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ABSTRACT: We report on the synthesis of an alkane-soluble Zintl cluster, [η4-Ge9(Hyp)3]Rh(COD), that can catalytically
hydrogenate cyclic alkenes such as 1,5-cyclooctadiene and cis-cyclooctene. This is the first example of a well-defined Zintl-cluster-
based homogeneous catalyst.

L iquid metal alloys have found applications in catalysis,
flexible electronics, and the synthesis of new materials.1 As

catalysts they have proved to be active in processes such as
alkane dehydrogenation2−5 and the electrochemical reduction
of carbon dioxide.6 Typically, such catalysts employ transition
metals in conjunction with low-melting-point main-group
elements (e.g., gallium, indium, tin, lead, or bismuth), although
it is worth noting that in the catalytic dehydrogenation of
methane, for example, the main-group-element “solvents” have
been shown to be moderately active in the absence of
transition metals.2 Despite these applications, the nature of the
catalytically active species present in such melts remains
elusive, and in situ monitoring represents a significant
challenge.
With this in mind, we set out to develop well-defined

molecular models of transition-metal/main-group-element
alloys (TMMGAs) in an effort to model structure and probe
reaction mechanisms that occur for molten alloys. For this
purpose, we targeted late transition metals supported on main-
group-element clusters, given that cluster-like moieties are
postulated to exist in liquid metal alloys.1 As a support, we
chose [Ge9(Hyp)3]

− (Hyp = Si(SiMe3)3).
7,8 This cluster, and

related species with heteroleptic exo substituents,9 have been
employed as ligands in the coordination chemistry of transition
metals.10−12 Herein we demonstrate that [Ge9Hyp3]

− can act
as a suitable platform for the synthesis of hydrocarbon-soluble
TMMGAs and that these species are catalysts for the
hydrogenation of 1,5-cyclooctadiene (COD) (and cis-cyclo-
octene (COE)). To the best of our knowledge, this is the first
instance of the use of Zintl clusters in homogeneous
catalysis.13,14

K[Ge9(Hyp)3] was reacted with 0.5 equiv of [Rh(COD)-
Cl]2 to afford [η4-Ge9(Hyp)3]Rh(COD) (1) (Scheme 1). The
reaction gives rise to a species that exhibits two hypersilyl
singlet resonances in the 1H NMR spectrum at 0.29 and 0.57
ppm (in a 2:1 ratio) accompanied by resonances for the
coordinated COD ligand at 1.93, 2.31, and 5.48 ppm, each
with a 4H relative integral. 13C{1H} and 1H/29Si HMBC NMR
spectra support the existence of two inequivalent hypersilyl
substituents. Close inspection of the NMR spectra reveals a
minor component (approximately 10%) that exhibits two

hypersilyl resonances in the 1H NMR spectrum at 0.47 and
0.53 ppm and resonances corresponding to a coordinated
COD ligand at 2.06, 2.41, and 4.31 ppm. As the compositional
purity of 1 was determined by combustion analysis and
dissolution of crystals of this compound (which showed the
presence of only one isomer by single-crystal X-ray diffraction)
gave rise to the same ratio of species at room temperature, we
suggest that this minor component corresponds to an isomer
of undetermined connectivity, possibly [η5-Ge9(Hyp)3]Rh-
(COD) (cf. compound 2 below). There is no exchange
between the two isomers on the NMR time scale, as probed by
variable-temperature NMR studies (193−333 K), but it does
appear that the minor isomer is fluxional in this temperature
range (see Figures S8 and S9).
Dark-red crystals of 1 suitable for single-crystal X-ray

diffraction were obtained in 88% yield from an n-hexane
solution stored at −80 °C (Figure 1). The asymmetric unit
contains two crystallographically inequivalent clusters with
similar bond metrics (see the Supporting Information). Only
one of these is shown. The cluster adopts a C2v-symmetric
bicapped square-antiprismatic geometry in which the Rh-
(COD) fragment occupies one of the capping positions. From
an electron-counting perspective, this is a closo-deltahedral
species with 22 electrons available for cluster bonding. The
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Scheme 1. Synthesis of 1

Communicationpubs.acs.org/JACS

© XXXX American Chemical Society
A

https://dx.doi.org/10.1021/jacs.0c09742
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX

This is an open access article published under a Creative Commons Attribution (CC-BY)
License, which permits unrestricted use, distribution and reproduction in any medium,
provided the author and source are cited.

D
o
w

n
lo

ad
ed

 v
ia

 8
5
.2

1
0
.2

3
9
.2

0
7
 o

n
 O

ct
o
b
er

 1
5
, 
2
0
2
0
 a

t 
0
8
:2

8
:3

0
 (

U
T

C
).

S
ee

 h
tt

p
s:

//
p
u
b
s.

ac
s.

o
rg

/s
h
ar

in
g
g
u
id

el
in

es
 f

o
r 

o
p
ti

o
n
s 

o
n
 h

o
w

 t
o
 l

eg
it

im
at

el
y
 s

h
ar

e 
p
u
b
li

sh
ed

 a
rt

ic
le

s.



[Ge9(Hyp)3]
− cluster coordinates to the rhodium(I) atom in

an η4 mode. While this binding mode has not been previously
observed for such silylated clusters,10−12 it is well-documented
for substituent-free clusters such as [E9M(CO)3]

4− (E = Sn,
Pb; M = Cr, Mo, W) and [E9Ir(COD)]

3− (E = Sn, Pb).15,16

The Rh−Ge bond distances in 1 range from 2.496(2) to
2.581(2) Å, while the distances to the coordinated COD ligand
vary between 2.168(11) and 2.218(12) Å. These latter values
are similar to those in related complexes featuring a Rh(COD)
moiety (mean Rh−C distance 2.16(5) Å),17 such as [(Mes)-
Rh(COD)][SbF6] (Mes = 1,3,5-trimethylbenzene; mean Rh−
C distance 2.148 Å).18

Reaction of 1 with 1 equiv of 1,2-bis(diphenylphosphino)-
ethane (dppe) results in displacement of the coordinated COD
ligand to afford [η5-Ge9(Hyp)3]Rh(dppe) (2) (Scheme 2). In

contrast to 1, the 1H and 13C{1H} NMR spectra of this
compound in C6D6 reveal the presence of a single resonance
corresponding to the hypersilyl groups (1H, 0.46 ppm; 13C-
{1H}, 3.96 ppm) in addition to resonances corresponding to
the dppe ligand. This observation suggests a change in the
coordination mode of the cluster with the rhodium metal
center, which was confirmed by the presence of only two cross-
peaks in the 1H/29Si HMBC NMR spectrum at −84.4 and −
9.8 ppm. A single doublet resonance was observed in the
31P{1H} NMR spectrum at 43.9 ppm [J(Rh−P) = 160 Hz].
This is comparable to those of other closo clusters such as the
metallacarborane 2-Ph-closo-1,2,3,4-Rh(dppe)C3B7H9 (δ(31P)
57.5 ppm, J(Rh−P) = 165 Hz).19

Crystals of 2 were grown from concentrated n-pentane
solutions at −40 °C. The single-crystal X-ray structure (Figure
2) confirms that there is a change in the binding mode of the

cluster. This presents inequivalent phosphine and hypersilyl
environments, in contrast to the solution NMR data. This
points to a dynamic process on the NMR time scale in solution
that provides time-averaged C3v symmetry (see Figure S15).
An alternative dissociative process that generates a charge-
separated ion pair, [Rh(dppe)(η6-C6D6)][Ge9(Hyp)3], is
discounted because no evidence for [Rh(dppe)(η6-C6D6)]

+

was observed in the NMR spectra.20 Variable-temperature
NMR experiments (in C7D8 to 193 K; Figure S14) did not
result in any significant change. Related [η5-Ge9(Hyp)3]-
functionalized clusters are also fluxional and exhibit a single
resonance for the hypersilyl substituents in their 1H NMR
spectra.11b,d

While electronically similar to 1, the Rh(dppe) fragment in 2
now occupies one of the five-connected vertices of the
bicapped square-antiprismatic structure. The Rh−Ge distances
are in the range of 2.561(1) and 2.837(1) Å, which are longer
than comparable distances in 1 (cf. 2.496(2)−2.581(2) Å).
This may be a result of the significant steric clash between the
hypersilyl and phenyl groups. The Rh−P distances (2.286(1)
and 2.356(1) Å) are as expected for related compounds
featuring a Rh(dppe) fragment (mean Rh−P distance 2.27(6)
Å),21 such the 2-Ph-closo-1,2,3,4-Rh(dppe)C3B7H9 cluster,
which has Rh−P distances of 2.232(1) and 2.285(1) Å.19

Compound 1 has a surface of accessible lone pairs from the
unsubstituted germanium vertices. Reaction with 2 equiv of
Ni(COD)2 yields a species that exhibits two singlet resonances
in its 1H NMR spectrum, suggesting two inequivalent
hypersilyl groups, that are accompanied by two sets of
resonances for coordinated COD ligands in a 2:1 ratio
(Scheme 3). Crystallization of this compound from n-pentane
and a resulting structural analysis revealed a cluster with two
Ni(COD) fragments that associate with the triangular faces of
the [η4-Ge9(Hyp)3]Rh(COD) core (see Figure S21). Con-
version of 1 to 3 is quantitative, and both of the isomeric forms

Figure 1. Molecular structure of 1. Anisotropic displacement
ellipsoids are set at 50% probability. Hydrogen atoms have been
omitted for clarity. Carbon atoms are pictured as spheres of arbitrary
radius.

Scheme 2. Synthesis of 2

Figure 2. Molecular structure of 2. Anisotropic displacement
ellipsoids are set at 50% probability. Hydrogen atoms have been
omitted for clarity. Carbon atoms are pictured as spheres of arbitrary
radius.
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of 1 observed in solution cleanly convert to a single species.
This is also the case with the synthesis of 2.
Compound 1 was evaluated as a catalyst for the hydro-

genation of COD or COE to give cyclooctane (COA) (eq 1):

⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
+

COD or COE COA
1

H

(2 mol %)

2 (1)

While this is a well-known reaction for homogeneous Rh
precatalysts,22 as far as we are aware, this is the first example in
which a Zintl cluster acts as a homogeneous catalyst.23,24

Initial in situ screening using NMR spectroscopy (2 mol %
1, ∼4 atm H2, [alkene]0 = 0.31 M, C6D6, 298 K) showed that
COD was hydrogenated considerably more slowly than COE
(8.5 h vs 15 min). Aware of the problems with mass transport
effects in NMR-scale reactions,25 we collected kinetics data
using a system open to flowing H2 (1 atm) and stirred, with
individual time/concentration points coming from separate
quenched experiments as measured using 1H NMR spectros-
copy. Under these conditions, hydrogenation was much slower
(days for COD hydrogenation), suggesting a positive order in
H2. The temporal profiles for the two substrates were also very
different from one another (Scheme 4A). While monitoring of

the COD hydrogenation showed steadily decelerating
consumption of substrate and production of COA, for COE
a more complex sinusoidal profile was observed, with
induction, acceleration, and then deceleration phases. The
generation of a colloidal catalyst from 1 in COD hydro-
genation was discounted, as addition of Hg during productive
catalysis did not affect the observed rate.26 Complex 1 was
observed as the principal resting state using both substrates,

but its concentration decreased significantly over time. For
COE hydrogenation, an additional minor species that shows
Rh(olefin) resonances is observed to grow in and then
disappear. Addition of H2 to complex 1 in the absence of
substrate resulted in the formation of an unidentified
precipitate over 8 h, while recharging post-catalysis resulted
in no turnover. Both observations suggest a slow H2-promoted
decomposition. To resolve this rather complex set of
observations, we modeled the processes occurring using
COPASI.27

Scheme 4A shows the resulting fits to the kinetics data,
which arise from a model that operates for either COD or
COE starting points and was iterated on the observed
concentrations of substrates, intermediates, products, organo-
metallic speciation, and slow decomposition with a constant
excess of H2. The COE hydrogenation cycle was first modeled,
and specific rate constants were fixed, after which the model
was used for the COD analysis. The resulting simulation
recreates the multiple temporal profiles satisfactorily, giving
confidence that it captures the essential elements of the
catalytic manifold. Briefly described, slow hydrogenation of 1
results in an intermediate species, Rh(COE), which we
propose is the species observed in low concentrations during
COE hydrogenation. Rh(COE) then undergoes either further
(endergonic) reaction with H2 to eventually form INT, or
simple substitution by COD to return 1 and give free COE
(observed). Under COD hydrogenation conditions, reaction of
INT with COD again returns 1. With COE, Rh(COE) is
formed. Both cycles produce COA. While the observed
induction period in COE hydrogenation is explained by slow
Rh(COE) buildup, for both substrates compound 1 is the
principal resting state. The deceleration at longer reaction
times in both COE and COD hydrogenations and the
reduction in [1] are captured by the inclusion of a slow
decomposition process with H2 that reduces [Rh]total, as
observed experimentally in the absence of COD. Complex 2 is
not an active catalyst, consistent with the strongly bound dppe
ligand, whereas the reaction with 3 is significantly slower than
that with 1, taking 1 week to effect only 50% conversion of
COD (NMR tube, 4 atm H2). Interestingly, free COE is the
major product at this point (COE:COA = 9:1). Binding of the
two Ni(COD) fragments to the core of 1 significantly alters
the electronics of the cluster (as evidenced by pronounced
changes to bond metric datasee Figure S21). We postulate
that this has an effect on the strength of the Rh−COD
interaction, which in turn alters the kinetics of the reaction.
In order to probe the viability of the proposed mechanism,

key reaction pathways were probed using density functional
theory calculations (see Scheme 5 and Figures S30 and S31).
Because of the 18-electron configuration of 1, the most
accessible pathway begins with an η4−η2 dissociation of the
COD ligand, with a barrier of +19.6 kcal/mol. The resulting
16-electron Rh(I) intermediate then reversibly adds H2 to
form a Rh(III) dihydride intermediate at +16.8 kcal/mol
relative to 1. Migratory insertion then produces an agostically
stabilized alkyl hydride that can rearrange via a non-agostic
alkyl hydride intermediate, allowing reductive coupling to form
Rh(COE) at −1.9 kcal/mol. The overall barrier for the
formation of Rh(COE) from 1 is +27.1 kcal/mol with a
turnover-limiting step corresponding to the reductive coupling
process. Displacement of COE by COD may occur at this
point to reform 1, or Rh(COE) may itself undergo
hydrogenation. This second hydrogenation occurs by a similar

Scheme 3. Synthesis of 3

Scheme 4. (A) Kinetic Data (○) and Simulated Data for
Hydrogenation of (top) COD and (bottom) COE; (B)
Proposed Mechanism
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pathway, albeit with a lower overall barrier of +16.5 kcal/mol
toward a final intermediate (INT) that is rapidly converted to
1 in the presence of COD. These relative barriers and energies
of the intermediates account for the experimental observations
of an induction period for COE hydrogenation, the faster
hydrogenation of COE compared with COD, and the observed
speciation during catalysis.
To conclude, we have shown that metal-functionalized Zintl

clusters can be employed as homogeneous catalysts and act as
molecular models for more complex catalysts such as
TMMGAs that are challenging to study in situ. The well-
defined structures of these clusters and the ease with which the
cluster composition can be tuned may ultimately allow for the
custom synthesis of heteroatomic compounds tailored for
bespoke catalytic processes.
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