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TWISTED ADJOINT L-VALUES, DIHEDRAL CONGRUENCE
PRIMES AND THE BLOCH-KATO CONJECTURE

NEIL DUMMIGAN

ABSTRACT. We show that a dihedral congruence prime for a normalised Hecke
eigenform f in Sx(To(D), xp), where xp is a real quadratic character, appears
in the denominator of the Bloch-Kato conjectural formula for the value at 1 of
the twisted adjoint L-function of f. We then use a formula of Zagier to prove
that it appears in the denominator of a suitably normalised L(1,ad®(g) ® xp)
for some g € Si(I'o(D), xD)-

1. INTRODUCTION

Let ' = Q(vD) be a real quadratic field, with discriminant D > 0. Let
f € Sk(To(D),xp) be a normalised Hecke eigenform, where k > 2 and yp is
the Legendre symbol attached to F/Q. Say f = > °_ am(f)g™. Let K; be the
CM subfield of C generated by the Hecke eigenvalues of f, with real subfield K;f,
ring of integers Oy, and let O(f) be the order in O generated by the a,,(f). Let
fe =20 _1 am(f)g™ be the complex conjugate eigenform, and note that f, is the
newform associated to the twisted form f, . (This is because for each prime ¢ t D,
T, and {(q)~'T, are adjoints for the Petersson inner product, so a,(f) is real or
purely imaginary according as xp(q) = 1 or —1, respectively.) Note that because
the conductor of xp is D, Si(I'o(D), xp) contains no old forms. The following is
very easy to prove. For reference, it is a trivial modification of a special case of
[BG, Lemma 3.1].

Lemma 1.1. Let P | (p) be a prime divisor in K. Suppose that p t [Of : O(f)].

We have f = f. (mod P), i.e. am(f) = am(f) (mod PB) Vm, if and only if P is
ramified in Kf/K;r.

Congruences between the Hecke eigenvalues of automorphic forms often produce
non-zero elements in groups whose orders appear in the Bloch-Kato conjecture
on special values of L-functions. When the L-values in question are amenable to
analysis or to computation, this can provide an opportunity to test the conjecture,
by proving a consequence or computing data that support it. In order to examine
the consequences of the congruences, one has to interpret them in terms of Galois
representations.

Given f,’B as above, let

Pry - Gal(@/@) — GL2(Kf,q3)
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2 NEIL DUMMIGAN

be the continuous linear representation attached to f by Deligne [De2]. For every
prime ¢ { Dp, psy is unramified at ¢, and if Frob, € Gal(Q/Q) acts on F, as
x — x? then

det(I — pyyp(Frob, 1) X) =1 — ag (/)X + xp(q)g" " X*.

Choosing a Gal(Q/Q)-invariant O p-lattice in the 2-dimensional K f g3-vector space
on which Gal(Q/Q) acts via py,q, then reducing modulo 9, one obtains a residual
representation

Py Gal(@/Q) — GLa(Fyp),
where Fqg = Ofm/%-

Proposition 1.2. Let F' = @(\/5) be a real quadratic field, with discriminant
D > 0. Let f € Si(To(D), xp) be a normalised Hecke eigenform, B | (p) a prime
divisor in Ky such that f = f. (mod PB). Suppose that p 12D, that B 1 as(p) (i.e.
[ is ordinary at ‘B) and that p; o is absolutely irreducible. Then

(1) Prp =~ Prop ® XD, where xp is viewed as a character of Gal(Q/Q).

(2) The restriction of pyy to Gal(Q/F) is reducible.

(3) The prime p splits in F, say as pp°. The representation Prop 8 induced
from a character ¢, of Gal(Q/F), coming via class field theory from an
idele class character whose finite part is the (1 — k)-power of the identity
character (Op/p)* — F;. Equally it is induced by ¢pe, similarly defined
but of conductor p© in place of p.

(4) p | Normpg((e4)*~1 — 1), where ey is a generator for the group of totally
positive units of Op.

Conversely, if pt 6D is a prime that splits, and if p | Normpg((e4)*~1 — 1) then
there exists a normalised Hecke eigenform f € Sx(To(D),xp), ordinary at some
B | (p), such that f = f. (mod *B) and p; 4 is absolutely irreducible.

A convenient reference for the proof is [BG], where (1)-(4) are covered by Theo-
rem 2.1 and the converse part is covered by Theorem 2.11, both of which are more
general statements. I have largely adopted their notation, though their ps g is the
dual of ours. (4) is a consequence of class field theory, that the character ¢, in (3)
must kill the totally positive unit e,. It was proved in the case k = 2 by Ohta [O],
confirming an experimental observation of Shimura [Sh, before Proposition 7.34].
For general k it is part of Theorem 1 in a paper of Hida [H1]. The converse part
was proved by Koike in the case k = 2, which was all he needed [K, Proposition
4.1], and in general it is again part of Hida’s Theorem 1. Though P is said to be a
dihedral congruence prime for f, it is not the image of p; g in GL2(Fsyp), rather its
projection to PGLa(Fy), that is isomorphic to a dihedral group.

A consequence of ppoy > Prqy ® Xp is the existence of a non-zero element of
HO(Q,adO(ﬁfm) ® xp) (Lemma 3.1). As we shall see in §3, this contributes to
the denominator of a conjectural formula (1) for the value at s = 1 of a “twisted
adjoint” L-function L(s,ad’(f) ® xp), whose Euler factor at any prime ¢ { D is

Ly(s,ad’(f)@xn) = [(1=(aq/By)xp(@)g™*)1=xn(0)g™*) (1= (By/ag)xp(@)g*)] ",
where the Euler factor at ¢ of the Hecke L-function L(s, f) is

Ly(s, f) = [(1 — aqq™*)(1 = Bea™*)]
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Since oy, = xp(q)q" ", we also have L(s,ad’(f) ® xp) = L(s + k — 1,Sym?(f)),
so we are equally looking at the value L(k, Sym?(f)). The conjectural formula is an
instance of the Bloch-Kato conjecture. It is in fact a formula for the factorisation
of the algebraic number

L(1,ad"(f) ® xp)

Q b
where  is a suitably normalised Deligne period [Del], and we are looking at the
PB-part. There is also a term in the numerator of the conjectural formula (1), the
order of a certain Selmer group. In Lemma 3.2 we are able to show, under certain
hypotheses, that this Selmer group contributes nothing at B, so we expect that

ony (ML 1922)

Zagier [Z] proved a formula for the critical values of L(s,ad"(f) ® xp), in par-

ticular for the algebraic number %{f)%@), where (f, f) is the Petersson norm.

(It shows that this algebraic number lies, as expected, in K. In fact it lies in
K}", since it is easy to check that for any Hecke eigenform f € Si(To(D), xp) the

coefficients of the Dirichlet series L(s,ad"(f) ® xp) are real.) So we need to make
use of the relation between ) and the Petersson norm, between which intervenes
a certain cohomological congruence ideal 1y, which is the subject of §2. For the
very special type of simple congruence we are looking at, we are able, with the help
of a “multiplicity one” theorem of Faltings and Jordan [FJ], to say (under mild
hypotheses) exactly what the -part of 7y is; see Proposition 2.2. We use this in
§3, both in proving triviality of the Selmer group (Lemma 3.2) and in producing a
definite prediction that

L(1,ad®
oty (FEEG ) <o

where B is the divisor of K f+ below K.

In §4 we seek to use Zagier’s formula to confirm this, but have to settle for
showing that it is true for some normalised Hecke eigenform f € Si(T'o(D), xp),
not necessarily one satisfying f = f. (mod ); see Theorem 4.1. (We also need
conditions D = 1 (mod 4) and k& > 2.) Remarkably, the required contribution of
BT to the denominator comes from ((e;)*~! —1), after summing a geometric series.

0
The occurrence of divisors of ((e4)*~! — 1) in the denominator of L(l;rﬂl(i(??@

was observed in [DHI, 2.2] in numerical examples, which Doi and Ishii computed
using Zagier’s formula, so presumably they likewise summed this series.

I am grateful to an anonymous referee for raising the question of whether in
certain cases we can see that the f produced by Theorem 4.1 does necessarily satisfy
f = fe (mod P). This is certainly true in the examples D = 5 and (k,p) = (8,29)
or (6,11), where Si(T'o(D), xp) is 2-dimensional.

Ghate [G, §10, Remark 4] has an alternative explanation for the appearance of
dihedral congruence primes in the denominator of %. This is based on
the fact that, as a congruence prime for f, 3 appears in the numerator of a suitably
normalised L(1,ad’(f)), by a theorem of Hida [H3, Theorem 5.16], but because f
and f. have the same Doi-Naganuma lift f = fc (base change to F), f = fe.
(mod P3) does not make P a congruence prime for f , 80 it is not expected to appear
in the numerator of a suitably normalised L(1,ad’(f)) = L(1,ad’(f))L(1,ad’(f) ®
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Xp). Thus it is required in the denominator of the second factor, subject to a
conjectured period relation making the normalisations compatible. Note that the
recent proof by Tilouine and Urban [TU] of such a period relation is currently only
for trivial nebentypus, so does not apply here.

The viewpoint taken here is that of [DH], where however the situation was a
little different. We had a Hecke eigenform f € Si(SLg(Z)) with p; g dihedral,
whose existence depended on non-triviality of the class group of Q(y/—p), with
p =3 (mod 4)), and k = (p+1)/2. Again, we confirmed a prediction of the Bloch-

2
Kato conjecture, this time proving that ordyp (W) < 0 (a rightmost,

rather than near-central, critical value) for some Hecke eigenform g € S;(SL2(Z)).
(Strictly speaking, since we did not prove triviality of the Selmer group, we had to
reverse this logic, predicting and then proving the existence of f after showing that
of g, an approach we could have taken here too.)

The main new proved results of the paper are Propositions 2.2 and 3.3, and
Theorem 4.1.

2. THE CONGRUENCE IDEAL

In this section we prove a technical result ready for use in the following sec-
tion. Let F = Q(v/D) be a real quadratic field, with discriminant D > 0, f €
Sk(To(D), xp) a normalised Hecke eigenform. Let Ky be the CM subfield of C
generated by the Hecke eigenvalues of f, with ring of integers Oy, maximal real
subfield KJJ[, with its ring of integers O}f. Let T be the ring generated over (9?
by the endomorphisms of Si(T'o(D), xp) given by all the Hecke operators T} for all
primes ¢q. Let §; : T — Oy be the homomorphism such that T'(f) = 6,(T) f VT € T.
Let S be the set of primes dividing D(k!).

We consider the premotivic structure (with coefficients in Q) M (D, xp): con-
structed in [DFG1, §1.4.2]. (See [DFG1, §§1.1.1,1.1.2] for generalities on pre-
motivic and S-integral premotivic structures.) It has realisations M (D, xp): B,
M(D,xp),ar, M(D,xp)1e and M(D,xp) r-crys (for each prime ¢ ¢ S). (Actu-
ally, even for £ € S we have M(D, xp)i ¢, but strictly speaking it is not part of
the structure.) The first two are Q-vector spaces, subspaces of the first singu-
lar and algebraic de Rham cohomologies of the modular curve X;(D) with coeffi-
cients in a local system depending on k. The second two are Qg-vector spaces,
coming from ¢-adic (étale) and crystalline cohomology. This gives various ex-
tra structures and comparison isomorphisms. For instance, M (D, xp)¢ has a
continuous linear action of Gal(Q/Q), and M (D, xp)iar has a filtration, with
FﬂkilM(D7XD)!,dR ®g C ~ S, (To(D), xp). In this sense, M (D, xp): is the pre-
motivic structure associated to Si(I'o(D), xp). By [DFGL, §1.5.3, Proposition 1.3],
there is a Poincaré duality isomorphism

5! : M(D7XD)! — HomQ(M(DaXD)!aMXD(l - k)))

where M, , (1 —k) is a Tate twist of a rank-1 premotivic structure M, , attached to
the Dirichlet character xp. This duality isomorphism is compatible with natural
actions of T, and the associated perfect pairing is alternating. Thus

[,]: A°2M(D,xp)h =~ My, (1 —k).

We have also an S-integral premotivic structure M(D, xp)1. Among its realisa-
tions, M(D, xp),B is a Z-lattice in M (D, xp).B, M(D, xp),dr is a Zg-lattice in
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M (D, xp)r.ar, M(D,xp)ie is a Zg-lattice in M (D, xp)ue, preserved by Gal(Q/Q),
and M(D, XD r-crys 18 a Zg-lattice in M (D, x D)1 t-crys-

We also have a premotivic structure My with coefficients in Ky [DFG1, §1.6.2].
It is a substructure of M(D,xp) ®q Ky, with Fil"*"'M; = K;f. For any prime
divisor A of K¢, the A-adic realisation My ) is a 2-dimensional K¢ y-vector space
with continuous Gal(Q/Q)-action. This is the Galois representation attached to
f. The S-integral premotivic structure M has Filkile’dR = Oy sf. The Of x-
lattice My in My, is Gal(Q/Q)-invariant, and My = My /AM; . is the
residual representation.

The isomorphism & : M(D,xp) — Homg(M(D, xp)i, My, (1 — k)) restricts
(after extension of scalars) to an isomorphism

o7+ My — Homy, (My, My, (1 — k) @ Ky),
ie. [,]: /\%(f My~ M,,(1—-k)® K. However, although the duality pairing gives
o : M(D,xp)r = Homz, (M(D, xp)1, My, (1 — k) ® Oy 5), it does not restrict to
[,]: /\%f,SMf ~ My, (1 —k)® Oy, g, rather
[]: MG, Myp=npMyp(1—k) @ Ops,
for some integral ideal n, as noted in [DFG2, §2]; see also [DFG1, §1.7.3].
Definition 2.1. This 1y is the congruence ideal for f.

Proposition 2.2. Fiz B a prime divisor in Ky, with P 1 D(K!)[Of : 04(T)].
Suppose that given g € Sk(To(D),xp) a normalised Hecke eigenform, we have a
congruence 0y(T) = 0;(T) (mod *B) VI € T, if and only if g = f or g = fe, the
complex conjugate eigenform. Then

ordg(ny) = 1.

Note that 6;(T) is the same thing as O(f). To prove the proposition, we need
two lemmas. Let 0; : T — Fy be the composition of ; with the reduction map
O = Of /P =: Fy, and let m := ker@, T the local completion at m. We may
define a premotivic structure My, with coefficients in K]T, associated with the
Gal(C/R)-orbit [f] := {f, fc}, as the kernel of the appropriate ideal of T acting
on M(D,xp) ®g K7, so that Fil* "M @yt C =~ Cf & Cfe, and similarly an
S-integral premotivic structure My (with coefficients in O}" g)- Let P be as in the
proposition, with 3™ the divisor below it in K 7{

Lemma 2.3. My g+ ~ Th as a To-module.

Proof. First note that, because of the congruence 8y, (T') = 04(T) (mod ) VI € T,
Mg+ is @ Tp-module. One may prove, just as in the proof of [FJ, Theorem 2.1],
the “multiplicity one” formula

ﬂ[ﬂ’qﬁ— [m] ~ (T/m)z.
The lemma then follows by a standard application of Nakayama’s Lemma. O

Lemma 2.4. Suppose that B is ramified in Kf/K;'. Consider the map v, K;‘-
linear in the first factor, K¢-linear in the second factor, given by

Vi Ky Dy Ki~Kj: a®pB (af,ap).
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Then
P(Opp ®O;rm+ Orp) ={(z,w) € (9]2«7;33 :z=w (mod P)}.

Proof. Choosing an (’)}'w—basis {1, 7} for Oy q, where 7 is a uniformiser for B
and 72 a uniformiser for PT, every element of Oy R+ . Oy is of the form
PR

1® (a+br)+7® (c+dm), with a,b,¢,d € O;{w. Now

Y(1®(a+br)+71@(c+dn)) = (at+dr+(b+c)m, a—dr? +(b—c)n) = (x+ym, utv),

where

r+u b Yy+v Yy—0 d Tr—u
a = = CcC = = .
2 2 2 272
The condition z = u (mod 72) is equivalent to z = w (mod B). O

Proof of Proposition 2.2. By Lemma 1.1, 8 is ramified in Kf/KJf. By Lemma
2.3, M qp+ ~ T2 as a Ty-module. Since p { [Of : 0(T)], 65 induces an isomor-
phism between Ty, and Oy g, hence Mg g+ =~ (O 3)?. Inside My ®o? Oy, the
substructure M is defined by the condition that the action of any 7' € T via the
first factor matches the action of 0;(T) via the second factor. For My, we just
replace 05 by 0y,. Identifying M p+ @4+ . Oy p with (’)J%§J3 ® o+ . Oy, and

IRy ’ Iy
applying Lemma 2.4, we find that
Mg ~{(21,0,22,0) € O;lcm 21,29 € P}
and
My~ {(0,w1,0,w2) € O}l,m D wy,wy € P}
Hence

Mips+ @t Op)/ My ® M) = O /B
This Mg @ My, g is an orthogonal direct sum for the pairing [,]. Recall that

[]:AS, wMpsgp = npMy, (1= k) @ Ofp,

and similarly [,] : A, My g = 17, My, (1 = k) @ Opg. But the condition that
04(T) = 04(T) (mod P) VI' € T, only for g = f or g = f., implies that

A2 ~ _
[,} .Aozm+M[f]’q3+ _MXD(l k)®0}’:q3+.
It follows (using also symmetry between f and f.) that ordy(ny) = ordp(ny,) = 1.
([l

3. THE BLOCH-KATO CONJECTURE

As before, let f € Si(I'o(D), xp) be a normalised Hecke eigenform, Ky the CM
subfield of C generated by the Hecke eigenvalues of f. We saw the premotivic
structure My, with coefficients in Ky, and the S-integral premotivic structure My,
where S is the set of primes dividing D(k!). Following [DFG1, §1.7.1], we consider
the adjoint premotivic structure A; = ad®(Mj), the kernel of the trace morphism
Homg , (My, My) — Ky, and the associated S-integral premotivic structure Ay. We
will need also Ay, = Ay ® My, and Ay, := Ay @ M, . We can recover the
Hecke L-function L(s, f) = > °_, ar(m)m~* in the following way. For each finite
prime ¢, choose any ¢ # ¢, and A | £ in K. Let F,(X) = det(! — p|y 1, (Frob;I)X),
where V' = M x. Then L(s, f) = [, Lq(s, f), where Ly(s, f)~' = Fy(q~*). We



TWISTED ADJOINT L-VALUES 7

may also define an adjoint L-function L(s,ad’(f)), and a twisted adjoint L-function
L(s,ad’(f) ® xp), by using V = Agy and V = Ag ., a, respectively. The Euler
factors at “bad” primes ¢ | D are as follows:

Ly(s, f) = (1 —ap(q)g*)"", with ay(q)as(q) = ¢" "
Ly(s,ad’(f)) = (1 —q~) 7"
Ly(s,ad(f) @ xp) = (1 — az(q)2q" )1 — ay(q) ¢ F*)~".

Our L(s,ad’(f) ® xp) is the same as Zagier’s D(s + k — 1) in [Z, §6], but note
that in Ghate’s L(s, Ad(f)) and L(s, Ad(f) ® xp) [G, §5], Euler factors at primes
q | D are omitted. Since the dual of My is My @ M, (1 — k), L(s,ad’(f) ® xp)
can also be described as L(s + k — 1, Sym?(f)), i.e. Ds(s) = L(s, Sym?(f)).

Lemma 3.1. Let f € Sp(T'o(D), xp) be a normalised Hecke eigenform, B a prime
divisor in Ky such that f = f. (mod B) and Py 18 absolutely irreducible. Then
HY(Q, Afyp 5/Afxp.p) is non-trivial.

Proof. By (1) of Proposition 1.2, p;q =~ pyy @ xp- (For just this part, we do
not need the additional conditions of the proposition.) At any ¢ | D, the space of
Py has an unramified line and a line on which /; acts via xp, by a Theorem of
Langlands and Carayol [H2, Theorem 4.2.7(3)(a)]. Tensoring with xp swaps those
lines, so an isomorphism from p g to py oy ® xp must have trace zero, and gives
us a non-zero element of P-torsion in H*(Q, Ay, /Afxp)- O

This is the key Galois-theoretical consequence of the congruence f = f. (mod B),
since the order of H%(Q, Ay, /At ) appears in the denominator of the conjec-
tural formula (1) for L(1,ad’(f) ® xp) given by the Bloch-Kato conjecture. We
must prepare ourselves to look at other terms in the formula.

Given a field F' and a continuous Gal(F/F)-module M, H(F, M) will mean
for us H', . (F, M) (the quotient of continuous cocycles by continuous cobound-
aries). Given a finite-dimensional continuous representation V of Gal(Q/Q) over
Qp, unramified outside a finite set of primes, following Bloch and Kato [BK] we
define

HL(Q,,V) q#p

1 —
Hf(Qq,V) B {ker(Hl(quv) — Hl(QmV ® Bays)) 4=p

where I, is the inertia subgroup of Gal(@q /Qq); Berys is Fontaine’s ring, as defined
in [BK, §1], and
Hy, (Qq, M) := ker(H' (Qq, M) — H' (Ig, M)).
Now let T C V be a Gal(Q/Q)-stable Z,-lattice, and W := V/T. Further define
Hi(Qq, W) :=im(Hf(Qq, V) — H'(Qq, W),

and for any finite set of primes ¥ not containing p let HL(Q, W) be the subgroup of
clements of H'(Q, W) whose images in H'(Qq, W) lie in H}(Qg, W), for all (finite)
primes ¢ ¢ 3. As noted in [DFG1, §2.1] if V' is unramified at g (with ¢ # p) then
H}(qu W)= H&r((@qv w).

Lemma 3.2. Let f € Sp(T'o(D),xp) be a normalised Hecke eigenform, B | p a
prime divisor in Ky with p { D(2k — 1)(2k — 3)(k!)[Of : 64(T)]. Suppose that
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given g € Si(To(D),xp) a normalised Hecke eigenform, we have a congruence
04(T) = 04(T) (mod P) VI' € T, if and only if g = f or g = f., the complezx con-
jugate eigenform, and that pys (mod P?) £ pr. sy (mod P2). Suppose that Pry
is absolutely irreducible and that B 1 ay(p). Let ¥ be the set of primes dividing D.
Suppose that for all primes q | D, ¢ 2 1 (mod p). Then H&(Q, Afxp 5/ Afxp.5)
1s trivial.

Proof. We consider the long exact sequence in Galois cohomology arising from the
short exact sequence

AvaD»‘p ™ -Af,xD,‘B 0
)

0/—
0 ad™(py.q) @ XD Afxp.® Afxp.®

where the third map from the left is multiplication by some uniformising element
7 for P. If HL(Q, Afrp, 3/Afxp,p) Were non-trivial, there would be a non-zero
element killed by 9B, which is necessarily in the image of H'(Q, ad’ (Pras) ®XD), say
coming from an element a. By Lemma 3.1 we have a non-zero element killed by B
in H(Q, Af\,, 5/Afxnw). By the condition pseq (mod PB?) % pr. oy (mod P?),
there is no element of exact annihilator P2 in H°(Q, Ay p,.9/Afxp3). Hence
our element of annihilator 3 in H*(Q, Af,yp,.5/Afxp5) maps to a non-zero ele-
ment § of Hl((@,ado(ﬁfm) ® xp)- Since B maps to 0 in HY(Q, Afp.5/Afxp.3)
(by exactness), while & maps to a non-zero element, & and 8 must be linearly in-
dependent elements of H'(Q,ad"(p;4) ® xp). Since H(Q,Fy ® xp) is trivial,
Hl(Q,adO(ﬁfm) ® xp) injects into H'(Q,ad(p; ) ® xp). Composing with the
isomorphism py oy ® Xp =~ Py, We obtain independent non-zero elements o, B of
HYQ,ad(pyq))-

Actually, viewing py, g as representing a deformation of p; 43, we have obtained
B’ by the standard construction in disguise: if (using bases compatible with Prop =~
Prgp) Prop(9) = prap(9)(I+me(g)) (mod PB?), where 7 is a uniformiser at 9B, then
the cocycle g — c(g) represents 3’. Since pry and prgp ® xp have the same
determinant, 3" actually lives in (the image of) H'(Q,ad" (Prp))-

Since o' comes from H&(Q, Afp 3/Afyp.gp), its image in H*(Q,Fy) by the
trace map, composed with any linear map Fy — [F,, produces either 0 or an
element of Hom(Gal(Q/Q),F,) whose kernel has fixed field a degree p extension
of Q, unramified for any ¢ f D. (That it is unramified at p is addressed by [BK,
Example 3.9].) Such an extension does not exist, given our assumptions that p 1 D
and ¢ # 1 (mod p) for all ¢ | D. Hence the image of o’ in H*(Q,Fy) is 0, so o/
also lives in H'(Q, ad” (Prap))-

By Proposition 1.2, pf g is dihedral, from which it easily follows that H%(Q, A¢ g /Afq)
is trivial. Hence o/, 3’ map to independent non-zero elements o”, 3" of H(Q, A¢.q/Af.q).
Using [DFG1, Proposition 2.2] we see that o (having come from Hy(Q, Afy,, 5/Afxp.3))
satisfies the local conditions to lie in H&(Q, Afp/Asq). So does 8, since py, o is
unramified at ¢ pD and crystalline at p.

We have now that 93? divides the Fitting ideal Fitto, , (Hs(Q, Afg/Afqp))-
Since p f D(2k —1)(2k—3)(k!), the restriction of p; 5 to Gal(Q/Q(1/(—1)P=1/2p))
is absolutely irreducible, by [DFG1, Lemma 2.5]. Then by [DFG1, Theorem 3.7,
Proposition 1.4(c)],

Fitto, o (H3(Q, Arp/App)) = 0y [ Lo(Lad’ () =np [J( a7 ).
q|D q|D
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By our assumption that ¢ # 1 (mod p) for all ¢ | D, we have Fitto, , (Hy(Q, Ay /Afqp)) =
1y, but by Proposition 2.2, ordy (1) = 1, contradicting P | Fitto, ., (Hs(Q, Asqp/Afg)).
(]

Since ¥ # (), the B-part of the Bloch-Kato conjecture, applied to the critical
value L(1,ad’(f) ® xp), may be formulated as follows, following [DFG1, (59)], and
using the exact sequence in their Lemma 2.1.

L(1,ad’(f)®xp)\ Fitto, , H5(Q, Af xp.3/Afxp5)
(1) ordg = ordyp | —: 5 ,
Q Fitto, » HY(Q, Afxp.5/Afxp.%)

where € is a certain Deligne period normalised by the integral structure Ay. (We
are retaining the condition p t D(2k—1)(2k—3)(k!), hence as in [DFG1, Proposition
2.16] the Tamagawa factor is trivial, so does not appear.) Note that Deligne’s con-

jecture [Del, Conjecture 2.8] already says that % should be an element

of the coefficient field K¢. A corollary of Lemmas 3.1 and 3.2 is the following.

Proposition 3.3. Subject to the conditions of Lemma 3.2, the right hand side of
(1) is negative.

We predict then that (subject to the conditions of Lemma 3.2)
L(1,ad’
ordgs ( (1,a (f)®XD)) <o.

Q
As in [Du, §5], up to P-units (where our € is the (27)2*Q there),

Q=" (f, fmg
(For the type of argument leading to the relation between the Petersson norm (f, f),
periods QF of My, and 7y, as in [Du, (4)], a good additional reference is [H3, (5.18)].
The ((4+,¢-) in [H3, Theorem 5.16] is our 7¢.) So the Bloch-Kato conjecture leads
to the prediction that (subject to the conditions of Lemma 3.2)

L(1,ad’(f) ®
Ordqg < ( 7Tk+1((']27f)XD)) < 701‘d$13(7]f).

Using Proposition 2.2 we may reformulate this again as

L(1,ad’(f) ® xp)
orts (M) <2

As already noted in the introduction, in fact %{f)%@) € K, and since p+ =
P2, it becomes
L(1,ad’(f) ®><D)>
ordgp+ < 0.
¥ ( ™ (f, )

In the following section we shall prove something slightly weaker, that if p |

Normpq((e4)* "t —1) then ordy+ <%€;§;‘D)) < 0 for some normalised Hecke

eigenform g € Si(T'o(D), xp) (and P now a divisor of p in K ). Of course we expect
it to be f satisfying f = f. (mod B), with P ramified in Kf/K;', but we cannot
eliminate the possibility that it is only some other g. Note that if deg(p*) > 1
then applying a non-trivial element of its decomposition group to the pair f, f. will
produce another pair g, g. congruent to each other mod 3, for whom we should
also see BT in the denominator.
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One might question the condition that 6,(T) = 0;(T) (mod B) VT € T, if and
only if g = f or g = f.. How strong is this? In twelve out of the thirteen numerical
examples in [DHI, Table 1], the normalised Hecke eigenforms in Si(I'o(D), xp) form
a single Galois orbit. Assuming also that p { [Of : 0¢(T)], if the condition failed
then an automorphism taking f to g (in addition to one taking f to f.) would be
in the inertia group for 3, so p would be ramified in Kf+ /Q, which seems unlikely.
Such a p would be listed in both the second and third columns of the table, for a
given row, but in none of those twelve examples does this happen.

4. THE DENOMINATOR OF THE TWISTED ADJOINT L-VALUE

Theorem 4.1. Let F = Q(v/D) be a real quadratic field, with discriminant D > 0,
D =1 (mod 4). Fizing an even k > 2, let €4 be a generator for the group of
totally positive units of Op, and let p be any prime divisor of (e;)*~* — 1 in Op,
with p 4+ D(k!), where p divides a rational prime p. Let v be any extension to
Q of the wvaluation associated to p. There exists a normalised Hecke eigenform
f € Sk(To(D),xp), such that if Ky is the subfield of C generated by the Hecke
eigenvalues of f (mazimal real subfield K}T) and BT is the divisor in Kj{ associated
with the restriction of v, then

L(1,ad’
ordg+ ( ( ﬁak+1({}’?)XD)> < 0.

Proof. By work of Zagier [Z, (91),(92)], L(1,ad’(f) ® xp) = _%(1:1?;3;

(Cr1,D, f),
where Cy 1 p(2) :=

> 4m — 2 1 ;
H : Nk—1 27szz.
ST et (T ) gp S w0 e

teZ AeOp
t?<4am A>0
t’=4m  (mod D) AN'=m

Here py.1(t, m), the coefficient of *=2 in (1 —tz +ma?)~!, is an integer, and H(n),
the Hurwitz class number, is integral away from 2 and 3. Also, we are thinking of
F as embedded in R in a fixed way, but A’ means the Galois conjugate of A, i.e. the
result of applying the other embedding. Now if € € F is a totally positive unit then
¢ =1/, so given a factorisation m = AN appearing in the sum, m = (e\)(¢’)) is
another one. Let e, be a generator for the group of totally positive units, chosen
with e, < 1 and (e, )" > 1. Choosing m = ¢2, with ¢ a prime number inert in F,

. _ _ - 2(k—1 _ 2
Z min(\, \)*! = ¢" (1 + 268 1+2e+( V4 ) =gt <1k_1—1> :
AeOR €y
A>0
AN =m
Let p be as in the theorem, in particular a prime divisor of (e4)*~! — 1 in Op.
Then for m = ¢ with ¢ inert (in particular ¢ # p),

ord,, g min(\, N)*1 [ = —ord, ((e)*! = 1).
AOp
A>0
AN =m
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Letting c¢,, denote the coefficient of ¢™ = €?™™# in Cy 1 p, we see that ordyc,, =
—ordy((e4)*~1 — 1), for any m = ¢? with g inert.

Since k > 2, C}1,p is a cusp form, and may be expressed as a linear combination
of normalised Hecke eigenforms in Si(T'g(D), xp). These eigenforms may be divided
into Gal(C/R)-orbits, and the contributions to the linear combination coming from
any particular orbit (conjugate pair) may be combined. Let B, be the contribution
from the orbit of g, so that Cr1,p = Z[g] Big. The coefficients of the Dirichlet

series L(s,ad"(g) ® xp) are real, and the same as those of L(s,ad’(g.) ® xp),
while it is easy to show that (g,9) = (g¢, gc). Zagier’s formula then implies that
(Ck,1,0,9)/(g,9) is real, and the same as (Ck,1,D, gc)/ (e, ge), 50 that Bjg = ag(g+
gc) for some real ayg.

In fact, since the Fourier coefficients of Cy 1,p are rational (as noted near [Z,
(98)], and cf. remark below) and the coefficients o, are unique, any element of
Gal(C/Q) fixing the Fourier coefficients of g + g. must fix oy, so a4 € K;. Since
ordpe, = —ordy((e4)*~! — 1) < 0, for infinitely many m, there must exist a
normalised eigenform f such that if By = > byg™ then ordg+by, < 0, for
infinitely many m. It follows that ordgy+ (af) < 0, and since

o, — Crap, f) _ AT(k)L(1,ad°(f) @ xp)
=N EmEI(f )

we obtain the proposition. [

Remark 4.2. In case it does not look like c,2 is rational, note that 1—5% —1=
+
1+6i71

B—1-
1—6Jr

Recalling that (e4)" = 1/ey, one sees that this expression is mapped to

minus itself by Galois conjugation, so is necessarily a rational multiple of v/ D.
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