0.12 36.76 ± 0.46 27.18 ± 0.44 

596 

PLSR 17.62 12.66 29.48 21.97 

MLP 18.05 ± 0.29 12.71 ± 0.27 29.71 ± 0.35 21.83 ± 0.21 
LSTM 17.58 ± 0.19 12.55 ± 0.34 29.55 ± 0.52 21.63 ± 0.34 

Average 

PLSR 19.60 14.43 34.53 26.38 

MLP 19.85 ± 0.37 14.51 ± 0.43 34.54 ± 0.75 26.06 ± 0.78 
LSTM 19.35 ± 0.35 14.02 ± 0.36 33.94 ± 0.57 25.44 ± 0.57 

 

Table 4 shows the evaluation results of the second-level model of 
Method 1 when a history of 30 minutes was used for training. 
Comparing these results with those in Table 3, the second-level 
model resulted in better prediction performance than all the first-
level models for all patients and both prediction horizons. This 
means that the stacked regression technique helped improve 
prediction performance. 

Table 5 displays the evaluation results of the first-level models of 
Method 1, when a history of 60 minutes was used for training. As 
results show, for both prediction horizons, LSTM had the best 
performance for a majority of the patients. In overall, PLSR 
provided the second-best results. 

The evaluation results of the second-level model of Method 1 
using 60-minute history are shown in Table 6. In comparison with 
Table 5, it can be observed that the stacked regression technique 
advanced the prediction performance for all patients for this history, 
too. Also, in comparison with Table 4, Method 1 had a better overall 
performance when it used a history of 30 minutes than a history of 
60 minutes. 

 
Table 6. Evaluation results of the second-level model of Method 1 using a 

history of 60 minutes. 

Patient ID 
PH: 30 min PH: 60 min 

RMSE MAE RMSE MAE 
540 20.98 ± 0.13 15.50 ± 0.14 39.05 ± 0.17 29.68 ± 0.18 
544 17.66 ± 0.09 12.66 ± 0.08 30.42 ± 0.36 22.82 ± 0.42 
552 16.30 ± 0.09 12.04 ± 0.06 29.38 ± 0.24 22.26 ± 0.21 
567 20.52 ± 0.17 14.54 ± 0.10 36.52 ± 0.10 27.31 ± 0.14 
584 21.62 ± 0.17 15.63 ± 0.08 37.01 ± 0.28 27.64 ± 0.20 
596 17.45 ± 0.08 12.27 ± 0.09 28.92 ± 0.27 20.92 ± 0.19 

Average 19.09 ± 0.12 13.77 ± 0.09 33.55 ± 0.24 25.11 ± 0.23 

4.2 Method 2 

In this section, the evaluation result of Method 2 is presented. To 
be concise, the results of the second-level model only are reported, 
which are the final predictions of the method. 

Table 7 shows the evaluation results of Method 2 using a 30-
minute history. Comparing these results with those in Table 4, the 
prediction performance of Method 2 was comparable with that of 
Method 1 for all patients, except patient 552. This may be due to the 
existence of a large number of missing activity data points in this 
patient’s data (as can be seen in Table 1). 

 
Table 7. Evaluation results of Method 2 using a history of 30 minutes. 

Patient ID 
PH: 30 min PH: 60 min 

RMSE MAE RMSE MAE 
540 21.26 ± 0.09 15.89 ± 0.07 39.48 ± 0.16 30.26 ± 0.19 
544 17.59 ± 0.11 12.62 ± 0.12 30.68 ± 0.15 23.14 ± 0.20 
552 19.85 ± 4.51 12.65 ± 0.46 35.70 ± 3.32 23.76 ± 0.40 
567 20.52 ± 0.12 14.49 ± 0.12 36.39 ± 0.20 27.14 ± 0.19 
584 21.72 ± 0.17 15.78 ± 0.10 36.53 ± 0.13 27.45 ± 0.08 
596 17.24 ± 0.11 12.19 ± 0.07 28.83 ± 0.11 21.03 ± 0.13 

Average 19.70 ± 0.85 13.94 ± 0.16 34.60 ± 0.68 25.46 ± 0.20 

 
Table 8 lists the evaluation result of Method 2 using a history of 

60 minutes. Comparing these results with those in Table 6, the 
evaluation results for both methods were close to each other. Also, 
comparing these results with those in Table 7, Method 2 made better 
predictions using a history of 60 minutes than a history of 30 
minutes. 

 
 
 
 
 



 

 

Table 8. Evaluation results of Method 2 using a history of 60 minutes. 

Patient ID 
PH: 30 min PH: 60 min 

RMSE MAE RMSE MAE 
540 20.89 ± 0.05 15.49 ± 0.11 39.30 ± 0.35 29.80 ± 0.21 
544 17.70 ± 0.14 12.68 ± 0.13 30.71 ± 0.22 23.25 ± 0.29 
552 16.73 ± 0.51 12.33 ± 0.18 34.67 ± 3.51 23.47 ± 0.58 
567 20.57 ± 0.14 14.63 ± 0.11 36.70 ± 0.30 27.48 ± 0.18 
584 21.72 ± 0.06 15.71 ± 0.05 36.85 ± 0.09 27.69 ± 0.13 
596 17.53 ± 0.21 12.26 ± 0.18 28.88 ± 0.21 21.02 ± 0.17 

Average 19.19 ± 0.18 13.85 ± 0.13 34.52 ± 0.78 25.45 ± 0.26 

5 SUMMARY AND CONCLUSION 

This work contributes to the prediction of BGL by proposing two 
methodologies for data fusion of CGM and activity using stacked 
regression. 

In the first method, the average value of activity data added to a 
window of CGM data was used as input to train prediction models. 
Initially, three base regression models consist of MLP, LSTM, and 
PLSR were trained. Subsequently, predictions from these base 
models were used as features to train a new PLSR model which then 
made final predictions. 

In the second method, the same base regressions were trained 
once using windows of activity data and once using CGM data. The 
predictions of all trained base models were then fed as features to a 
new PLSR model for its training process. The new PLSR was used 
to make refined predictions. 

The results obtained show that Method 1 (average value of 
activity data added to the window of CGM data) had a slightly better 
performance than Method 2 (first-level models trained twice, once 
with a history of CGM data, once using a history of activity data). In 
overall, Method 1 using a history of 30 minutes had the best results 
by providing a RMSE of 18.99 and 33.39 for the prediction horizon 
of 30 minutes and 60 minutes, respectively. 

6 SOFTWARE AND CODE 

To implement the models, we used Python 3.6, TensorFlow 1.15.0 
and Keras 2.2.5. Also, Pandas, NumPy and Sklearn packages of 
python were used. The codes were run on a commodity laptop. The 
codes of our implementation are available at: 
https://gitlab.com/Hoda-Nemat/data-fusion-

stacking.git 
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