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Abstract

In this article we study nonlinear waves in Hall plasmas. We consider magnetosonic waves

propagating at the angles with respect to the equilibrium magnetic field that are not close to

either 0 or π/2. Using the reductive perturbation method we derive the three-dimensional

Kadomtsev-Petviashvili (KP) equation. We use the KP equation to show that both fast and slow

magnetosonic solitons are unstable with respect to transverse perturbations. We confront our

results with the investigation of soliton stability in anisotropic media using the study of soliton

self-refraction.

Keywords: plasma, nonlinear waves, stability

1. Introduction

When the characteristic time of a problem related to plasma

motion is much larger than the inverse ion cyclotron fre-

quency it can be adequately described by the classical mag-

netohydrodynamics (MHD). However, when it becomes

comparable to inverse ion cyclotron frequency we have to

take the Hall current in Ohm’s law into account. As a result,

we have an additional term in the induction equation deter-

mining the magnetic field behaviour, and we arrive at Hall

MHD. Hall MHD is widely used in description of various

astrophysical processes, like flux expulsion in neutron star

crusts [1], angular momentum transport in weakly ionised

protoplanetary discs [2, 3], and the formation of intensive flux

tubes in the solar atmosphere [4]. It is also used in the

application to fusion plasmas [5–7].

One of the first studies of wave propagation in Hall plas-

mas was carried out in [8]. After that waves in Hall plasmas

have been studied by many authors. In particular, the linear

waves in Hall plasmas were studied in [9, 10]. In [11, 12] the

propagation of sausage and kink waves in a magnetic slab was

investigated. The parametric instabilities of circularly polarised

small-amplitude Alfvén waves were considered in [13]. In [14]

dispersive shocks in resistive Hall plasmas with the application

to waves in the solar wind were studied.

In this article we deal with solitons. The first observation

of a soliton on the water surface was reported by John Scott

Russell [15]. It took 50 years before the Korteweg–de Vries

(KdV) equation that provided the theoretical explanation of

the phenomenon observed by John Scott Russell was derived

in [16]. After that it was practically forgotten for very long

time, and then almost suddenly became very popular when it

turned out that it describes various types of waves in plasmas.

It received an additional impetus when it was shown in [17]

that exact solutions of the KdV equation can be obtained

using the inverse scattering transform method. This article

initiated the whole new branch of applied mathematics called

solitonics. At present, the KdV equation is one of the most

popular nonlinear equations both in physics and applied

mathematics.
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A naturally arising question is if a soliton described by

the KdV equation is stable. It is definitely stable with respect

to one-dimensional perturbations when both the soliton and

its perturbations are described by the KdV equation. More-

over, the collision of two solitons is elastic meaning that

they preserve their form and amplitudes after the collision.

However, when a one-dimensional soliton propagates on the

water surface infinite in two directions the soliton can be

unstable with respect to two-dimensional perturbations. This

problem was addressed in [18] where the two-dimensional

generalisation of the KdV equation called the Kadomtsev-

Petviashvili (KP) equation was derived. It was shown in that

article that the stability of KdV solitons with respect to the

two-dimensional transverse perturbations depends on the sign

of wave dispersion. When the wave dispersion is negative,

that is the wave frequency is a monotonically decreasing

function of the wave number, then the solitons are stable,

while they are unstable when the dispersion is positive. In

particular, solitons on the water surface are stable unless the

surface tension dominates the gravitational force. Usually

the KP equation is called the KPI equation in the case of positive

dispersion, and the KPII equation in the case of negative

dispersion.

In fact, the KP equation is also valid for any waves

described by the KdV equation that propagate in an isotropic

medium. In [19] the method describing the nonlinear evol-

ution of a two-dimensional soliton with a nonplanar front was

developed. In particular, the authors used their method to

study the soliton stability with respect to transverse pertur-

bations. In the case when solitons propagate in an isotropic

medium they obtain the same result as in [18]. This method

was also applied to studying stability of solitons propagating

in an anisotropic medium. The conclusion was that a soliton is

stable no matter what is the sign of dispersion unless it pro-

pagates at a small angle with respect to one of the extremal

directions defined by the condition that the derivative of the

phase speed with respect to the propagation angle is zero at

these directions.

One example of an anisotropic medium is a Hall plasma.

The anisotropy is related to the presence of magnetic field. As

we have already pointed out, the motion of a Hall plasma is

described by Hall MHD that is used in application to a verity

of astrophysical problems. In particular, it can be used to

describe magnetosonic waves in the solar atmosphere, solar

wind, and in the magnetosphere of Earth and other planets. In

[20, 21] observations of long-periodic compressional waves

in coronal holes and the inter-plume regions were reported.

These waves were interpreted as slow magnetosonic waves. It

was suggested in [22] that the high-speed solar wind that

originates in coronal holes is accelerated by magnetosonic

solitons. Later this model was further developed in [23]. In

[24] the recent observations of slow MHD waves in the

Earth’s magnetosheath obtained by Magnetospheric Multi-

scale (MMS) NASA mission were reported, while it was

suggested in [25] that the observed periodic variations of

Saturn’s magnetosphere is controlled by compressional

waves.

To develop adequate theories involving MHD waves as

well as to provide correct interpretation of observations of

MHD waves in space plasmas it is necessary to study the

properties of these waves. In particular, it is important to

study the stability of magnetosonic solitons. In the case when

solitons are stable with respect to transverse perturbations

magnetosonic waves can exist in the form of one-dimensional

solitons. However, when they are unstable their temporal

evolution results in their decomposition in an array of two-

dimensional solitons [26]. These two-dimensional solitons are

solutions to the KPI equation [27].

The aim of this article is twofold. The first aim is to

derive the KP equation for magnetosonic waves in a Hall

plasma and use it for studying the soliton stability with

respect to transverse perturbations. The second aim is to use

the results of the stability study to verify the statement made

in [19] on the soliton stability propagating in an anisotropic

medium. The paper is organized as follows. In the next

section we formulate the problem and present the governing

equations. In section 3, we briefly describe the linear theory of

wave propagation in Hall plasmas. In section 4, we derive the

KP equation for magnetosonic waves propagating in a Hall

plasma. In section 5, we study the soliton stability with

respect to transverse perturbations. In section 6, we confront

our results of the stability study with those obtained in [19].

Finally, we present the summary of obtained results and our

conclusions in section 7.

2. Problem formulation and governing equations

To describe the plasma motion we use the Hall magneto-

hydrodynamic (MHD) equations:
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r
¶
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g
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Here ρ is the density, p the pressure, v the velocity, and B the

magnetic field; ρ0 and p0 are the equilibrium density and

pressure, respectively; mi is the ion mass, e the elementary

charge, μ0 the magnetic permeability of free space, and γ the

adiabatic exponent. Below we use Cartesian coordinates x, y,

z. In the equilibrium v=0 and B=B0, where

( ) ( )a a= BB cos , sin , 0 . 20 0

When writing down equation (1c) we assumed that the

electrons and ions have the same temperature implying that

the electron pressure pe is determined by equation (1d) with

2
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p0 substituted by p0/2. This asumption enables to eliminate

∇pe from equation (1c).

3. Linear theory

We write

( )r r r= + ¢ = + ¢ = +p p p B B b, , , 30 0 0

substitute these expressions in equations (1), linearise the

obtained equations with respect to r¢, ¢p , v, and b, and take all

variables proportional to [ ( · )]w-i tk rexp , where k=(kx,
ky, kz) and r=(x, y, z). As a result, we obtain

( · ) · ( )wr r¢ - = = ak v k b0, 0, 40

[ ( · ) ( · )] ( )r w
m

= ¢ - -p bv k b k B k b B
1

, 40
0

0 0
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w
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im

e
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0

( )r¢ = ¢p c d, 4s
2

where g r=c ps
2

0 0 is the square of the sound speed. Elim-
inating all variables in favour of b yields
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Now we choose the x-axis in the direction of k, so that

k=(k, 0, 0). Then · a= kBk B cos0 0 , and taking the scalar

product of this equation with B0 and k×B0 we obtain
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where the Alfvén speed VA and the characteristic dispersion

length ℓ are defined by

( )
m r m r

= =V
B

ℓ
m B

e V
, . 7A

i

A

2 0
2

0 0

0

0 0

Equations (6) constitute the system of two linear homo-

geneous algebraic equations for ·b B0 and · ( )´b k B0 . The

condition that it has non-trivial solutions is that its determi-

nant is zero. This gives the dispersion equation

( )[ ( )

] ( ) ( )

w a w w

a w w a
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V k c V k

c V k ℓ k V c k
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Now we use the long wavelength approximation and assume

that kℓ 1. Then we derive the approximate dispersion

relations

( )
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Equation (9a) corresponds to Alfvén waves, while

equation (9b) to magnetosonic waves, where the plus and

minus signs are for the fast and slow magnetosonic waves,

respectively. We note that β+ > 0 and β- < 0. If we neglect

the dispersion described by the second term on the right-hand

side of equation (9b) then the group velocity of magnetosonic

waves is given by

( )

[ ( )]
( )

a
=
¶
¶

= -
- +

 

 

a k a

k

c V

a a c V
V

k

k e sin 2

2 2
, 12g

s A y

s A

2 2

2 2 2

where ey is the unit vector in the y-direction.

4. Derivation of Kadomtsev–Petviashvili equation

To derive the KP equation for magnetosonic waves we use

the reductive perturbation method [28, 29]. We consider

nonlinear magnetosonic waves with the characteristic

dimensionless amplitude ò = 1 propagating along the x-axis.

We assume that waves are weakly dispersive, so that the

second term on the right-hand side of equation (9b) is much

smaller than the first one. We also assume that α is not close

to either 0 or π/2. When α is close to 0 one-dimensional

nonlinear waves are described by the modified Kortewed–de

Vries (mKdV) equation, and the two- and three-dimensional

waves by the equation derived in [30, 31]. When α is equal to

π/2 the term on the right-hand side of equation (8) that

describes the dispersion is zero, and the wave dispersion is

related to the account of the electron inertia. Hence, when α is

close to π/2 the electron inertia must be taken into account.

We are going to derive the equation that describes the

competition between the nonlinearity and dispersion. The

ratio of the second and first term on right-hand side of

equation (9b) is of the order of ℓ2 divided by the wavelength

squared. In order to have the competition between the non-

linearity and dispersion it should be of the order of ò. Hence,

we consider perturbations with the characteristic spatial scale

equal to ò
−1/2

ℓ. On the time scale of the order of the char-

acteristic spatial scale divided by the wave phase speed the

wave propagation is described by the linear theory, so that all

the perturbations are the functions of x−at, where either

= -a a or = +a a . The effect of nonlinearity and dispersion

only occurs on a much longer time scale, of the order of ò
−1

times the previous time scale. We also assume that the per-

turbations can vary in the y and z direction with the char-

acteristic spatial scale equal to ò
−1/2 times the spatial scale in

the x-direction. Following this discussion we introduce the

3
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scaled variables
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The necessity of introducing the intermediate time t1 will be

clear later. Using these scaled variables we transform

equations (1) to
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where ex is the unit vector in the x-direction, u the x-comp-

onent of the velocity, ( )=^ v wv 0, , , ( )=^ B BB 0, ,y z , and
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Equation (1d) remains unchanged. Next we look for the

solution to equations (14a) in the form of asymptotic

expansions
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r r r r r

a
a

= + + + +

= + + + +

= + + +
= + + +
= + + + +
= + + + +

^ ^ ^ ^

^ ^ ^ ^

  
  

  
  

  
  

p p p p p

u u u u

B B B B B

B

v v v v

B e B B B

...,

...,

...,

...,

cos ...,

sin ... 16

x x x x

y

0 1
3 2

2
2

3

0 1
3 2

2
2

3

1
3 2

2
2

3

1
3 2

2
2

3

0 1
3 2

2
2

3

0 1
3 2

2
2

3

4.1. The first order approximation

Substituting the expansions given by equation (16) in

equation (1d) and (14) and collecting terms of the order of ò

we obtain
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The condition that this linear homogeneous system of

equations has non-trivial solutions is that = a a defined by

equation (10). Imposing the condition that all perturbations

vanish as x  -¥ we obtain from this system of equations
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4.2. The second order approximation

Collecting terms of the order of ò
3/2 in equations (1d) and

(14), and using equation (18) yields
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This is a linear inhomogeneous system of equations with

respect to the variables of the second order approximation. Its

homogeneous counterpart coincides with the system of the

first order approximation. Hence the system of equations (19)
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is compatible only if the right-hand side satisfies the com-

patibility condition. To obtain this condition we eliminate all

the variables of the second order approximation from

equation (19). Then, using equation (10) we obtain

[ ( )]
( )

h
a¶

¶
- ¡

¶

¶
= ¡ =

- +

B

t

B c V

a a c V
0,

sin 2

2 2
. 20

y y s A

s A

1

1

1
2 2

2 2 2

It follows from this equation that By1 must depend not on t1
and η separately but on their linear combination q h= + ¡t1.
We note that, in accordance with equation (12) ¡ = -Vgy.
The result that By1 depends on θ=η+ϒ t1 is related to the

fact that the wave energy propagates in the direction of the

grope velocity Vg rather than in the direction of phase velo-

city. In an isotropic medium the two directions coincide. In

particular, when the wave propagates in the x-direction then

Vgy=0 and we obtain that there is no dependence on t1.

Hence, there is no need to introduce the intermediate time t1
when deriving the KP equation in an isotropic medium. We

only need to introduce t1 when the medium is anisotropic.

Using equations (18) and (20) we obtain from

equation (19)
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4.3. The third order approximation

Collecting terms of the order of ò
2 in equations (1d), (14a),

and (14b), and in y-components of equations (14c) and (14e)

yields
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The homogeneous counterpart of this system obtained by

taking the right-hand sides of all equations equal to zero has a

non-trivial solution ρ3=ρ1, p3=p1, u3=u1, v3=v1, and
By3=By1. This implies that the system of equations (22) is

compatible only if the right-had sides of the equations in this

system satisfy the compatibility condition. To obtain this

condition we eliminate all the terms of the third order

approximation. As a result, using equations (18), (20) and

(21) we obtain
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and the quantities β and ϒ are defined by equations (11) and

(20). Introducing b=ò By1 and returning to the original
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independent variables we transform equation (23) to

( )
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Using the inequalities valid for a ¹ 0,

( ) ( ) ( )> <+ -a c V a c Vmax , , min , , 26s A s A

we obtain

( )b¡ > > > >+ + + +N D a0, 0, 0, 0, 27z

( )b¡ < < < <- - - -N D b0, 0, 0, 0. 27z

It is proved in appendix that >+D 0y . It is also proved that

Dy<0 for α<αc and Dy>0 for α>αc, where αc is

defined by the equation Dy(αc)=0. The angle αc is a func-

tion of the dimensionless parameter cs/VA. When cs/VA varies

from 0 to 1, αc monotonically decreases from π/6 to 0. The

dependence of αc on cs/VA is shown in figure 1 for cs�VA.

Using equations (10), (20), and (24b) we can see that Dy is

invariant with respect to the transposition of cs and VA. Hence,

for cs�VA the dependence of αc on cs/VA is defined by the

relation ( ) ( )a a=c V V cc s A c A s . When VA/cs varies from 1 to

0, αc monotonically increases from 0 to π/6.
When b is independent of y and z equation (25) reduces

to the KdV equation derived for nonlinear waves in Hall

plasmas in [32].

5. Soliton stability

In this section we study the stability of magnetosonic solitons

decribed by the KdV equation derived in [32] with respect to

the transverse perturbations. To do this we introduce the

dimensionless variables
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where t0 is an arbitrary constant with the dimension of time,

and
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Using these dimensionless variables we reduce equation (25) to

( )

⎛

⎝
⎜

⎞

⎠
⎟

s n

¶
¶

¶
¶

+
¶
¶

+
¶
¶

+
¶
¶

+
¶
¶

=

X

U

T
U

U

X

U

X

U

Y

U

Z

6

3 3 0. 30

3

3

2
2

2
2

2

2

First we consider the stability of solitons with respect to per-

turbations that are independent of Z, so that the last term on the

left-hand side of equation (30) disappears and this equation

reduces to the standard KP equation. Since b >+ 0 and

>+D 0y , it follows that c <+ 0 and s = -+ 12 . Then

equation (30) becomes the KPI equation and, in accordance with

the results obtained by [18], it follows that the fast magnetosonic

solitons are unstable with respect to the transverse perturbations.

When α<αc we have <-D 0y . Since b <- 0 it follows that

c <- 0 and s = -- 12 , equation (30) reduces to the KPI

equation and the slow magnetosonic solitons are also unstable

with respect to the transverse perturbations. Finally, when

α>αc we have >-D 0y , c >- 0 and s =- 12 , equation (30)

reduces to the KPII equation and, in this case, the slow mag-

netosonic solitons are stable with respect to perturbations pro-

pagating in the plane defined by the directions of magnetic field

and soliton propagation.

The magnetosonic solitons that we studied in this article

propagate at sufficiently large angles with respect to the

extremal directions that are defined by α=0 and α=π/2.
Still both fast and slow solitons are unstable with respect to

the transverse perturbations propagating in the plane defined

by the directions of magnetic field and soliton propagation.

Hence, the results obtained in this article do not agree with the

statement made in [19] about the stability of solitons propa-

gating in anisotropic media.

Now we consider the stability of slow magnetosonic

solitons with respect to perturbations independent of Y. As a

result, the last but one term on the left-hand side of

equation (30) disappears and this equation again reduces to

the standard KP equation. Since <-D 0z and b <- 0, it

follows that c >- 0, n = -12 , and equation (30) reduces to

the KPI equation. It is straightforward to see that the fast

magnetosonic waves are also unstable with respect to per-

turbations independent of Y. Hence, we conclude that slow

magnetosonic solitons are unstable with respect to perturba-

tions independent of Y for any value of α. Summarising, we

see that both fast and slow magnetosonic solitons in Hall

plasmas are unstable with respect to transverse perturbations.

6. Discussion

We now confront our results on the soliton stability with

those obtained in [19]. As we have already mentioned, these

Figure 1. Dependence of αc on cs/VA for c Vs A. The same curve

shows the dependence of αc on VA/cs when c Vs A.
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authors showed that solitons propagating in an anisotropic

medium are stable with respect to transverse perturbations

unless they propagate at a small angle with respect to one of

the extremal directions defined by the condition that the

derivative of the phase speed with respect to the propagation

angle is zero at these directions.

In [19] a two-dimensional problem was considered.

Hence, we can compare their results with our study of the

soliton stability with respect to perturbations that either

independent of y or independent of z. In the first case we

consider the stability of solitons propagating in the x-direction

with respect to perturbations that depend on x and z. Since the

equilibrium magnetic field is in the xy-plane, the x-direction is

an extremal direction because the angle between the equili-

brium magnetic field and the propagation direction takes its

minimum when a soliton propagates in the x-direction. This

implies that the phase speed of a fast magnetosonic wave

takes its minimum in this direction, and that of a slow mag-

netosonic wave takes its maximum. Hence, the result that

both fast as well as slow magnetosonic solitons are unstable

with respect to transverse perturbations independent of y does

not contradict to the result obtained in [19].

Now we proceed to the case where the perturbations are

independent of z. The solitons again propagate in the x-

direction. The extremal directions are defined by α=0 and

α=π/2, where α is the angle between the x-axis and the

equilibrium magnetic field. In our study we assumed that α is

not close to either 0 or π/2 meaning that the propagation

direction of solitons is not close to the extremal directions.

However, we found that fast magnetosonic solitons are

always unstables with respect to perturbations independent of

z, and slow magnetosonic solitons are unstable if they prop-

agate at the angle with respect to the equilibrium magnetic

field larger than αc. These results contradict to those obtained

in [19].

One possibility to reconcile the results obtained in this

article and those obtained in PaperI is the following. In this

article we studied the soliton stability with respect to normal

modes that are harmonic perturbations with the infinite

extension in the y-direction. It seems that the equations

describing the soliton dynamics were derived in [19] using an

implicit assumption that perturbations are bounded in the

y-direction. In this case we must distinct between the absolute

and convective instability [33–35]. When the instability is

absolute perturbations grow exponentially at any fixed spatial

position. On the other hand, when the instability is convective

the perturbation amplitude grows exponentially, but at the

same time perturbations spread out of any finite spatial region

so fast that they decay at any fixed spatial position. If the

instability is absolute or convective depends on the reference

frame. It can be absolute in one reference frame and con-

vective in another. The reference frame used in PaperI is well
defined by the condition that far from the soliton the medium

is at rest. Now we make the following conjecture. We assume

that it is not proved in PaperI that the solitons propagating in

an anisotropic medium are stable with respect to normal

modes. Rather it is proved that if the solitons are unstable

with respect to normal modes, then the instability is always

convective. The physical explanation given in [19] ‘Aniso-

tropy is thus seen to enhance the stability of solitons because

the difference between the phase and group velocity results in

the deformation of perturbations which spread out over the

front and do not succeed in accumulating at a particular point’

seems to support the conjecture that we made. If our con-

jecture is correct then there is no contradiction between the

results obtained in this article and those obtained in [19].

Equation (23) differs from the standard KP equation by

the presence of terms proportional to ϒ. As we have seen, this

term can be easily removed by the variable transformation

corresponding to choosing a new reference frame moving in

the y-direction with the velocity equal to the y-component of

the group velocity. This change of reference frame does not

affect the stability investigation with respect to normal modes.

But it is very important for studying the absolute and con-

vective instability. As we have already pointed out, the dis-

tinction between the absolute and convective instability is

frame-dependent. Hence, it can be convective in the original

reference frame but absolute in the reference frame moving in

the y-direction.

Usually studying the absolute and convective instabilities

is split in two steps. The first step is studying the stability with

respect to normal modes and derivation of the dispersion

equation. The second step is finding if the instability is

absolute or convective in a particular reference frame. This

paper can be considered as a half of the first step. We only

studied the stability with respect to normal modes in the long

wavelength approximation. It is obtained in [18] that the

instability increment is proportional to the wave number. This

implies that the initial values problem is ill-posed because the

increment is not bounded. It tends to infinity when the wave

number increases. To obtain the increment bounded for all

wave numbers one needs to carry out the analysis of stability

with respect to normal modes without using the long wave-

length approximation. This will be the second half of the first

step. After that we can study the absolute and convective

instability using Brigg’s method [33]. This is the plan for

future study.

7. Summary and conclusions

In this article we studied the stability of magnetosonic soli-

tons in a Hall plasma with respect to transverse perturbations.

Using the reductive perturbation method we derived the KP

equation describing three-dimensional nonlinear magneto-

sonic waves. The magnetosonic waves can be considered as

typical examples of waves propagating in an anisotropic

medium. Hence, we believe that the main results obtained for

these waves are quite general and remain the same for other

waves propagating in anisotropic media. These results are the

following:

(i) When solitons propagate in an isotropic medium they

are stable with respect to two-dimensional transverse pertur-

bations when the wave dispersion is negative and unstable

when it is positive (e.g. [36]). However, this statement does

not hold when solitons propagate in an anisotropic medium.
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This is clearly seen in the case of slow magnetosonic solitons.

The dispersion of slow magnetosonic waves is negative,

however the slow magnetosonic solitons are still unstable

with respect to transverse perturbations.

(ii) The equation that describes multi-dimensional pro-

pagation of nonlinear waves differs from the standard KP

equation by a term proportional to the component of the

group velocity that is transverse to the soliton propagation

direction. This term can be removed by the variable trans-

formation corresponding to changing to the reference frame

moving in the direction transverse to the soliton propagation

direction. This change of the reference frame does not affect

the stability investigation with respect to normal modes.

However, it is important for studying the absolute and con-

vective instability because the distinction between these two

kinds of instabilities is frame-dependent.

(iii) Using the derived KP equation we showed that both

the fast and slow magnetosonic solitons are unstable with

respect to normal modes propagating in the plane defined by

the soliton propagation direction and the equilibrium magn-

etic field. This result is in a seeming contradiction with the

statement made in [19] that solitons propagating in an ani-

sotropic medium are stable with respect to the transverse

perturbations unless they propagate at small angles with

respect to the extremal directions. To reconcile our results

with those obtained in [19] we make a conjecture that in [19]

the soliton stability was studied with respect to perturbations

having the finite extension in the transverse direction. If this is

the case then we must distinct between the absolute and

convective instability. We speculate that the exact formula-

tion of the result obtained in [19] on the stability of a soliton

propagating in an anisotropic medium is the following: If a

soliton propagating in an anisotropic medium is unstable with

respect to transverse perturbations then the instability is

always convective. To confirm or disprove this conjecture an

additional study much more involved than that carried out in

this article is needed.

Appendix A. Appendix. Evaluation of Dy

In this section we investigate the sign of Dy. Since the

expression for Dy as well as quation (10) determining a are

symmetric with respect to cs and VA it is enough to consider

the case where cs�VA. Using equation (10) and the identify

following from this equation,

( )( ) ( )a = - -c V a c a Vsin , A.1s A s A
2 2 2 2 2 2 2

after long but straightforward calculation we transform

equation (24b) to

( )

[ ( )]
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- +
D

a F a

a c V2 2
, A.2y

s A

2

2 2 2 3

where F(a) is given by

( ) ( ) ( )[ ( )

( )( )] ( )

= - + - -

+ - + -

F a V V c a V V c

a V a V c

4

3 2 3 . A.3

A A s A A s

A A s

2 2 2 2 2 2 2 2 2

2 2 2 2 2

It follows from the first inequality in equation (26) that

( ) >+F a 0. Since the denominator on the right-hand side of

equation (24b) is positive for = +a a , we conclude

that >+D 0y .

Using equation (A.3) we obtain

( )
[ ( )

( )( )] ( )

= -

+ - - >

-

-
-

- -

dF a

da
a c V

a c a V

4 2

9 0. A.4

s A

s A

2 2 2

2 2 2 2

Since -a is a decreasing function of α, it follows that

( ) ( )
( )

a a
= <- -

-

-dF a

d

dF a

da

da

d
0. A.5

We have =-a cs when α=0 and =-a 0 when α=π/2.
We also have

( ) ( )

( ) ( ) ( )

= - >

= - - <

F c c V c

F c V c V

0,

0 0. A.6

s s A s

s A s A

2 2 2 2

2 2 2 2

It follows from equations (A.4) and (A.6) that there is a Îc
( )p0, 2 such that ( ) >-F a 0 for α<αc and ( ) <-F a 0 for

α>αc. Since, in accordance with equation (26), --a2
2

( )+ <c V 0s A
2 2 , we conclude that <-D 0y for α<αc and

>-D 0y for α>αc.
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