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Abstract: The inverse problem of simultaneously determining, i.e., identifying and reconstructing, the space-
dependent reaction coefficient and source term component from time-integral temperature measurements is
investigated. This corresponds to thermal applications in which the heat is generated from a source depend-
ing linearly on the temperature, but with unknown space-dependent coefficients. For the resulting nonlinear
inverse problem, we first prove the existence of solution based on the Schauder fixed point theorem. Then,
under certain additional conditions, the solution is also proved to be unique. For the numerical reconstruc-
tion of solution, the problem is reformulated as a least-squares minimisation whose Fréchet gradients with
respect to the two unknowns are derived in terms of the solution of an adjoint problem. The conjugate gra-
dient method (CGM) to calculate the numerical solution is developed, and its convergence is proved from
the Lipschitz continuity of these gradients. Three numerical examples for one- and two-dimensional inverse
problems are illustrated to reveal the accuracy and stability of the solutions applying the CGM regularised by
the discrepancy principle when noisy data are inverted.
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1 Introduction
In the mathematical modelling and simulation of complex phenomena, it is often the case that there are
more than one physical property of the system that are unknown and they have to be determined (or esti-
mated) from extra measurements of other available physical quantities. Nevertheless, such multiple coeffi-
cient inverse problems are more difficult to solve than the single ones due to the extra system-coupling and
nonlinearity that arise. In addition, the degree of ill-posedness is expected to increase. When multiple coef-
ficients appearing in the governing parabolic heat transfer equation are unknown, but they depend on the
time variable only, their simultaneous identification in terms of local existence and uniqueness was initiated
by Professor M. Ivanchov and his co-workers, e.g., [18], followed by numerical implementations realised
in [16]. The key starting point in these works is the employment of Green’s functions for the leading domi-
nant part ∂t − a(t)∇2 (where a(t) > 0 is thediffusivity) of the governingparabolic heat equation.However, this
approach is not extendable to situations when the unknown coefficients depend on the space variables, in
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which case the non-uniqueness of recoveringmultiple spacewise dependent properties becomes amain diffi-
culty to overcome, [2, 9, 14]. In [19, 37], the initial temperature and the space-dependent reaction coefficient
or the heat source, respectively, were identified and reconstructed from various temperature measurements.
Also, very recently, the authors have investigated the simultaneous numerical reconstruction of the space-
wise dependent reaction coefficient and heat source, (as well as the initial temperature), from temperature
measurements at three distinct time instants [5]. Encouraged by this preliminary numerical study, in this
paper, we investigate in more detail the existence and uniqueness of solution, as well as consider the more
general (and practical) case of time-integral average temperature measurements.

Thus,we consider theheat transfer process in aboundeddomain Ω ⊂ ℝN ,N ≥ 1,with sufficiently smooth
boundary ∂Ω, over the time interval from the initial time 0 to T > 0, governed by

{{{
{{{
{

ut(x, t) = ∇2u(x, t) − q(x)u(x, t) + f(x)h(x, t) + g(x, t), (x, t) ∈ Ω × (0, T) =: Q,
u(x, t) = μ(x, t), (x, t) ∈ ∂Ω × (0, T) =: S,

u(x, 0) = u0(x), x ∈ Ω,

(1.1)

where u represents the temperature, q is the spatially-dependent reaction coefficient, f , h and g are heat
source components, μ is the Dirichlet boundary data and u0 is the initial temperature. For simplicity, in (1.1),
the heat capacity and thermal conductivity were assumed to be constant and taken to be unity.

Whenall the thermal properties and the initial andboundary conditions are specified, thewell-posedness
of the solution u to the initial-boundary value direct problem (1.1) is classical, see, e.g., [13]. However,
in many engineering situations, the thermal coefficients as well as initial and/or boundary data cannot be
measured directly. Thus, a wide range of inverse problems have been concerned to determine the physical
properties and heat transfer coefficients, boundary and/or initial conditions, [27]. For instance, in the heat
transfer in biological tissue, problem (1.1) becomes the well-known Pennes’ bio-heat model [29], which is
obtained by a balance between the accumulation of energy due to the blood flowing through capillary net-
work and the heat generation due to cell metabolism. The reaction coefficient q, which is also known as the
perfusion coefficient, plays an important role in the heat generation in carcinogenic skin and tumours due
to the increased nutrition and oxygen demand, [28], and helps to understand the heat transfer through such
biological tissues.

The nonlinear inverse problem of determining the reaction coefficient q(x) has been extensively studied,
when all the source components f , g and h, the Dirichlet boundary data μ and the initial temperature u0
are known. Its existence and uniqueness have been established from certain measurements, including the
temperature at the terminal time t = T and the time-average integral of temperature, [17, 23, 26, 30, 32, 33].
Besides, there are several numerical techniques that have been developed to numerically reconstruct q(x)
from the above additional measurements, such as the Tikhonov regularization method [8], the Armijo
algorithm combined with the finite element method (FEM) [6], the NAG routine E04FCF together with the
finite-difference method (FDM) [36], and the CGM [3].

If the source component f(x) is unknown, and the reaction coefficient q and the input data h, g, μ and u0
are given, the linear inverse problem of identifying it from final time or time-integral temperature measure-
ments has been extensively considered, e.g., [11, 20, 21, 31]. Such inverse source problems arise in various
physical and engineering applications, e.g., the identification of sources of water and air pollution in the
environment, or the heat sources in thermal processes.

In this work, we assume that the heat source components h(x, t) and g(x, t), the boundary temperature
μ(x, t) and the initial temperature u0(x) are known, but the reaction coefficient q(x) and the source compo-
nent f(x) are both unknown and have to be determined from some additional information. Previously, such
additional information was taken to be the measurement of u and its time derivative ut at the fixed instant
T0 ∈ (0, T], namely,

u(x, T0) = ζ1(x), ut(x, T0) = ζ2(x), x ∈ Ω,

see [24], or the measurement of u at two different fixed times t = T1 ∈ (0, T) and t = T, namely,

u(x, T1) = ξ1(x), u(x, T) = ξ2(x), x ∈ Ω, (1.2)
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see [25]. In this paper, we generalise the fixed time (instant) observations (1.2), which in practice may
be difficult to be realised accurately, to time-average recordings, which smooth out the otherwise possibly
large measurement errors in u. More precisely, we investigate the inverse problem of determining the triplet
(u(x, t), q(x), f(x)) satisfying problem (1.1) together with the time-integral temperature measurements,

T

∫
0

ω1(t)u(x, t) dt = ϕ1(x), x ∈ Ω, (1.3)

T

∫
0

ω2(t)u(x, t) dt = ϕ2(x), x ∈ Ω, (1.4)

whereω1(t) andω2(t) are twogivenweight functions, andϕ1(x) andϕ2(x) are given time-averagedmeasured
data. If one weight function is a close approximation to the Dirac delta function δ(t − T), the time-integral
temperature becomes the final time temperature observation. In this sense, the integral observations (1.3)
and (1.4) can be viewed as a generalisation of the final-time observations (1.2). On the other hand, note that
the choice of theweight functions in (1.3) and (1.4) is important to extract useful information for the recovery
of the two unknown quantities, see [4] for more details.

Efficient schemes of reconstructing two quantities simultaneously have already been established, e.g.,
the space-dependent reaction coefficient and the initial temperature were simultaneously identified from the
final time observation of temperature in [37] and from the time-integral temperature measurement in [4].
Such methods can also be applied to simultaneously determine the reaction coefficient q(x) and the source
component f(x) in the inverse problem (1.1), (1.3) and (1.4).

The paper is organised as follows. The approach of dealingwith the existence and uniqueness of the non-
linear inverse problem (1.1), (1.3) and (1.4) is to transform it into a nonlinear non-classical direct problem,
as described in Section 2. For the numerical solution, the least-squares objective functional is minimised to
obtain the quasi-solution of the unknown reaction coefficient q(x) and source component f(x), as described
in Section 3. In Section 4, the Fréchet differentiability of this objective functional is established, and the
Fréchet gradients are derived and proved to be Lipschitz continuous. The CGM is established based on these
gradients and the adjoint problem to reconstruct the unknown coefficients simultaneously. The convergence
of the CGM with the Fletcher-Reeves formula [12] is considered based on the arguments in [38]. Since the
inverse problem considered in this paper is unstable, the CGM regularised by the discrepancy principle [1] is
utilised to obtain a stable numerical solution to the inverse problem. Three numerical examples of one- and
two-dimensional inverse problems are presented and discussed in Section 5. Finally, Section 6 highlights the
conclusions of the paper.

2 Unique solvability of the inverse problem
In this section, we shall prove that there exists a unique solution (q(x), f(x), u(x, t)) to the inverse problem
(1.1), (1.3) and (1.4), when the source components h(x, t) and g(x, t), the Dirichlet boundary data μ(x, t) and
the initial temperature u0(x) are specified. In the following mathematical analysis, we will use the standard
Sobolev spaces H1(Ω), H1

0(Ω), H2(Ω) and H2,1(Q), which have been defined in many textbooks, e.g., [35]. In
order to obtain the existence and uniqueness of the solution to the inverse problem (1.1), (1.3) and (1.4), we
introduce the following assumptions:
(a) the input data h, g ∈ L∞(Q), μ ∈ L∞(S) and u0 ∈ H1(Ω) ∩ L∞(Ω),
(b) there exists a functionM(x, t) ∈ H2,1(Q) ∩ L∞(0, T;H1(Ω) ∩ L∞(Ω)) =: V satisfyingM(x, t)|S = μ(x, t),
(c) ϕ1, ϕ2 ∈ H2(Ω) ∩ L∞(Ω) and ω1, ω2 ∈ C1[0, T] satisfy the compatibility conditions

T

∫
0

ω1(t)μ(x, t) dt = ϕ1(x) and
T

∫
0

ω2(t)μ(x, t) dt = ϕ2(x)

for x ∈ ∂Ω,
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(d) for all x ∈ Ω,

ϕ1(x)
T

∫
0

ω2(t)h(x, t) dt − ϕ2(x)
T

∫
0

ω1(t)h(x, t) dt ̸= 0,

(e) A2a1 − A1a2 ≥ M1 and Φ2a1 − Φ1a2 ≤ M2 a.e. in Ω, for some positive constants M1 and M2,
where

{{{{{{{{{{{{{{
{{{{{{{{{{{{{{
{

ai(x) =
T

∫
0

ωi(t)g(x, t) dt + ∇2ϕi(x) + ωi(0)u0(x),

Ai(x) =
∫
T
0 ωi(t)h(x, t) dt

ϕ1(x) ∫
T
0 ω2(t)h(x, t) dt − ϕ2(x) ∫

T
0 ω1(t)h(x, t) dt

,

Φi(x) =
ϕi(x)

ϕ1(x) ∫
T
0 ω2(t)h(x, t) dt − ϕ2(x) ∫

T
0 ω1(t)h(x, t) dt

,

i = 1, 2. (2.1)

We also define the Banach space

V0 := H2,1(Q) ∩ L∞(0, T;H1
0(Ω) ∩ L∞(Ω)) ⊂ V

equipped with the norm
‖u‖V0 = ‖u‖H2,1(Q) + ‖u‖L∞(0,T;H1

0(Ω)∩L∞(Ω)). (2.2)

We now state the well-posedness for the direct initial-boundary value problem (1.1) when all the coef-
ficients and input data are specified, [26], and the Schauder fixed point theorem, which is employed to
establish the existence of solution to the inverse problem.

Lemma 2.1. Let assumptions (a) and (b) hold, and suppose that 0 < q− ≤ q ≤ q+ < ∞ in Ω for some prescribed
constants q− and q+, q ∈ L∞(Ω) and f ∈ L∞(Ω). Then the initial-boundary value direct problem (1.1) satisfy-
ing the compatibility condition u0(x) = μ(x, 0) for all x ∈ ∂Ω, has a unique solution u ∈ V, which satisfies the
following estimate:

|u(x, t)| ≤ max{ 1q− (‖f‖L∞(Ω)‖h‖L∞(Q) + ‖g‖L∞(Q)), ‖μ‖L∞(S), ‖u0‖L∞(Ω)} a.e. in Q. (2.3)

Theorem 2.1 (Schauder fixed point theorem). Let X be a closed convex subset of a Banach space V and let
F : X 󳨃→ X be a continuous and compact mapping. Then F has a fixed point.

In order to obtain the existence and uniqueness to the solution of the inverse problem (1.1), (1.3) and (1.4),
we reformulate it as a nonlinear non-classical parabolic problem. Thus, multiplying the first equation in
(1.1) by ω1(t) and ω2(t), respectively, integrating the resulting relations with respect to t from 0 to T, and
using (1.3) and (1.4), we have

ωi(T)u(x, T) − ωi(0)u0(x) −
T

∫
0

ω󸀠i (t)u(x, t) dt
= ∇2ϕi(x) − q(x)ϕi(x) + f(x)

T

∫
0

ωi(t)h(x, t) dt +
T

∫
0

ωi(t)g(x, t) dt, i = 1, 2.

(2.4)

By the notations in (2.1) and using (2.4), we have

q(x) = A2(x)(a1(x) + u1(x)) − A1(x)(a2(x) + u2(x)), (2.5)
f(x) = Φ2(x)(a1(x) + u1(x)) − Φ1(x)(a2(x) + u2(x)), (2.6)

where

ui(x) = −ωi(T)u(x, T) +
T

∫
0

ω󸀠i (t)u(x, t) dt, i = 1, 2. (2.7)
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Substituting (2.5) and (2.6) into (1.1), we obtain the nonlinear non-classical parabolic problem given by

{{{{{{
{{{{{{
{

ut = ∇2u − {A2(x)(a1(x) + u1(x)) − A1(x)(a2(x) + u2(x))}u
+ {Φ2(x)(a1(x) + u1(x)) − Φ1(x)(a2(x) + u2(x))}h(x, t) + g(x, t), (x, t) ∈ Q,

u(x, t) = μ(x, t), (x, t) ∈ S,

u(x, 0) = u0(x), x ∈ Ω.

(2.8)

Thus, the inverse problem (1.1), (1.3) and (1.4) of determining the unknown quantities q(x) and f(x) simul-
taneously is equivalent to obtaining the solution u(x, t) to the nonlinear parabolic problem (2.8).

We utilise the methodology applied in [26], see also [24, 25], and consider the following two auxiliary
parabolic problems:

{{{
{{{
{

Ut = ∇2U − (A2a1 − A1a2)U + g, (x, t) ∈ Q,
U(x, t) = μ(x, t), (x, t) ∈ S,

U(x, 0) = u0(x), x ∈ Ω,

(2.9)

and
{{{{{{{{{
{{{{{{{{{
{

Wt = ∇2W − {A2a1 − A1a2 + c(A2(W1 + U1) − A1(W2 + U2))}W
− c(A2(W1 + U1) − A1(W2 + U2))U
+ {Φ2a1 − Φ1a2 + c(Φ2(W1 + U1) − Φ1(W2 + U2))}h, (x, t) ∈ Q,

W(x, t) = 0, (x, t) ∈ S,

W(x, 0) = 0, x ∈ Ω,

(2.10)

where

W i(x) := −ωi(T)W(x, T) +
T

∫
0

ω󸀠i (t)W(x, t) dt,
U i(x) := −ωi(T)U(x, T) +

T

∫
0

ω󸀠i (t)U(x, t) dt, i = 1, 2,

(2.11)

and c( ⋅ ) is a Lipschitz continuous function onℝ defined by

c(ξ) =
{{{
{{{
{

ξ if |ξ| ≤ M0,
M0 if ξ > M0,
−M0 if ξ < −M0,

(2.12)

and M0 is some fixed number in the interval (0,M1). Remark that from (2.11) we obtain

U i(x) +W i(x) = −ωi(T)(U(x, T) +W(x, T)) +
T

∫
0

ω󸀠i (t)(U(x, t) +W(x, t)) dt, i = 1, 2, (2.13)

whose form, in relation to (2.7), suggests to prove that u = U +W solves problem (2.8).

Theorem 2.2. Let assumptions (a)–(e) hold. Then there exists a solution W(x, t) ∈ V0 to problem (2.10).

Proof. Taking the linear initial-boundary value problem (2.9) into consideration and using Lemma 2.1, there
exists a unique solution U(x, t) ∈ V, satisfying the following estimate:

|U(x, t)| ≤ max{ 1M1
‖g‖L∞(Q), ‖μ‖L∞(S), ‖u0‖L∞(Ω)} =: N1. (2.14)

Consider the following linear initial-boundary value problem:

{{{{{{
{{{{{{
{

Wt = ∇2W − {A2a1 − A1a2 + c(A2(v1 + U1) − A1(v2 + U2))}W − c(A2(v1 + U1)

− A1(v2 + U2))U + {Φ2a1 − Φ1a2 + c(Φ2(v1 + U1) − Φ1(v2 + U2))}h, (x, t) ∈ Q,
W(x, t) = 0, (x, t) ∈ S,

W(x, 0) = 0, x ∈ Ω,

(2.15)
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where the functions v1 and v2 are defined by the same way as for problem (2.10), namely,

vi(x) := −ωi(T)v(x, T) +
T

∫
0

ω󸀠i (t)v(x, t) dt, i = 1, 2, (2.16)

and v(x, t) is an arbitrary function belonging to the space V0.
Multiplying the first equation in (2.15) by W, integrating the result over the space-time domain Q and

using the definition of function c( ⋅ ) in (2.12), we have
1
2 ‖W( ⋅ , T)‖

2
L2(Ω) + ∫

Q

(|∇W|2 + (M1 −M0)W2) dx dt

≤
(M0 +M2)2

M1 −M0
‖h‖2L2(Q) + M2

0N
2
1

M1 −M0
|Q| + M1 −M0

2 ‖W‖2L2(Q), (2.17)

where |Q| = T×diam(Ω) is the size of the solutiondomainQ, andwehaveused the inequality αβ ≤ 1
4ϵ α

2 + ϵβ2

for ϵ = 1
4 (M1 −M0), twice to estimate the third and fourth-terms on the right-hand side of the first equation

in (2.15). Thus, we obtain

‖W( ⋅ , T)‖2L2(Ω) + ∫
Q

(W2 + |∇W|2) dx dt ≤ C1(‖h‖2L2(Q) + 1),
where C1 is a positive constant depending on M0, M1, M2, N1 and |Q|. On dividing inequality (2.17) by
min{M1 −M0, 2} > 0 and re-denoting the resulting constant still by C1 then, we get the estimate

∫
Q

(W2 + |∇W|2) dx dt ≤ C1(‖h‖2L2(Q) + 1).
From the homogeneous Dirichlet boundary condition and initial condition on W in (2.15) we have

t

∫
0

∫
Ω

(Wτ − ∇2W)2 dx dτ =
t

∫
0

∫
Ω

(W2
τ + (∇

2W)2 − 2Wτ∇2W) dx dτ

=
t

∫
0

∫
Ω

(W2
τ + (∇

2W)2 + 2∇Wτ ⋅ ∇W) dx dτ

=
t

∫
0

∫
Ω

(W2
τ + (∇

2W)2) dx dτ + ∫
Ω

|∇W(x, t)|2 dx. (2.18)

Using assumption (e), equation (2.12), and the homogeneous boundary and initial conditions in (2.15),
we have

−
t

∫
0

∫
Ω

{A2a1 − A1a2 + c(A2(v1 + U1) − A1(v2 + U2))}W(Wτ − ∇2W) dx dτ

≤
M0 −M1

2 ‖W( ⋅ , t)‖2L2(Ω) + (M0 −M1)
t

∫
0

∫
Ω

|∇W|2 dx dτ ≤ 0, (2.19)

−
t

∫
0

∫
Ω

c(A2(v1 + U1) − A1(v2 + U2))U(Wτ − ∇2W) dx dτ

≤
t

∫
0

∫
Ω

[2c2(A2(v1 + U1) − A1(v2 + U2))U2 +
1
8 (Wτ − ∇2W)2] dx dτ

≤
1
4

t

∫
0

∫
Ω

(W2
τ + (∇

2W)2) dx dτ + 2M2
0N

2
1 |Q|, (2.20)
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and
t

∫
0

∫
Ω

{Φ2a1 − Φ1a2 + c(Φ2(v1 + U1) − Φ1(v2 + U2))}h(Wτ − ∇2W) dx dτ

≤
1
4

t

∫
0

∫
Ω

(W2
τ + (∇

2W)2) dx dτ + 2(M0 +M2)2
t

∫
0

∫
Ω

h2 dx dτ, (2.21)

where we have used that for any two positive numbers α and βwe have that αβ ≤ 2α2 + β2
8 . Then, multiplying

the first equation in (2.15) by (Wτ − ∇2W) and integrating over Ω × (0, t), along with using (2.18)–(2.21),
and that M0 < M1, we get

t

∫
0

∫
Ω

(W2
τ + (∇

2W)2) dx dτ + ∫
Ω

|∇W(x, t)|2 dx ≤ C2(
t

∫
0

∫
Ω

h2 dx dτ + 1) ≤ C2(‖h‖2L2(Q) + 1), (2.22)

where C2 > 0 depends on M0, M2, N1 and |Q|. This implies that

max
t∈[0,T]∫

Ω

|∇W(x, t)|2 dx ≤ C2(‖h‖2L2(Q) + 1), (2.23)

and (taking t = T in (2.22))
∫
Q

(W2
t + (∇

2W)2) dx dt ≤ C2(‖h‖2L2(Q) + 1). (2.24)

Using inequality (2.3) in the Lemma 2.1 applied to the solution W of problem (2.15), equations (2.14),
(2.15) and the assumption (e), we obtain

|W(x, t)| ≤ 1
M1 −M0

(M0N1 + (M0 +M2)‖h‖L∞(Q)) =: N2 a.e. (x, t) ∈ Q. (2.25)

Using (2.2), estimates (2.18), (2.23)–(2.25) imply that the solution W(x, t) of the initial-boundary value
problem (2.15) belongs to the space V0, and satisfies the following estimate:

‖W‖V0 ≤ R, (2.26)

where
R := C0(‖h‖L2(Q) + 1) + N2,

and C0 is a positive constant depending on M0, M1, M2, N1 and |Q|. Thus, problem (2.15) generates an
operator F from V0 to itself and F(v) = W.

Let
X = {v ∈ V0 : ‖v‖V0 ≤ R}.

Then X is a bounded and closed convex subset of V0. Since the solution W to problem (2.15) satisfies the
estimate (2.26), the operator F takes the set X into itself.

It remains to show F : X 󳨃→ X is a continuous and compact operator. Let {vn(x, t)} be a sequence of
functions from the set X. Then according to (2.16), {(v1)n(x)} and {(v2)n(x)} are two bounded sequences
in H2(Ω) ∩ L∞(Ω). Clearly, the sequence {Wn(x, t)} given by Wn := F(vn) is a bounded sequence in X
by (2.25). By the boundedness of the sequences {vn(x, t)}, {Wn(x, t)}, {(v1)n(x)} and {(v2)n(x)}, there exist
four subsequences, still denoted the same, such that
∙ vn(x, t) → v(x, t) and Wn(x, t) → W(x, t) weakly in H2,1(Q) ∩ L∞(Q) a.e. (x, t) ∈ Q,
∙ (v1)n(x) → v1(x) and (v2)n(x) → v2(x) in L∞(Ω) a.e. x ∈ Ω.
Denoting wn(x, t) = Wn(x, t) −W(x, t), we have

{{{
{{{
{

(wn)t = ∇2wn − s(1)n wn − s(2)n (W + U) + s(3)n h, (x, t) ∈ Q,
wn(x, t) = 0, (x, t) ∈ S,

wn(x, 0) = 0, x ∈ Ω,

(2.27)
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where
s(1)n := A2a1 − A1a2 + c(A2((v1)n + U1) − A1((v2)n + U2)),

s(2)n := c(A2((v1)n + U1) − A1((v2)n + U2)) − c(A2(v1 + U1) − A1(v2 + U2)),

s(3)n := c(Φ2((v1)n + U1) − Φ1((v2)n + U2)) − c(Φ2(v1 + U1) − Φ1(v2 + U2)).

Applying the same technique used to derive (2.17) for the function W satisfying problem (2.15), to the
function wn satisfying problem (2.27), we obtain

1
2 ‖wn( ⋅ , T)‖2L2(Ω) + ∫

Q

(|∇wn|2 + (M1 −M0)w2
n) dx dt

≤
‖W‖2L2(Q) + ‖U‖2L2(Q)

M1 −M0
‖s(2)n ‖2L∞(Ω) + ‖h‖2L2(Q)M1 −M0

‖s(3)n ‖2L∞(Ω) + M1 −M0
2 ‖wn‖2L2(Q).

It then yields that

∫
Q

(w2
n + |∇wn|2) dx dt ≤

1
min{1, M1−M0

2 }
{
‖W‖2L2(Q) + ‖U‖2L2(Q)

M1 −M0
‖s(2)n ‖2L∞(Ω) + ‖h‖2L2(Q)M1 −M0

‖s(3)n ‖2L∞(Ω)}. (2.28)

Invoking the approaches utilised in deriving (2.18)–(2.24), we have

t

∫
0

∫
Ω

((wn)τ − ∇2wn)2 dx dτ =
t

∫
0

∫
Ω

((wn)2τ + (∇
2wn)2) dx dτ + ∫

Ω

|∇wn(x, t)|2 dx, (2.29)

−
t

∫
0

∫
Ω

s(1)n wn((wn)τ − ∇2wn) dx dτ ≤
M0 −M1

2 ‖wn( ⋅ , t)‖2L2(Ω) + (M0 −M1)
t

∫
0

∫
Ω

|∇wn|2 dx dτ ≤ 0, (2.30)

−
t

∫
0

∫
Ω

s(2)n (W + U)((wn)τ − ∇2wn) dx dτ ≤
1
4

t

∫
0

∫
Ω

((wn)2τ + (∇
2wn)2) dx dτ

+ 2‖s(2)n ‖2L∞(Ω) t

∫
0

∫
Ω

(W2 + U2) dx dτ, (2.31)

t

∫
0

∫
Ω

s(3)n h((wn)τ − ∇2wn) dx dτ ≤
1
4

t

∫
0

∫
Ω

((wn)2τ + (∇
2wn)2) dx dτ + 2‖s(3)n ‖2L∞(Ω) t

∫
0

∫
Ω

h2 dx dτ. (2.32)

Multiplying the first equation in (2.27) by ((wn)τ − ∇2wn) and integrating over Ω × (0, t), along with using
(2.29)–(2.32), we obtain

t

∫
0

∫
Ω

((wn)2τ + (∇
2wn)2) dx dτ + ∫

Ω

|∇wn(x, t)|2 dx

≤ 4‖s(2)n ‖2L∞(Ω) t

∫
0

∫
Ω

(W2 + U2) dx dτ + 4‖s(3)n ‖2L∞(Ω) t

∫
0

∫
Ω

h2 dx dτ,

which implies that

{∫
Q

((wn)2t + (∇
2wn)2) dx dt, max

t∈[0,T]∫
Ω

|∇wn(x, t)|2 dx}

≤ 4‖s(2)n ‖2L∞(Ω)(‖W‖2L2(Q) + ‖U‖2L2(Q)) + 4‖s(3)n ‖2L∞(Ω)‖h‖2L2(Q). (2.33)

Finally, using Lemma 2.1 and estimates (2.14) and (2.25) to problem (2.27), we have

|wn(x, t)| ≤
1

M1 −M0
((N1 + N2)‖s(2)n ‖L∞(Ω) + ‖h‖L∞(Q)‖s(3)n ‖L∞(Ω)) a.e. (x, t) ∈ Q. (2.34)
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By the definition (2.12) of the function c(ξ), we observe that

|s(2)n (x)| ≤ |(v1)n(x) − v1(x)|max
ξ∈Ω |A2(ξ)| + |(v2)n(x) − v2(x)|max

ξ∈Ω |A1(ξ)|.

Then, as n →∞, it follows that ‖s(2)n ‖L∞(Ω) → 0. Similarly, ‖s(3)n ‖L∞(Ω) → 0, as n →∞. Thus, from (2.28),
(2.33) and (2.34), we obtain that, as n →∞,

∫
Q

(|∇wn|2 + w2
n) dx dt → 0, ∫

Q

((wn)2t + (∇
2wn)2) dx dt → 0,

and
max
t∈[0,T]∫

Ω

|∇wn(x, t)|2 dx → 0 and |wn(x, t)| → 0 a.e. (x, t) ∈ Q.

The above results together with (2.2) imply that ‖wn‖V0 → 0, as n →∞, andW(x, t) ∈ X due to the convexity
and closedness of X. This shows that for any bounded sequence {vn(x, t)} in X, the sequence {Wn = F(vn)}has
a convergent subsequence in X. Thus, the operator F is a continuous and compact mapping of X into itself.
Since X is a convex closed subset ofV0, the Schauder fixed point Theorem 2.1 implies that the operatorF has
a fixed pointW inV0, which is the solutionW(x, t) of problem (2.10). Moreover,W satisfies inequality (2.25)
rewritten as

|W(x, t)| ≤ N2 a.e. (x, t) ∈ Q. (2.35)

This conclude the proof of the Existence Theorem 2.2.

Next, we will prove the existence and uniqueness of the solution to the inverse problem (1.1), (1.3) and (1.4).
We set

M3 := |ω1(T)| + |ω2(T)| +
T

∫
0

|ω󸀠1(t)| dt + T

∫
0

|ω󸀠2(t)| dt,
M4 := max

x∈Ω {|A1(x)|, |A2(x)|, |Φ1(x)|, |Φ2(x)|}, (2.36)

N3 :=
2M3M4(N1 + N2 + ‖h‖L∞(Q))

M1 − 2M3M4(N1 + N2)
. (2.37)

Theorem 2.3. Suppose that assumptions (a)–(e) are satisfied. Assume that there exists a number M0 ∈ (0,M1)
satisfying

2M3M4(N1 + N2) ≤ M0, N3 < 1. (2.38)

Then there exists a unique solution (u(x, t), q(x), f(x)) ∈ V × L∞(Ω) × L∞(Ω) and q(x) > 0 a.e. x ∈ Ω to the
inverse problem (1.1), (1.3) and (1.4).

Proof. According to Lemma 2.1 and Theorem2.2, we know that the parabolic problems (2.9) and (2.10) have
solutions U(x, t) ∈ V andW(x, t) ∈ V0 satisfying (2.14) and (2.35), respectively.

By the definition ofW1 in (2.11), we have

|W1| ≤ (|ω1(T)| +
T

∫
0

|ω󸀠1(t)| dt)‖W‖L∞(Q) ≤ M3N2, (2.39)

and by the same way, we have |W2| ≤ M3N2, |U1| ≤ M3N1 and |U2| ≤ M3N1, which imply that

|W i + U i| ≤ M3(N1 + N2), i = 1, 2.

Thus,

|A2(W1 + U1) − A1(W2 + U2)| ≤ M3(N1 + N2)(|A1| + |A2|) ≤ 2M3M4(N1 + N2),
|Φ2(W1 + U1) − Φ1(W2 + U2)| ≤ M3(N1 + N2)(|Φ1| + |Φ2|) ≤ 2M3M4(N1 + N2).

Then these inequalities and the first inequality in (2.38) along with the definition (2.12) of the function c( ⋅ )
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imply that
c(A2(W1 + U1) − A1(W2 + U2)) = A2(W1 + U1) − A1(W2 + U2),
c(Φ2(W1 + U1) − Φ1(W2 + U2)) = Φ2(W1 + U1) − Φ1(W2 + U2).

Then problem (2.10) becomes

{{{{{{{{{
{{{{{{{{{
{

Wt = ∇2W − {A2a1 − A1a2 + A2(W1 + U1) − A1(W2 + U2)}W
− (A2(W1 + U1) − A1(W2 + U2))U
+ {Φ2a1 − Φ1a2 + Φ2(W1 + U1) − Φ1(W2 + U2)}h, (x, t) ∈ Q,

W(x, t) = 0, (x, t) ∈ S,

W(x, 0) = 0, x ∈ Ω,

(2.40)

which has a solutionW(x, t) ∈ V0 such that |W(x, t)| ≤ N2 a.e. (x, t) ∈ Q.
From (2.9) and (2.40), taking u(x, t) = W(x, t) + U(x, t), it is easy to obtain that u(x, t) belongs to the

space V and satisfies problem (2.8). Moreover, u(x, t) satisfies the estimate

|u(x, t)| ≤ N1 + N2 a.e. (x, t) ∈ Q. (2.41)

Suppose now that w(x, t) and v(x, t) ∈ V are two solutions to problem (2.8), and set

z(x, t) = v(x, t) − w(x, t).

Then z(x, t) satisfies the following problem:

{{{
{{{
{

zt = ∇2z − (A2a1 − A1a2 + A2w1 − A1w2)z − (A2z1 − A1z2)v + (Φ2z1 − Φ1z2)h, (x, t) ∈ Q,
z(x, t) = 0, (x, t) ∈ S,

z(x, 0) = 0, x ∈ Ω,

(2.42)

where zi = vi − wi, vi is defined by (2.16) and

wi = −ωi(T)w(x, T) +
T

∫
0

ω󸀠i (t)w(x, t) dt, i = 1, 2.

By the first inequality in (2.38) and M0 ∈ (0,M1), as in (2.39), we have

|A2a1 − A1a2 + A2w1 − A1w2| ≥ M1 −max
x∈Ω |A2w1 − A1w2|

≥ M1 − 2M3M4(N1 + N2) > M0 − 2M3M4(N1 + N2) ≥ 0, (2.43)

and using that (as in (2.39)), |zi| ≤ M3‖z‖L∞(Q) for i = 1, 2,
max{|A2z1 − A1z2|, |Φ2z1 − Φ1z2|} ≤ 2M3M4‖z‖L∞(Q).

Thus from Lemma 2.1 applied to the solution z of problem (2.42), and inequality (2.41) applied to the func-
tion v, we obtain that

‖z‖L∞(Q) ≤ 2M3M4‖z‖L∞(Q)(‖v‖L∞(Q) + ‖h‖L∞(Q))
M1 − 2M3M4(N1 + N2)

≤
2M3M4(N1 + N2 + ‖h‖L∞(Q))

M1 − 2M3M4(N1 + N2)
‖z‖L∞(Q) = N3‖z‖L∞(Q).

Since N3 < 1, we obtain that ‖z‖L∞(Q) = 0. Thus, there exists at most one solution to problem (2.8) in the
space V.

This result means that q(x) given by (2.5) and f(x) given by (2.6) uniquely satisfy the inverse problem
(1.1), (1.3) and (1.4), and q(x), f(x) ∈ L∞(Ω), since the determination of the solution (u, q, f) to the inverse
problem (1.1), (1.3) and (1.4) is equivalent to that of the solution to the nonlinear parabolic problem (2.8).
Furthermore, q(x) > 0, a.e. x ∈ Ω, due to (2.5) and the first inequality in (2.38) similar as deriving (2.43). The
proof is complete.
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2.1 Example

Let us now give an example for which the sufficient conditions (a)–(e) and (2.38) of the existence and unique-
ness of solution in Theorem 2.3 are satisfied. Consider the one-dimensional (N = 1) case such that Ω = (0, l)
with l > 0 and Q = Ω × (0, T) with T > 0. Take the Dirichlet data

μ1(t) = u(0, t) =
πl
2T , μ2(t) = u(l, t) =

2l
T
sin(2πtT ), t ∈ (0, T), (2.44)

and the initial temperature
u0(x) = u(x, 0) =

π(l − x)
2T , x ∈ [0, l]. (2.45)

Also, take the weight functions

ω1(t) = sin(
2πt
T )

, ω2(t) =
2
π
+
π
2 −

πt
T
, t ∈ [0, T], (2.46)

and the measurements (1.3) and (1.4) given by

ϕ1(x) =
T

∫
0

ω1(t)u(x, t) dt = x, ϕ2(x) =
T

∫
0

ω2(t)u(x, t) dt = l, x ∈ [0, l].

Finally, take the source component terms

h(x, t) = sin( πt2T ), g(x, t) = sin(2πtT ), (x, t) ∈ Q. (2.47)

Let us first check assumptions (a)–(e) by hand (or, in some cases, using symbolic computations in MAPLE).
The regularity assumptions (a) and (b) are obviously satisfied. Condition (c) is also satisfied since

0 = ϕ1(0) =
T

∫
0

ω1(t)μ1(t) dt, l = ϕ1(l) =
T

∫
0

ω1(t)μ2(t) dt,

and

l = ϕ2(0) =
T

∫
0

ω2(t)μ1(t) dt, l = ϕ2(l) =
T

∫
0

ω2(t)μ2(t) dt.

Condition (d) is satisfied since

∆(x) := ϕ1(x)
T

∫
0

ω2(t)h(x, t) dt − ϕ2(x)
T

∫
0

ω1(t)h(x, t) dt =
xT(π − 2)2

π2
+
8lT
15π ̸= 0, x ∈ [0, l].

To check that assumption (e) is satisfied, we first calculate the quantities given by expression (2.1), namely,

a1(x) =
T

∫
0

ω1(t)g(x, t) dt + ∇2ϕ1(x) + ω1(0)u0(x) =
T
2 ,

a2(x) =
T

∫
0

ω2(t)g(x, t) dt + ∇2ϕ2(x) + ω2(0)u0(x) =
T
2 +
(l − x)(π2 + 4)

4T ,

A1(x) =
∫
T
0 ω1(t)h(x, t) dt

∆(x) = −
8T

15π∆(x) = −
8π

8lπ + 15x(π − 2)2
,

A2(x) =
∫
T
0 ω2(t)h(x, t) dt

∆(x) =
T(π − 2)2

π2∆(x)
=

15(π − 2)2

8lπ + 15x(π − 2)2
,

Φ1(x) =
x

∆(x) =
15π2x

T(8lπ + 15x(π − 2)2)
,

Φ2(x) =
l

∆(x) =
15π2l

T(8lπ + 15x(π − 2)2)
.
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The function A2(x)a1(x) − A1(x)a2(x) is a decreasing function since its derivative is negative. Hence, its min-
imum value is achieved at x = l, which yields

A2(x)a1(x) − A1(x)a2(x) ≥ A2(l)a1(l) − A1(l)a2(l) =
T
2l =: M1.

The functionΦ2(x)a1(x) − Φ1(x)a2(x) is decreasing if T
2

l > 7.Hence, itsmaximum is achievedat x = 0,which
yields

Φ2(x)a1(x) − Φ1(x)a2(x) ≤ Φ2(0)a1(0) − Φ1(0)a2(0) =
15π
16 =: M2.

From (2.44), (2.45) and (2.47), we have that

‖g‖L∞(Q) = 1, ‖u0‖L∞(Ω) = πl
2T , ‖μ1‖L∞(0,T) = πl

2T , ‖μ2‖L∞(0,T) = 2lT ,

and from (2.14) we get
N1 =

2l
T
.

Next, letting M0 = T
4l < M1 = T

2l in (2.12), from (2.25) we obtain that (note that ‖h‖L∞(Q) = 1)
N2 =

4l
T (

1
2 +

T
4l +

15π
16 ) = 1 + (2 +

15π
4 )

l
T
.

Finally, from (2.36) and (2.37) we obtain that

M3 = 0 +
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
2
π
−
π
2
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+
2π
T

T

∫
0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
cos(2πtT )

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
dt +

T

∫
0

π
T
dt = 3π2 −

2
π
+ 4 ≈ 8.076,

M4 = max{1l ,
15(π − 2)2

8lπ , 15π2

T(15π2 − 52π + 60)
, 15π8T } = max{1l ,

15π
8T },

and

2M3M4(N1 + N2) = 2(
3π
2 −

2
π
+ 4)max{1l ,

15π
8T }(1 + (4 +

15π
4 )

l
T )

,

N3 =
2(3π2 −

2
π + 4)max{1l ,

15π
8T }(2 + (4 +

15π
4 )

l
T )

T
2l − 2(

3π
2 −

2
π + 4)max{1l ,

15π
8T }(1 + (4 +

15π
4 )

l
T )

.

Then conditions in (2.38) require that

2(3π2 −
2
π
+ 4)max{1l ,

15π
8T }(1 + (4 +

15π
4 )

l
T )
≤

T
4l ,

2(3π2 −
2
π
+ 4)max{1l ,

15π
8T }(3 + 2(4 +

15π
4 )

l
T )
<

T
2l .

From this, we get that

4(3π2 −
2
π
+ 4)max{1, 15πl8T }(3T + (8 +

15π
2 )l) < T

2. (2.48)

For fixed l and T sufficiently large, this condition is clearly satisfied. For example, if T ≥ 270 and 0 < l ≤ 144
π ,

then
15πl
8T ≤ 1

and (2.48) is satisfied. We also satisfy that

l < T
2

7
which was previously needed to ensure that the function Φ2a1 − Φ1a2 ≤ M2 is decreasing.

In the next section, we shall numerically recover the unknown coefficients q(x) and f(x), simultaneously,
from the time-average temperature measurements ϕ1 given by (1.3) and ϕ2 given by (1.4).
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3 Optimisation method
In practical cases, the time-average temperature measurements ϕ1 given by (1.3) and ϕ2 given by (1.4) may
not be smooth functions, but contain some noise. This leads to the main difficulty in the numerical recon-
struction of the solution since the inverse problem is ill-posed such that small errors into the input data (1.3)
and (1.4) lead to large errors in the output coefficients q(x) and f(x). From the view of numerical implementa-
tion,we in fact search for the solution approximated from thenoisymeasurements (ϕϵ

1, ϕ
ϵ
2) ∈ L∞(Ω) × L∞(Ω)

of the exact data (ϕ1, ϕ2) satisfying

‖ϕϵ
1 − ϕ1‖L2(Ω) ≤ ϵ, ‖ϕϵ

2 − ϕ2‖L2(Ω) ≤ ϵ, (3.1)

where ϵ ≥ 0 represents the noise level. In this noisy case, instead of (1.3) and (1.4) we impose

T

∫
0

ω1(t)u(x, t) dt = ϕϵ
1(x), x ∈ Ω, (3.2)

T

∫
0

ω2(t)u(x, t) dt = ϕϵ
2(x), x ∈ Ω. (3.3)

Therefore, the inverse problem is to recover the reaction coefficient q(x), the source term f(x) and the tem-
perature u(x, t) from (1.1), (1.3) and (1.4), given ϕϵ

i , for i = 1, 2, are such that (3.1) holds. Conditions (a)–(e)
and (2.38) are assumed whenever necessary.

Let u(x, t; q, f) or u(q, f), if there is no confusion, represent the unique solution in V ⊂ H2,1(Q) of the
direct problem (1.1) with respect to a particular pair (q, f) ∈ Aq ×Af , as guaranteed by Lemma 2.1 where the
admissible setsAq andAf are defined by

Aq := {q ∈ L∞(Ω) : 0 < q− ≤ q(x) ≤ q+ a.e. x ∈ Ω},
Af := {f ∈ L∞(Ω) : |f(x)| ≤ κ a.e. x ∈ Ω}

and q−, q+ and κ are given positive constants. Then the quasi-solution of the inverse problem (1.1), (3.2) and
(3.3) can be obtained by minimising the least-squares objective functional J(q, f) : Aq ×Af 󳨃→ ℝ+ defined by

J(q, f) = 12

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

T

∫
0

ω1(t)u( ⋅ , t; q, f) dt − ϕϵ
1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

L2(Ω) + 12
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

T

∫
0

ω2(t)u( ⋅ , t; q, f) dt − ϕϵ
2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

L2(Ω). (3.4)

In the present study we do not debate on the issue of discretise then regularise or, regularise then discretise,
see, e.g., [10]; for simplicity, we adopt the latter approach.

Next, we intend to derive the Fréchet derivatives J󸀠q(q, f) and J󸀠f (q, f) of the objective functional J(q, f),
and express these gradients via the solution λ(x, t) of a certain appropriate adjoint problem to problem (1.1)
given by

{{{{{{{
{{{{{{{
{

λt = −∇2λ + qλ −
2
∑
i=1ωi(t)(

T

∫
0

ωi(τ)u(x, τ) dτ − ϕϵ
i (x)), (x, t) ∈ Q,

λ(x, t) = 0, (x, t) ∈ S,

λ(x, T) = 0, x ∈ Ω.

(3.5)

Lemma 3.1. Suppose that q ∈Aq, ϕϵ
1, ϕ

ϵ
2 ∈ L∞(Ω) and ω1(t), ω2(t) ∈ L∞[0, T]. Then the adjoint problem (3.5)

has a unique solution λ ∈ V0 ⊂ V, which satisfies

‖λ‖L2(Q) ≤ C 2
∑
i=1 ‖ωi‖L∞[0,T](‖ϕϵ

i ‖L∞(Ω) + ‖ωi‖L∞[0,T]‖u‖L∞(Q)), (3.6)

and C is a positive constant depending on T, |Q| and q−.
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Proof. The existence and uniqueness of the solution λ ∈ V0 ⊂ V follows from Lemma 2.1. Multiplying the
adjoint problem (3.5) by λ, and integrating the resulting relation over Q, we have

q−‖λ‖2L2(Q) ≤ 12 ‖λ( ⋅ , 0)‖2L2(Ω) + ∫
Q

(|∇λ|2 + qλ2) dx dt

=
2
∑
i=1∫Q λ(x, t)ωi(t)(

T

∫
0

ωi(τ)u(x, τ) dτ − ϕϵ
i (x)) dx dt.

Since

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
Q

λ(x, t)ωi(t)(
T

∫
0

ωi(τ)u(x, τ) dτ − ϕϵ
i (x)) dx dt

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ C(‖ωi‖L∞[0,T]‖ϕϵ

i ‖L∞(Ω) + ‖ωi‖2L∞[0,T]‖u‖L∞(Q))‖λ‖L2(Q)
for some constant C ≥ 0, this yields (3.6). The lemma is proved

Theorem 3.1. The objective functional J(q, f) is Fréchet differentiable, and the derivatives J󸀠q(q, f) and J󸀠f (q, f)
at (q, f) ∈ Aq ×Af are given by

J󸀠q(q, f) = − T

∫
0

u(x, t)λ(x, t) dt, (3.7)

J󸀠f (q, f) = T

∫
0

h(x, t)λ(x, t) dt. (3.8)

Proof. Take ∆q ∈ L∞(Ω) such that q + ∆q ∈ Aq, and denote by ∆uq := u(q + ∆q, f) − u(q, f) the increment
of u(q, f) with respect to q. Based on (1.1), ∆uq satisfies the following problem:

{{{
{{{
{

(∆uq)t = ∇2(∆uq) − q∆uq − ∆q u(q + ∆q, f), (x, t) ∈ Q,
∆uq(x, t) = 0, (x, t) ∈ S,

∆uq(x, 0) = 0, x ∈ Ω.

(3.9)

Multiplying the first equation in (3.9) by ∆uq, and integrating it on Q, we have

1
2 ‖∆uq( ⋅ , T)‖

2
L2(Ω) + ∫

Q

|∇(∆uq)|2 dx dt + ∫
Q

q|∆uq|2 dx dt = −∫
Q

∆q∆uqu(q + ∆q, f) dx dt.

Then
min{1, q−}‖∆uq‖2H1,0(Q) ≤ ‖∆q‖L∞(Ω)‖∆uq‖L2(Q)‖u(q + ∆q, f)‖L2(Q),

which implies that, using also (2.41),

‖∆uq‖L2(Q) ≤ c‖∆q‖L∞(Ω), (3.10)

where c is a positive constant independent of q and f .
Denoting ∆Jq := J(q + ∆q, f) − J(q, f), by the adjoint problem (3.5), we have

∆Jq = ∫
Q

∆uq(x, t){ω1(t)(
T

∫
0

ω1(τ)u(x, τ) dτ − ϕϵ
1(x)) + ω2(t)(

T

∫
0

ω2(τ)u(x, τ) dτ − ϕϵ
2(x))} dx dt

+
1
2

2
∑
i=1 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

T

∫
0

ωi(t)∆uq( ⋅ , t) dt
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

L2(Ω)
= ∫

Q

∆uq(−λt − ∇2λ + qλ) dx dt +
1
2

2
∑
i=1 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

T

∫
0

ωi(t)∆uq( ⋅ , t) dt
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

L2(Ω).
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Via problems (3.5) and (3.9), the first term of the right-hand side of the above equation becomes

∫
Q

∆uq(−λt − ∇2λ + qλ) dx dt = −∫
Ω

∆uqλ|Tt=0 dx + ∫
Q

λ(∆uq)t dx dt −
T

∫
0

∆uq∇λ|S dt +
T

∫
0

λ∆uq|S dt

− ∫
Q

λ∇2(∆uq) dx dt + ∫
Q

λq∆uq dx dt

= ∫
Q

λ[(∆uq)t − ∇2(∆uq) + q∆uq] dx dt

= −∫
Q

λ∆qu(q + ∆q, f) dx dt

= −∫
Q

λ∆q∆uq dx dt − ∫
Q

λ∆qu(q, f) dx dt.

Thus,

∆Jq = −∫
Q

λ∆q∆uq dx dt − ∫
Q

λ∆qu(q, f) dx dt + 12

2
∑
i=1 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

T

∫
0

ωi(t)∆uq( ⋅ , t) dt
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

L2(Ω).
By using (3.10), we have

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

T

∫
0

ωi(t)∆uq( ⋅ , t) dt
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩L2(Ω) ≤ c‖ωi‖L∞[0,T]‖∆uq‖L2(Q) ≤ c‖ωi‖L∞[0,T]‖∆q‖L∞(Ω), i = 1, 2,

and 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
Q

λ∆q∆uq dx dt
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ ‖∆q‖L∞(Ω)‖λ‖L2(Q)‖∆uq‖L2(Q) ≤ c‖∆q‖2L∞(Ω)‖λ‖L2(Q).

Consequently, we obtain

∆Jq = ∫
Ω

∆q(−
T

∫
0

λu dt) dx + o(‖∆q‖L∞(Ω)),
which means that the Fréchet derivative J󸀠q(q, f) is given by (3.7).

Similarly, take ∆f ∈ L∞(Ω) such that f +∆f ∈ Af , and denote by ∆uf := u(q, f +∆f)−u(q, f) the increment
of u with respect to f . Then ∆uf satisfies the problem

{{{
{{{
{

(∆uf )t = ∇2(∆uf ) − q∆uf + ∆fh, (x, t) ∈ Q,
∆uf (x, t) = 0, (x, t) ∈ S,

∆uf (x, 0) = 0, x ∈ Ω,

(3.11)

and
‖∆uf ‖L2(Q) ≤ c‖∆f‖L∞(Ω)‖h‖L2(Q).

Denoting ∆Jf := J(q, f + ∆f) − J(q, f), and by the same approach, we have

∆Jf = ∫
Q

∆uf (−λt − ∇2λ + qλ) dx dt +
1
2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

T

∫
0

ω1(t)∆uf ( ⋅ , t) dt
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

L2(Ω) + 12
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

T

∫
0

ω2(t)∆uf ( ⋅ , t) dt
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

L2(Ω)
and

∫
Q

∆uf (−λt − ∇2λ + qλ) dx dt = ∫
Q

λ[(∆uf )t − ∇2(∆uf ) + q∆uf ] dx dt = ∫
Q

∆fλh dx dt.

Finally, we obtain that

∆Jf = ∫
Ω

∆f(
T

∫
0

λh dt) dx + o(‖∆f‖L∞(Ω)),
thus the Fréchet gradient J󸀠f (q, f) is given by (3.8). The theorem is proved.
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Theorem 3.2. The Fréchet gradients J󸀠q(q, f) and J󸀠f (q, f) are Lipschitz continuous, i.e., there exist two positive
constants Lq and Lf such that

‖J󸀠q(q1, f1) − J󸀠q(q2, f2)‖L2(Ω) ≤ Lq(‖q1 − q2‖L2(Ω) + ‖f1 − f2‖L2(Ω)),
‖J󸀠f (q1, f1) − J󸀠f (q2, f2)‖L2(Ω) ≤ Lf (‖q1 − q2‖L2(Ω) + ‖f1 − f2‖L2(Ω))

for any q1, q2 ∈ Aq and f1, f2 ∈ Af .

Proof. For any q1, q2 ∈ Aq, and f1, f2 ∈ Af , denoting ∆J󸀠q := J󸀠q(q1, f1) − J󸀠q(q2, f2), from (3.7), we have

‖∆J󸀠q‖L2(Ω) ≤ 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
T

∫
0

λ(q1, f1)[u(q1, f1) − u(q2, f2)] dt
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩L2(Ω) +

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

T

∫
0

u(q2, f2)[λ(q1, f1) − λ(q2, f2)] dt
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩L2(Ω). (3.12)

From (1.1) and (3.5), u := u(q1, f1) − u(q2, f2) satisfies the following problem:

{{{
{{{
{

ut = ∇2u − q1u − (q1 − q2)u(q2, f2) + (f1 − f2)h, (x, t) ∈ Q,
u(x, t) = 0, (x, t) ∈ S,

u(x, 0) = 0, x ∈ Ω,

(3.13)

and λ := λ(q1, f1) − λ(q2, f2) satisfies the following problem:

{{{{{{{
{{{{{{{
{

λt = −∇2λ + q1λ + (q1 − q2)λ(q2, f2) −
2
∑
i=1ωi(t)

T

∫
0

ωi(τ)u(x, τ) dτ, (x, t) ∈ Q,

λ(x, t) = 0, (x, t) ∈ S,

λ(x, T) = 0, x ∈ Ω.

From (2.3) in Lemma 2.1, for any (q, f) ∈ Aq ×Af , we have

‖u(q, f)‖L∞(Q) ≤ max{ κq− ‖h‖L∞(Q) + 1
q− ‖g‖L∞(Q), ‖μ‖L∞(S), ‖u0‖L∞(Ω)} =: K1.

Also, sinceω1, ω2 ∈ L∞[0, T] andϕϵ
1, ϕ

ϵ
2 ∈ L∞(Ω), fromLemma2.1 applied to the function λ satisfying (3.5),

we have

‖λ(q, f)‖L∞(Q) ≤ 1
q−(TK1

2
∑
i=1 ‖ωi‖2L∞[0,T] + 2

∑
i=1 ‖ωi‖L∞[0,T]‖ϕϵ

i ‖L∞(Ω)) =: K2.

Multiplying by u the first equation in (3.13), integrating over Q, and using integration by parts, we obtain

1
2 ‖u( ⋅ , T)‖

2
L2(Ω) + ∫

Q

(|∇u|2 + q1|u|2) dx dt = ∫
Q

((q1 − q2)uu + (f1 − f2)hu) dx dt.

Since q1 ∈ Aq, the above relation implies that

q−‖u‖2L2(Q) ≤ √T‖u‖L2(Q)(‖u‖L∞(Q)‖q1 − q2‖L2(Ω) + ‖h‖L∞(Q)‖f1 − f2‖L2(Ω)).
Thus, we obtain

‖u‖L2(Q) ≤ √Tq− (‖u‖L∞(Q)‖q1 − q2‖L2(Ω) + ‖h‖L∞(Q)‖f1 − f2‖L2(Ω)) ≤ K3(‖q1 − q2‖L2(Ω) + ‖f1 − f2‖L2(Ω)),
and similarly,

‖λ‖L2(Q) ≤ √Tq− (‖λ(q2, f2)‖L∞(Q)‖q1 − q2‖L2(Ω) + ‖u‖L2(Q) 2
∑
i=1 ‖ωi‖2L∞[0,T])

≤ K4(‖q1 − q2‖L2(Ω) + ‖f1 − f2‖L2(Ω)),
where

K3 := max{K1, ‖h‖L∞(Q)}√Tq− > 0, K4 := (K2 + K3

2
∑
i=1 ‖ωi‖2L∞[0,T])√Tq− > 0.
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From (3.12), for ∆J󸀠q, we then have
‖∆J󸀠q‖L2(Ω) ≤ 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

T

∫
0

λ(q1, f1)u dt
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩L2(Ω) +

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

T

∫
0

u(q2, f2)λ dt
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩L2(Ω)

≤ √T(‖λ(q1, f1)‖L∞(Q)‖u‖L2(Q) + ‖u(q2, f2)‖L∞(Q)‖λ‖L2(Q))
≤ Lq(‖q1 − q2‖L2(Ω) + ‖f1 − f2‖L2(Ω)),

where Lq := √T(K2K3 + K1K4) > 0 is independent of q1, q2, f1 and f2.
Similarly, taking ∆J󸀠f = J󸀠f (q1, f1) − J󸀠f (q2, f2), we have

‖∆J󸀠f ‖L2(Ω) = 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
T

∫
0

hλ dt
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩L2(Ω) ≤ √T‖h‖L∞(Q)‖λ‖L2(Q) ≤ Lf (‖q1 − q2‖L2(Ω) + ‖f1 − f2‖L2(Ω)),

where Lf := √TK4‖h‖L∞(Q) > 0 is independent of q1, q2, f1 and f2. The theorem is proved.

4 Conjugate gradient method
The following iteration process based on the CGM is utilised for the simultaneous reconstruction of the space-
dependent reaction coefficient q(x) and the source term f(x) by minimising the objective functional J(q, f)
given by (3.4):

qk+1 = qk + βkqskq , f k+1 = f k + βkf skf , k = 0, 1, 2, . . . , (4.1)
where k denotes the number of iterations, q0(x) and f 0(x) are the initial guesses for q(x) and f(x), respectively,
βkq and βkf are the step sizes, and s

k
q and skf are the search directions for q and f given by

skq =
{
{
{

−J󸀠0q , k = 0,
−J󸀠kq + γkqsk−1q , k ≥ 1,

skf =
{
{
{

−J󸀠0f , k = 0,
−J󸀠kf + γkf sk−1f , k ≥ 1,

(4.2)

where J󸀠kq := J󸀠q(qk , f k), J󸀠kf := J󸀠f (qk , f k), γkq and γkf are the conjugate coefficients, and the Fletcher–Reeves
formula [12] is applied, i.e.,

γkq =
‖J󸀠kq ‖L2(Ω)
‖J󸀠k−1q ‖L2(Ω) , γkf =

‖J󸀠kf ‖L2(Ω)
‖J󸀠k−1f ‖L2(Ω) , k ≥ 1. (4.3)

The step sizes βkq and βkf can be determined by the line search method, i.e.,

J(qk+1, f k+1) = min
βq ,βf≥0 J(qk + βqskq , f k + βf skf ). (4.4)

Then, by using (4.1), we have

∂J(qk+1, f k+1)
∂βkq

= lim
βkq→0 J(qk+1, f k+1) − J(qk , f k+1)βkq

= lim
βkq→0 1

βkq
(∫

Ω

βkqskq(−
T

∫
0

λ(qk , f k+1)u(qk , f k+1) dt) dx + o(‖βkqskq‖L∞(Ω)))
= ∫

Ω

J󸀠k+1q skq dx,

and similarly
∂J(qk+1, f k+1)

∂βkf
= ∫

Ω

J󸀠k+1f skf dx.

This means that the minimisation (4.4) implies that the step sizes βkq and βkf satisfy

∫
Ω

J󸀠k+1q skq dx = 0, ∫
Ω

J󸀠k+1f skf dx = 0, k ≥ 0. (4.5)
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4.1 Convergence

In this subsection, inspired by the arguments in [7], we discuss the convergence of the above iterative process
(4.1)–(4.3).

Theorem 4.1. Let {qk , f k}k≥0 ∈ Aq ×Af be the iterations defined by the (4.1), and let βkq and βkf satisfy (4.4).
Then {J(qk , f k)}k≥0 defined by (3.4) is a monotone decreasing convergence sequence.
Proof. Since the search step sizes βkq and βkf satisfy the condition (4.4), they also satisfy (4.5). For k = 0,
by (4.2) we have

∫
Ω

J󸀠0q s0q dx = −‖J󸀠0q ‖2L2(Ω).
For k ≥ 1, we can obtain

∫
Ω

J󸀠kq skq dx = −‖J󸀠kq ‖2L2(Ω) + γkq ∫
Ω

J󸀠kq sk−1q dx = −‖J󸀠kq ‖2L2(Ω).
Therefore, we have that

∫
Ω

J󸀠kq skq dx = −‖J󸀠kq ‖2L2(Ω), k ≥ 0.

Similarly, we have
∫
Ω

J󸀠kf skf dx = −‖J󸀠kf ‖2L2(Ω), k ≥ 0.

By (4.4), we have

J(qk+1, f k+1) ≤ J(qk + βqskq , f k + βf skf ) for all βq , βf ≥ 0.

Then, for the case βq ≥ 0 and βf = 0, using the mean value theorem and the Lipschitz continuity of the
gradient J󸀠q given by Theorem 3.2, we obtain

J(qk , f k) − J(qk + βqskq , f k) = −βq
1

∫
0

∫
Ω

J󸀠q(qk + θβqskq , f k)skq dx dθ
= −βq ∫

Ω

J󸀠kq skq dx − βq 1

∫
0

∫
Ω

(J󸀠q(qk + θβqskq , f k) − J󸀠q(qk , f k))skq dx dθ
≥ βq‖J󸀠kq ‖2L2(Ω) − βq‖skq‖L2(Ω) 1∫

0

‖J󸀠q(qk + θβqskq , f k) − J󸀠q(qk , f k)‖L2(Ω)dθ
≥ βq‖J󸀠kq ‖2L2(Ω) − 12β2qLq‖skq‖2L2(Ω).

It is obvious that the function of βq on the right-hand side of the above formula attains its maximum at

βq =
‖J󸀠kq ‖2L2(Ω)
Lq‖skq‖2L2(Ω) ,

i.e.,

J(qk , f k) − J(qk + βqskq , f k) ≥
‖J󸀠kq ‖4L2(Ω)

2Lq‖skq‖2L2(Ω) .
Similarly, taking

βq = 0 and βf =
‖J󸀠kf ‖2L2(Ω)
Lf ‖skf ‖

2
L2(Ω) ,
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we have

J(qk , f k) − J(qk , f k + βf skf ) ≥
‖J󸀠kf ‖4L2(Ω)

2Lf ‖skf ‖
2
L2(Ω) .

Thus,

J(qk , f k) − J(qk+1, f k+1) ≥ max{
‖J󸀠kq ‖4L2(Ω)

2Lq‖skq‖2L2(Ω) , ‖J
󸀠k
f ‖

4
L2(Ω)

2Lf ‖skf ‖
2
L2(Ω)},

and hence, J(qk+1, f k+1) ≤ J(qk , f k) for all k ≥ 0. Furthermore, since {J(qk , f k)}k≥0 defined by (3.4) is non-
negative, it follows that it is a monotonic decreasing convergent sequence.

According to the arguments in [4, 7], and the results in Theorems 3.2 and 4.1, we obtain the following result:

Theorem 4.2. Under the assumptions of Theorem 4.1, we have that the CGM (4.1)–(4.3) either terminates at
a stationary point or converges in the following senses:

lim inf
k→∞ ‖J󸀠kq ‖L2(Ω) = 0, lim inf

k→∞ ‖J󸀠kf ‖L2(Ω) = 0.
4.2 Iterative algorithm

According to the above discussion, all the parameters of the iterative process (4.1) are expressed explicitly
except for the search step sizes βkq and βkf . By using the line search (4.4), these twoparameters canbe obtained
by minimising

J(qk+1, f k+1) = 12 ∫
Ω

(
T

∫
0

ω1u(qk + βkqskq , f k + βkf s
k
f ) − ϕ

ϵ
1)

2
dx

+
1
2 ∫

Ω

(
T

∫
0

ω2u(qk + βkqskq , f k + βkf s
k
f ) − ϕ

ϵ
2)

2
dx.

Since in this expression the search step sizes βkq and βkf are in implicit form, we linearise it to approximate
J(qk+1, f k+1) such that the search step sizes βkq and βkf become explicit in the new formulation. Thus

u(x, t; qk + βkqskq , f k + βkf s
k
f ) ≈ u(x, t; q

k , f k) + βkq∆uq(x, t; qk , f k) + βkf ∆uf (x, t; q
k , f k),

where ∆uq(x, t; qk , f k) and ∆uf (x, t; qk , f k) are obtained by solving the sensitivity problems (3.9) and (3.11)
with ∆qk = skq and ∆f k = skf , respectively. We now define

uki :=
T

∫
0

ωiu(qk , f k) dt,

∆ukq,i :=
T

∫
0

ωi∆uq(qk , f k) dt,

∆ukf,i :=
T

∫
0

ωi∆uf (qk , f k) dt, i = 1, 2.

Then

J(qk+1, f k+1) = 12 ∫
Ω

(uk1 + β
k
q∆ukq,1 + β

k
f ∆u

k
f,1 − ϕ

ϵ
1)

2 dx + 12 ∫
Ω

(uk2 + β
k
q∆ukq,2 + β

k
f ∆u

k
f,2 − ϕ

ϵ
2)

2 dx.

The derivatives of J(qk+1, f k+1) with respect to βkq and βkf are given by
∂J(qk+1, f k+1)

∂βkq
= A1βkq + A2βkf + A3,

∂J(qk+1, f k+1)
∂βkf

= A2βkq + A4βkf + A5,
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where
A1 = ∫

Ω

{(∆ukq,1)
2 + (∆ukq,2)

2} dx, A2 = ∫
Ω

(∆ukq,1∆u
k
f,1 + ∆u

k
q,2∆u

k
f,2) dx,

A3 = ∫
Ω

{(uk1 − ϕ
ϵ
1)∆u

k
q,1 + (u

k
2 − ϕ

ϵ
2)∆u

k
q,2} dx, A4 = ∫

Ω

{(∆ukf,1)
2 + (∆ukf,2)

2} dx,

A5 = ∫
Ω

{(uk1 − ϕ
ϵ
1)∆u

k
f,1 + (u

k
2 − ϕ

ϵ
2)∆u

k
f,2} dx.

By setting
∂J(qk+1, f k+1)

∂βkq
=
∂J(qk+1, f k+1)

∂βkf
= 0,

the search step sizes βkq and βkf are given as follows:

βkq =
A3A4 − A2A5

A2
2 − A1A4

, βkf =
A1A5 − A2A3

A2
2 − A1A4

. (4.6)

The iteration process given by (4.1) does not provide the CGM with the regularisation necessary for the
minimisation of the objective functional (3.4) to be classified as well-posed because of the errors inherent in
the time-average temperaturemeasurements (1.3) and (1.4). However, themethodmay becomewell-posed if
the discrepancy principle is applied to stop the iteration procedure. According to the discrepancy principle,
the iterative procedure is stopped when the following criterion is satisfied:

J(qk , f k) ≤ ϵ, (4.7)

where ϵ = 1
2 ∑i=1,2 ‖ϕϵ

i − ϕi‖2L2(Ω) ≤ ϵ2.
Then the iteration algorithm based on CGM for the numerical recovery of the reaction coefficient q(x) and

the source component f(x) is as follows:

Step 1. Set k = 0 and choose initial guesses q0(x) and f 0(x) for the unknown space-dependent coefficients
q(x) and f(x), respectively.

Step 2. Solve the direct problem (1.1) numerically by utilising the finite-difference scheme to compute the
temperature u(x, t; qk , f k), and the objective functional J(qk , f k) given by (3.4).

Step 3. Solve the adjoint problem (3.5) numerically to obtain λ(x, t; qk , f k), and the Fréchet gradients
J󸀠q(qk , f k) by (3.7) and J󸀠f (qk , f k) by (3.8). Calculate the conjugate coefficients γkq and γkf in (4.3), and the
search directions skq and skf in (4.2).

Step 4. Solve the problems ∆uq(x, t; qk , f k) given by (3.9) and ∆uf (x, t; qk , f k) given by (3.11) by using
∆qk = skq and ∆f k = skf , and compute the search step sizes βkq and βkf given by (4.6).

Step 5. Update qk+1 and f k+1 by (4.1).
Step 6. If the stopping condition (4.7) is satisfied, then go to Step 7. Else set k = k + 1 , and go to Step 2.

Step 7. End.

5 Numerical results and discussions
In this section,we performone- and two-dimensional numerical computations to simultaneously reconstruct
the space-dependent reaction coefficient q(x) and source component f(x) based on the CGM described in the
previous section. The finite-difference method (FDM) based on the Crank–Nicolson scheme is employed in
one-dimension (N = 1), whilst the alternating direction implicit (ADI) method is employed in two-dimension
(N = 2), see [5], for solving the direct, sensitivity and adjoint problems involved in the CGM. In the two-
dimensional case we decided to switch to an ADI (of Peaceman–Rachford type) method because, as pointed
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out in [15], it is more suitable, in the sense of convergence and stability, than the Crank–Nicolson scheme for
two-dimensional parabolic problems with self-adjoint elliptic spatial operator, see [34]. The Simpson’s rule
is utilised for computing the integrals involved in the objective functional J(q, f), its Fréchet derivatives J󸀠q
and J󸀠f , the adjoint problem for λ, and the conjugate coefficients γq and γf . We have also tested the accuracy
using the trapezoidal rule obtaining no significant differences in the numerical results than when using the
Simpson’s rule.

The accuracy errors Eq(k) and Ef (k), as functions of the iteration number k, for the reaction coefficient
q(x) and the source component f(x), respectively, are defined as

Eq(k) = ‖qk − q‖L2(Ω), (5.1)
Ef (k) = ‖f k − f‖L2(Ω), (5.2)

where qk and f k are the CGM iterates, and q and f are the analytical expressions of the reaction coefficient
and source component, if available.

The noisy integral temperature observationsϕϵ
1 andϕ

ϵ
2 in (3.2) and (3.3) are simulated by adding to their

analytical values, if available, Gaussian additive noise as

ϕϵ
1 = ϕ1 + σ × random(1), ϕϵ

2 = ϕ2 + σ × random(1), (5.3)

where σ is the standard deviation given by σ = p
100 ×maxx∈Ω{|ϕ1(x)|, |ϕ2(x)|}, p% represents the percentage

of noise, and the term random(1) generates random values from a Gaussian distribution with zero mean and
standard deviation equal to unity.

In the one-dimensional (N = 1) examples we consider the final time T = 1, the domain Ω = (0, 1), and
take the FDMmesh size ∆x = ∆t = 0.01 for solving the direct, sensitivity and adjoint problems in the CGM iter-
ative procedure. In the two-dimensional (N = 2) example, we consider T = 1, Ω = (0, 1) × (0, 1), and the ADI
mesh size ∆x1 = ∆x2 = ∆t = 0.01. As for the weight functions ω1(t) and ω2(t) in (1.3) and (1.4), we choose
the functions

ωi(t) =
1

a√π
e− (t−ti )2a2 , t ∈ [0, T], i = 1, 2, (5.4)

where a is a small positive constant, and t1 ̸= t2 ∈ [0, T]. It is obvious that ωi(t) ≈ δ(t − ti) for small values
of a, where δ( ⋅ ) is the Dirac delta function. Then, according to the properties of the Dirac delta function,
equations (1.3) and (1.4) would become

ϕi(x) =
T

∫
0

ωi(t)u(x, t) dt ≈
T

∫
0

δ(t − ti)u(x, t) dt = u(x, ti), i = 1, 2, (5.5)

which implies that the time-average temperature measurements ϕ1 and ϕ2 can be regarded as the measured
temperature at the distinct time instants t1 and t2, see [5]. For all the three numerical examples presented in
the following subsections, we take the weight functions as

ω1(t) =
1

10−3√π e− (t−0.2)210−6 , ω2(t) =
1

10−3√π e− (t−1)210−6 , (5.6)

i.e., a = 10−3, t1 = 0.2 and t2 = T = 1 in (5.4).
5.1 Example 1

In the one-dimensional (N = 1) case, we take the input data as

h(x, t) = (1 + x)t3, μ(0, t) = e−t , μ(1, t) = 2e−t , u0(x) = 1 + x2,

g(x, t) = (1 + sin(πx) + sin(2πx))(1 + x2)e−t − 2e−t − (12 − 4x + 4x2)(1 + x)t3,
and since the weight functions are chosen as in (5.6), the measured temperatures are taken as in (5.5),
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namely,

ϕ1(x) =
1

∫
0

ω1(t)u(x, t) dt ≈ e−0.2(1 + x2), ϕ2(x) =
1

∫
0

ω2(t)u(x, t) dt ≈ e−1(1 + x2), x ∈ (0, 1).

These approximations already introduce some (numerical) noise into the input data (1.3) and (1.4). An analy-
tical solution of the inverse problem (1.1), (1.3) and (1.4) with the above data is given by

q(x) = 2 + sin(πx) + sin(2πx), f(x) = 12 − 4x(1 − x), u(x, t) = (1 + x2)e−t . (5.7)

Although the conditions in (2.38) of Theorem2.3 arenot satisfied to guarantee theuniqueness of the solution,
the numerically obtained results indicate that (5.7) is the closest solution to the chosen initial guess.

From (3.5), one can observe that the gradients (3.7) and (3.8) vanish for x on the boundary ∂Ω, hence
we need to specify the initial guesses for q0 and f 0 on ∂Ω be equal to their true values, otherwise, from (4.1)
and (4.2) there will be no progress with iterations at the boundary points. Therefore, we take q0(x) = 2 and
f 0(x) = 0.5 for x ∈ Ω, which ensures that q0(x) = qtrue(x) and f 0(x) = f true(x) for x ∈ ∂Ω, and also that these
initial guesses are rather far from their true values (5.7) for x ∈ Ω.

We also note that theweight functionsω1(t) andω2(t) in (1.3) and (1.4) can be chosen as other functions
rather than our choices in (5.6). For instance, the errors Eq and Ef given by (5.1) and (5.2) after 50 CGM
iterations were obtained to be Eq(50) ∈ {0.0343, 0.0484, 0.0441} and Ef (50) ∈ {0.0635, 0.0977, 0.0807}
for the choices (ω1(t), ω2(t)) ∈ {(1, t2), (1, t3), (t2, et)}, respectively. These small values of errors indicate that
accurate numerical results can be obtained for rather arbitrary functionally independentweight functionsω1
and ω2 in (1.3) and (1.4), respectively.

Figure 1 illustrates the behaviour of the objective functional J(qk , f k) defined in (3.4), as a function of
the iteration number k, for the simultaneous recovery of the two space-dependent unknowns q(x) and f(x),
in case of no noise, i.e., p = 0, and with p = {1, 2} noise. It is obvious that the objective functional is a mono-
tonic decreasing function of k, and converges rapidly to a small positive value, as the result in Theorem 4.1
predicts. The stopping iteration numbers k∗ ∈ {22, 3, 3} for p ∈ {0, 1, 2}, respectively, are obtained based on
the discrepancy principle (4.7). We have chosen the threshold ϵ = 10−8, which is a small value close to 0 for
p = 0, whilst the values ϵ ∈ {0.0047, 0.0187} were computed utilising ϵ = 1

2 ∑i=1,2 ‖ϕϵ
i − ϕi‖2L2(Ω) and (5.3)

for p = {1, 2} noise, respectively. The errors (5.1) and (5.2) for the unknowns q(x) and f(x) are found as
Eq ∈ {0.0028, 0.1891, 0.2715} and Ef ∈ {0.0064, 0.0811, 0.1539} for p ∈ {0, 1, 2} noise, respectively. These
small values indicate that the numerical solutions are reasonably accurate for both q(x) and f(x). In addi-
tion, the norms of the Fréchet gradients were obtained as ‖J󸀠q(qk∗ , f k∗ )‖L2(Ω) ∈ {1.8 × 10−5, 0.0011, 0.0019}
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Figure 1: The objective functional J(qk , f k), for p ∈ {0, 1, 2} noise, for Example 1.
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Figure 2: The analytical and numerical results for: (a) the reaction coefficient q(x) and (b) the source component f(x),
for p ∈ {0, 1, 2} noise, for Example 1.
and ‖J󸀠f (qk∗ , f k∗ )‖L2(Ω) ∈ {7.1 × 10−6, 6 × 10−4, 0.0018} for p ∈ {0, 1, 2} noise, respectively. These small val-
ues indicate that the CGM, with iterations stopped by the discrepancy principle (4.7), is a semi-convergent
regularisation method.

In Figures 2 (a) and 2 (b), the numerical solutions for the space-dependent reaction coefficient q(x) and
the source term f(x) are plotted at the stopping iteration numbers k∗ inferred from Figure 1, for the levels of
noise p ∈ {0, 1, 2}. Higher levels of noise produced less accurate numerical results and therefore they are not
presented. For p = 0 noiseless data, the analytical and numerical solutions overlap and they are graphically
undistinguishable. Overall, from Figure 2 it can be seen that the stable and accurate solutions are obtained
for both coefficients.

5.2 Example 2

In the previous example, we have considered a test with a smooth analytical solution given by (5.7). In this
example, we consider a more severe test involving reconstructing a discontinuous reaction coefficient, as
follows. We take

h(x, t) = (1 + sin(πx))e−t , μ(0, t) = 1, μ(1, t) = 1 + t, u0(x) = 1,

g(x, t) = x2 − 2t − (4x − 1) sin(πx)(1 + sin(πx)e−t + {{
{

2(1 + x2t), x ∈ [14 ,
3
4 ],

1 + x2t, otherwise,

and the measurements (5.5) given by

ϕ1(x) =
1

∫
0

ω1(t)u(x, t) dt ≈ 1 + 0.2x2, ϕ2(x) =
1

∫
0

ω2(t)u(x, t) dt ≈ 1 + x2, x ∈ (0, 1).

Then an analytical solution of the inverse problem (1.1), (1.3) and (1.4) with this input data is given by

q(x) =
{
{
{

2, x ∈ [14 ,
3
4 ],

1, otherwise,
, f(x) = (4x − 1) sin(πx), u(x, t) = 1 + x2t.

The initial guesses are taken as q0(x) = 1 and f 0(x) = 0. As in the previous example, the iterative CGM
is stopped at the iterations k∗ ∈ {60, 5, 4} for p ∈ {0, 1, 2}, by using the discrepancy principle (4.7) with
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Figure 3: The analytical and numerical results for: (a) the reaction coefficient q(x) and (b) the source component f(x),
for p ∈ {0, 1, 2} noise, for Example 2.
ϵ ∈ {10−7, 0.0025, 0.01}, respectively. The errors (5.1) and (5.2) for q(x) and f(x) at these stopping itera-
tion numbers are Eq ∈ {0.1454, 0.2726, 0.3121} and Ef ∈ {0.0774, 0.1533, 0.1944} for p ∈ {0, 1, 2} noise,
respectively. Figures 3 (a) and 3 (b) present the numerical solutions for the reaction coefficient q(x) and the
source term f(x) at these stopping iteration numbers, respectively. From Figure 3 we can observe that the
numerical results are stable and reasonably accurate bearing in mind the severe discontinuous reaction
coefficient q(x) that had to be retrieved simultaneously with the source term f(x).

5.3 Example 3

We now consider a two-dimensional (N = 2) example and take the input data as

h(x1, x2, t) = (1 + x1 + x2)t2, u0(x1, x2) = 1 + x21 + x
2
2,

g(x1, x2, t) = (x21 + x
2
2 − 4)e

−t + (1 + sin(πx1) sin(πx2))(1 + (x21 + x22)e−t)
+
{
{
{

−(1 + x1 + x2)t2, (x1, x2) ∈ [14 ,
3
4 ] × [

1
4 ,

3
4 ],

(1 + x1 + x2)t2, otherwise,

μ(0, x2, t) = 1 + x22e
−t , μ(1, x2, t) = 1 + (1 + x22)e

−t ,
μ(x1, 0, t) = 1 + x21e

−t , μ(x1, 1, t) = 1 + (1 + x21)e
−t ,

and the measurements (5.5) given by

ϕ1(x1, x2) =
1

∫
0

ω1(t)u(x1, x2, t) dt ≈ 1 + e−0.2(x21 + x22),
ϕ2(x1, x2) =

1

∫
0

ω2(t)u(x1, x2, t) dt ≈ 1 + e−1(x21 + x22), (x1, x2) ∈ (0, 1) × (0, 1).
Then an analytical solution of the inverse problem (1.1), (1.3) and (1.4) with this input data is given by

q(x1, x2) = 1 + sin(πx1) sin(πx2), f(x1, x2) =
{
{
{

1, (x1, x2) ∈ [14 ,
3
4 ] × [

1
4 ,

3
4 ],

−1, otherwise,

u(x1, x2, t) = 1 + (x21 + x
2
2)e
−t .
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Figure 4: (a) The analytical and the numerical reaction coefficient q(x1 , x2) for: (b) p = 0, (c) p = 1 and (d) p = 2 noise, for
Example 3.

The initial guesses are taken as q0(x1, x2) = 1 and f 0(x1, x2) = −1. The CGM is stopped at k∗ ∈ {70, 6, 4}
for p ∈ {0, 1, 2}, using the discrepancy principle (4.7) with ϵ ∈ {10−8, 0.0096, 0.0386}, respectively. The cor-
responding accuracy errors for the reaction coefficient q and source term f are Eq ∈ {0.0263, 0.0501, 0.0568}
and Ef ∈ {0.1946, 0.4147, 0.4461} for p ∈ {0, 1, 2}, respectively. The errors in f are relatively large since in
this example the source component is a discontinuous function. The corresponding numerical solutions for
q and f are shown in Figures 4 and 5. It is clear that the retrieved solutions are reasonably accurate and stable
for both the reaction coefficient q and the source term f .

6 Conclusions
In this paper, the simultaneous identification and reconstruction of the space-dependent reaction coefficient
and source term from time-integral temperature measurements has been investigated. The existence and
uniqueness of the solution have been established. Then the two unknownquantities have been reconstructed
simultaneously byminimising the least-squares objective functional, and the CGMhas been developed using
the newly derived Fréchet gradients, along with the adjoint and sensitivity problems. The convergence of the
nonlinear CGM has been considered using the approaches employed in [7]. Three numerical examples in
both one- and two-dimensions have been illustrated, and the results indicate the accuracy and stability of
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Figure 5: (a) The analytical and the numerical source component f(x1 , x2) for: (b) p = 0, (c) p = 1 and (d) p = 2 noise, for
Example 3.

the numerical recovery of the two unknown spatially-dependent quantities of interest. Further workwill con-
sider the simultaneous numerical reconstruction of the space-dependent convection and reaction coefficients
from time-integral temperature measurements, [22].
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