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Abstract
Rayleigh–Bénard convection (RBC) is a fundamental problem of fluid dynamics, with many applications to geophysical,
astrophysical, and industrial flows. Understanding RBC at parameter regimes of interest requires complex physical or numer-
ical experiments. Numerical simulations require large amounts of computational resources; in order to more efficiently use
the large numbers of processors now available in large high performance computing clusters, novel parallelisation strategies
are required. To this end, we investigate the performance of the parallel-in-time algorithm Parareal when used in numerical
simulations of RBC. We present the first parallel-in-time speedups for RBC simulations at finite Prandtl number. We also
investigate the problem of convergence of Parareal with respect to statistical numerical quantities, such as the Nusselt number,
and discuss the importance of reliable online stopping criteria in these cases.
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1 Introduction

Rayleigh–Bénard convection (RBC) is an archetypal prob-
lem in fluid dynamics, describing the buoyancy driven flow
of a fluid heated from below and cooled from above [1]. It
allows for studying fundamental properties of fluid dynam-
ics and is used as a simplified analogue for astrophysical and
geophysical systems such as planetary interiors, stars, and
the atmosphere [8,17].

RBC is the convection of a fluid driven by a vertical
temperature gradientΔT between two horizontal plates sep-
arated by a distance L . The problem can be characterised by
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three non-dimensional parameters. The Rayleigh number is
given by

Ra = αgΔT L3

νκ
, (1)

where α is the coefficient of thermal expansion, ν is the kine-
matic viscosity of the fluid, g is gravity, and κ is the thermal
diffusivity. The Prandtl number is

Pr = ν

κ
. (2)

The third controlling feature of the flow is the aspect ratio of
the domain, Lx/Lz where Lx , Lz are the horizontal and ver-
tical size of the domain. The Rayleigh number is a measure
of how much the flow is driven by the temperature, while the
Prandtl number is an inherent property of the fluid.

Very high or infinite Prandtl number is used as a model
for convection in the Earth’s mantle [35], while a Prandtl
number ∼ 1 is commonly used in simulations of the Earth’s
core [29,32]. In this work we investigate cases where Pr =
1, Lx/Lz = 2 and focus on the effects of changes in the
Rayleigh number.

Rayleigh–Bénard convection has been studied intensively
throughout the last few decades and before, see for exam-
ple the papers by Siggia [38] or Verzicco and Camussi [42].
Some notable studies utilising Rayleigh–Bénard convection
include Cattaneo et al. [9] who studied solar magnetic field
interactions, Glatzmaier and Roberts [18], who produced the
first simulation of a geomagnetic field reversal, and McKen-
zie et al. [30] who studied the effect of mantle flow in the
earth. For more in depth reviews of the subject, see for exam-
ple Bodenschatz et al. [6] or Ahlers et al. [1].

Much interest has developed in the behaviour of a fluid
convecting at high Rayleigh numbers. This is an important
area of study, as high Rayleigh numbers are thought to be
present in many geophysical and astrophysical bodies. Dif-
ferent scaling regimes are believed to exist at different orders
of Rayleigh number, andmuchwork has been done to find the
exact scaling behaviour of the Nusselt number (Nu, defined
below),with Ra, see for exampleGrossmann andLohse [19],
Cioni et al.[11], Kerr [22], and Siggia [38].

To test the theories describing this behaviour, experiments
at higher and higher Ra are required, a difficult task to
achieve, either numerically or experimentally. Much of this
work is now done through direct numerical simulations, see
for example Zhu et al. [43] and Schumacher [36]. These stud-
ies require an enormous amount of computational power [26]
and, due to constraints on parallel performance, there is a
need to investigate further options for increasing the degree
of parallelism in simulation codes.

One such option which has gained much interest in recent
years is parallel-in-time integration. This allows the time

domain to be parallelised in a similar way to how the spa-
tial domain is commonly parallelised. The recent interest in
parallel in time methods was sparked by the introduction of
the Parareal algorithm by Lions et al. [27]. Subsequently,
much research has been carried out in this area; new paral-
lel in time algorithms such as Parallel Full Approximation
Scheme in Space and Time (PFASST, Minion [31]), Parallel
implicit time-integrator (PITA, Farhat and Chandesris [13]),
and Multigrid Reduction in Time (MGRIT, Friedhoff et al.
[14]) have been proposed. For a comprehensive review see
for example Gander [15].

In this work, we present the first reported speedup from
parallel-in-time integration for the problem of RBC at finite
Prandtl number. We extend the work of Samuel [35], who
studied the performance of Parareal for infinite Prandtl, into
a regime with more varied geo- and astro- physical applica-
tions. For infinite Prandtl number, the time derivative in the
momentum equation vanishes and temperature is the only
prognostic variable. In contrast, for finite Prandtl number,
both velocity and temperature have to be integrated in time.
Samuel reported speedups of up to 10 when using up to 40
CPUs for infinite Prandtl number, when combining Parareal
with spatial parallelisation. These results were largely in
line with the theoretical performance model they developed.
Recently, Kooij [25] discussed parallel-in-time methods as
an attractive option for simulations of Rayleigh Bénard con-
vection, but did not supply any results in this direction.

Our results show that Parareal can faithfully reproduce the
relationship between Rayleigh- and Nusselt number found in
the literature. Given that the number of studies of Parareal
for problems with non-linear complex dynamics is limited,
this is a useful result in itself. We further investigate the con-
vergence properties of Parareal with respect to the L2 error
between individual trajectories aswell as averagedquantities.
While the former is typically used as a termination criterion
for Parareal, the latter is often more relevant for applications.
Our results show that, particularly for flows at high Rayleigh
number, Parareal can fail to converge to the fine trajectory
while still converging to the correct averaged dynamics. Only
atRayleigh numbers beyond107 doesParareal’s convergence
start to deteriorate. This suggests that research into alterna-
tive termination criteria for Parareal, aimed at reproducing
correct statistics instead of individual trajectories, would be
a useful direction for future research.

2 Rayleigh Bénard convection

2.1 Equations and domain

We use the Boussinesq approximation to the Navier–Stokes
equations for fluid flow in a 2D Cartesian domain. The
non-dimensional Oberbeck-Boussinesq equationsmodelling
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Rayleigh–Bénard convection can be written as

1

Pr

(
∂u
∂t

+ u · ∇u
)

= −∇p + RaT · ẑ + ∇2u, (3)

∇ · u = 0, (4)
∂T

∂t
+ u · ∇T = ∇2T , (5)

with fixed temperature

T |z=−0.5 = 1, T |z=0.5 = 0,

u|z=−0.5 = u|z=0.5 = 0 (6)

and fixed flux

∂T

∂z

∣∣∣∣
z=−0.5

= ∂T

∂z

∣∣∣∣
0.5

= −1,

u|z=−0.5 = u|z=0.5 = 0 (7)

boundary conditions. For all work in this study, periodic hor-
izontal boundary conditions are used. Here, u = (u, w)

represents the horizontal and vertical velocity of the fluid,
T represents the temperature, t represents time and p is
pressure. The fundamental time scale is taken as a thermal
diffusion time τd ∼ L2/κ , T is scaled by ΔT , and length is
scaled by L . We use a domain of size (x = 2, z = 1), where
x is the horizontal direction, and z the vertical, giving an
aspect ratio of 2. We begin with a linear temperature profile
with small perturbations and u = 0.

In the fixed flux case, we use the flux Rayleigh number
Ra f , defined as

Ra f = αgβL4

νκ
, (8)

where β is the imposed vertical heat flux, instead of the stan-
dard Rayleigh number in the momentum equation. The flux
Rayleigh number can be related to the standard Rayleigh
number as Ra f = RaNu [21].

2.2 Consistency checks

The Reynolds number can be computed from the veloc-
ity of the fluid. A characteristic speed U is determined as
〈u2 + w2〉1/2 where the overbar denotes the time average
and 〈·〉 the volume average. Our parameters are chosen such
that Re = U

The heat transported due to convection is represented by
the Nusselt number

NuV = 1

V

∫
V

(
−∂T

∂z
+ wT

)
dV , (9)

where the subscript V indicates that it has been calculated
using a volume integral over the domain. A Nusselt number
of 1 indicates that all heat transport is due to conduction,
whilst Nusselt > 1 indicates advection is present. A larger
Nusselt number indicates more heat transport by advection.

In order to confirm the accuracy of our simulations, we
carry out three internal consistency checks. We calculate
the Nusselt number in three ways. First, integrated over the
domain volume via Eq. 9. Second, on the bottom plate via

Nub =
〈
−∂T

∂z

〉
H

∣∣∣∣
z=−0.5

, (10)

where 〈a〉H = L−1
x

∫ x=Lx
x=0 a dx is a horizontal plane average.

Third, on the top plate via

Nut =
〈
−∂T

∂z

〉
H

∣∣∣∣
z=0.5

. (11)

Conservation of energy requires

Nu = Nub = Nut = NuV , (12)

[23]. The standard test in the literature is for the Nusselt
numbers calculated at different heights of the domain to be
within 1% of each other [23,32,41]. In this work, the reported
values have been calculated from Eq. 9.

Thus, we calculate the maximum relative difference
between the bulk Nusselt number and the Nusselt numbers
at the top, bottom as well as the difference between the top
and bottom Nusselt number

Nuint = max
(|Nub − NuV |, |Nub − Nut |, |NuV − Nut |

)
NuV

.

(13)

As a second consistency check, we verify that buoyancy
generation is balancedwith viscous dissipation. Ifwe average
over a sufficiently long time, the Du

Dt term of the momentum
equation goes to zero. We then take the dot product of the
momentum equation with u and integrate to find the energy
balance

|u · ∇2u| = |u · RaT ẑ|, (14)

where the first term represents the viscous dissipation εU ,
and the second term represents the buoyancy production P ,
not to be confused with p for pressure. The standard test in
the literature is for simulations to find these quantities within
1% of each other [23,32]. We check this by calculating

|P − εU |
P

. (15)
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As a third test, we make sure that the boundary layers
are resolved with a minimum number of nodes. The thermal
boundary layer can be defined using the peak value of Trms ,
calculated as

Trms(z) =
〈√(

T − 〈T 〉H
)2〉

H
(16)

as inKing et al., [24]. Figure 1 shows the relationship between
Trms and the thermal boundary layers, and the relationship
between the viscous boundaries and the mean horizontal
velocity magnitude. The thickness of the thermal boundary
layer δT is defined by the height at which the peak value
of Trms occurs. The boundary layer scales with the Nusselt
number as

δt = 1

2
LNu−1, (17)

see Grossman and Lohse [19]. The thermal boundary layers
play a significant role in the behaviour of Rayleigh–Bénard
convection, and it is essential that they are fully resolved in
any numerical simulation [37]. Amati et al. [2] showed that
at least 4 grid points are required in the thermal boundary
layer, while Verzicco and Camussi [42] stated that 6 points
are needed. Stevens et al. [41] say that up to 7 points could
be the minimum number of points required. In this work,
we specify that at least 6 points are in the boundary layer.
The number of points in the thermal boundary layer will be
denoted as NBL.

Figure 2 shows example temperature fields for the cases
we study, at a snapshot in time after the flowhas equilibriated.
It also shows the different temperature profiles found in these
cases (bottom), and compares them to the linear conductive
state. We can see that as Ra increases, the profile becomes
more uniform in the bulk, with a steeper temperature gradient
in the boundary layers.

3 Implementation

3.1 Parareal algorithm

The Parareal algorithm, first introduced in Lions et al. in
2001 [27], is briefly outlined here. A more in depth explana-
tion is provided by Gander and Vandewalle [16].

Parareal is a method used to speedup numerical solutions
of initial value problems (IVPs) of the form

∂U (t)

∂t
= f (U (t), t) , U (0) = U0, 0 ≤ t ≤ tend. (18)

Parareal makes use of a coarse solver G and a fine solver F .
The time domain is split into N time slices, where N is the

Fig. 1 Rayleigh Bénard flow at Rayleigh number = 105. Temperature
fluctuations (left side of graph, bottom scale) denote the Trms of the
temperature field (defined in text),UMean (right side of graph, top scale)
denotes the magnitude of the horizontal component of the velocity. The
thermal boundary layer is defined by the height at which the peak Trms is
found, and the viscous boundary layer is defined by the height at which
the peak Umean is found [24]

number of processors available for parallelisation in the time
domain. The fine solver is the numerical method with prop-
erties designed to give the solution to the system to a required
degree of accuracy. The coarse method is a cheaper method
designed to give an answer quicker than the fine method, and
with reduced accuracy. The Parareal method iterates over the
fine and coarse solvers to improve the accuracy of the initial
solution given by the coarse solver, until it is as accurate as
the fine solver. This is done using the correction step

Uk+1
n+1 = G(tn+1, tn,U

k+1
n )

+ F(tn+1, tn,U
k
n ) − G(tn+1, tn,U

k
n ), (19)

where n denotes the current time slice, and k denotes the
Parareal iteration number. The coarse solver operates in
serial, hence the need for a cheaper solution method, whilst
the fine solver is able to operate in parallel, the key to reduc-
ing solution times.

3.2 Spatial discretization

We use a collocation-based pseudo-spectral method for
the spatial discretisation, using Fourier bases with periodic
boundaries for the horizontal (x) direction, and Chebyshev
polynomial bases for the vertical (z) direction. The spatial
resolution of a simulation is described by the number of col-
location points in x (Nx ), and in z (Nz). Simulations use
the open source code Dedalus [7], with the parareal_dedalus
[12] module used to implement the Parareal algorithm in the
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Fig. 2 Temperature field for flows with Ra = 105 (top), 106 (middle
top), and 107 (middle lower) taken after a statistically steady state has
been reached. The bottom plate is fixed at T = 1, whilst the top plate
is fixed at T = 0, and both top and bottom plates are no-slip. There is
steady flow for Ra = 105, with more unsteady and smaller plumes at
106, and even more so at 107. At Ra = 107, there is a small amount
of entrainment of fluid into the base of the plumes. The bottom figure
shows temperature profiles for all three cases, compared to the purely
conductive case. Boundary layers get thinner as Ra increases

Fig. 3 Calculated Nusselt values (NuV ) compared with the scaling
found in Johnston and Doering [21]. Scaling of 0.135Ra0.286 was cal-
culated from our data, compared to 0.138Ra0.285 found in [21]. Fixed
temperature and fixed flux boundary simulations collapse on to the same
line at high Rayleigh number, in agreement with Johnston et al. [21]
(black line)

Dedalus solver. Time stepping is done using Implicit-Explicit
Runge–Kutta timestepping methods by Ascher et al. [3]).
Linear terms (diffusion, pressure and buoyancy forcing) are
treated implicitly, whilst non-linear terms are treated explic-
itly. This combination lends itself to the pseudo-spectral
method, as transformations between spectral and grid space
are carried out using the parallel FFTW package, allowing
multiplications to take place in grid space.

3.3 Validation

The code was validated against the data in Johnston and
Doering [21], see Fig. 3. Both fixed flux and fixed temper-
ature boundary conditions were simulated. We calculated a
Rayleigh Nusselt scaling of Nu = 0.135Ra0.286 from our
fixed flux data, very close to the Nu = 0.138Ra0.285 reported
in [21]. The slightly higher Nusselt numbers obtained in [21]
for fixed flux cases at low Rayleigh number were also repli-
cated. Finally, we calculated the critical Rayleigh number by
running multiple simulations near Rac [10], and checking
the growth rate of the kinetic energy. We found that it was in
agreement with Chandresakhar [10] to within 0.1%,

3.4 Determining accuracy of fine solution

We set a tolerance level of less than 1% for Nuint defined in
Eq. 13 and |P − εU |/P defined in Eq. 15. We also require
a minimum of 6 points in the thermal boundary layers, that
is NBL ≥ 6. At each Ra we start with a low resolution (
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(Nx , Nz) = (16, 8) for Ra = 105 and 106 and (32, 16) for
Ra = 107) and then double the resolution in both spatial
directions until all three conditions are met.

For comparison, we also carry out spatial convergence
tests for the L2 norm of the temperature field, comparing
results obtained from the low resolution simulations with
those obtained from a high resolution simulation for each
Ra. These are not used to determine the spatial resolution.
We calculate the relative difference in the final state temper-
ature field by taking the L2 norm with the high resolution
(double resolution of shown values for each Ra) final state.
The second test is for Nu, for which we calculate

Nurel = |Nu − NuHR|
NuHR

, (20)

where HR denotes the high resolution simulation.
Table 1 shows the resolution required to meet the consis-

tency checks discussed above. We can see that the resolution
required for 6 points in the boundary layer is higher than the
resolution required for the other convergence tests, except
for the L2 error for Ra = 107. Figure 4 shows how the L2

error compares with Nuint. At Ra = 105, the resolution for a
1% L2 error is the same as the resolution required for the 1%
tolerance in the Nusselt numbers and buoyancy production
and only half the resolution needed to have at least six nodes
in the boundary layers.

At Ra = 107, the L2 error is not yet below 1% even
when all other tests are below tolerance, showing a significant
difference in the L2 error and the convergence tests we have
set.

Given that the L2 norm is not a very relevant quantity
for understanding flow dynamics, if the internal checks and
key quantities are converged before the L2 error, then the
lower resolution is deemed sufficient. The effect of timestep
size on the accuracy of the solution was also investigated.
However, it was found that for a given spatial resolution, the
largest stable timestep was found to meet all of the accuracy
criteria.

3.5 Duration of simulation

We determined the duration of a simulation based on a fixed
number of advective times. There are three main timescales
for Rayleigh–Bénard flow which can be found from dimen-
sional arguments; the thermal diffusive timescale, thermal
advective timescale, and the viscous timescale. Here we
ignore the viscous timescale, as we set Pr to 1. In the
non-dimensionalisation we have chosen, the diffusive and
advective timescales are linked by τadvective = Re×τdiffusive.
FollowingMound et al. [32], we run our simulations for a set
number (in this case 100) of advective times, after the initial
transient has balanced out. However, in the Ra = 105 case,

Table 1 Resolution required to meet various convergence tests. L2 of
the temperature field, Nuint, Nurel, and |P − εU |/P all have tolerance
values of 1%. Ra is the Rayleigh number, NBL denotes the resolution
required for 6 points to be in the thermal boundary layer, L2 denotes
the defect of the end state temperature field to the high res simulation,
Nuint shows max(|NuV −Nub|, |NuV −Nut |, |Nub −Nut |)/NuV , Nurel
is the Nusselt number compared with the high resolution simulation,
and |P−εU |/P is the buoyancy/ dissipation internal consistency check

Ra Resolution (Nx , Nz) for error ≤ 1%

NBL ≥ 6 L2 Nuint Nurel |P − εU |/P
105 (64,32) (32,16) (32,16) (32,16) (32,16)

106 (128,64) (64,32) (64,32) (64,32) (32,16)

107 (128,64) (-,-) (64,32) (64,32) (64,32)

we restrict the simulation to 1 diffusive time unit, since the
solution is effectively steady state.

3.6 Choice of coarse solver

There are several options for choosing a coarse solver for
Parareal. These include a lower order timestepper, a larger
timestep, reduced spatial resolution, reduced physics, or a
different method of solving the equations. In this work, we
reduce the spatial resolution and reduce the timestep. We
tested different levels of spatial coarsening to find the optimal
amount for speedup. We tested coarsening factors (CF) of 2,
4, and 8, where (Nx , Nz) of the coarse solver is equal to 1/CF
(Nx , Nz) of the fine method. A coarsening factor of 2 did not
lead to a speedup. Convergence was quick, but the runtime of
the coarse solver was too close to the that of the fine solver.
A coarsening factor of 4 worked better, allowing for quick
convergence along with a significant difference in the cost of
the fine/coarse solvers. A factor of 8 reduction showed slow
convergence, and was not pursued further.

Coarsening in space requires a method to transmit infor-
mation from coarse grid to fine grid (interpolation), and back
again (restriction). The order of operator for interpolation has
been found to be important for the convergence of Parareal
[28]; a high order method of interpolation helps the conver-
gence of Parareal. In this work we use spectral interpolation,
both because of its convergence properties, and because the
use of spectral methods for spatial discretisation make it a
natural choice.

When choosing a coarse time step, we found situations
where a Parareal simulation could be unstable even when a
stable coarse solver was combined with a stable fine solver.
This is likely due to the stability of Parareal itself, which
has its own stability criterion, separate to the individual
solvers [39]. This leads to lower speedups as we had to use
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(a)Ra = 105 (b)Ra = 107

Fig. 4 Spatial convergence of Nusselt number NuV and L2 errors rel-
ative to high resolution solution for Ra = 105 (left) and Ra = 107

(right). As expected, higher resolution is required for both quantities to
meet the 10−2 tolerance for the higher Rayleigh number case. It can
also be seen that the L2 error requires much more resolution at higher

Rayleigh number than the Nusselt number, where as at Ra = 105, the
resolution required to give good answers for the Nusselt number and L2

error are similar. The shown Nusselt number is calculated by averaging
over time and space

smaller coarse time steps, making the coarse solver more
costly. We also investigated using lower order timesteppers
for the coarse solver, along with the reduced resolution.
However, as the stability region of Runge–Kutta tends to
increase with the order, we found that reduced timestep sizes
were required for lower order coarse solvers. This cancelled
out any speed increase from reduced computation, thus the
higher order timestepper RK443 was used in both the fine
and coarse solver. Table 2 shows the resolutions, timesteps
and runtimes of the coarse and fine solvers used in this work.

3.7 Determining convergence in parareal

The most simple and widely used check for convergence
in Parareal is to monitor the defect between two consecu-
tive iterate [4,5,34]. This has the benefit of being easy to
implement, and can be done whilst running the simulation.
However, as discussed in Sect. 3.4, using the L2 can lead
to substantial over-resolution of the problem if one is inter-
ested only in the averaged dynamics. Therefore, the typical
online Parareal convergence test is not suitable in this case.
Since, at the moment, no termination criteria for averaged
dynamics has been published, we perform a fixed number of
Parareal iterations and assess convergence in post process-
ing. While useful for benchmarking, this is obviously not a
reasonable approach for production runs. Research into alter-
native and more application-oriented termination criteria for
Parareal therefore seems to be an area were further studies
are urgently needed.

4 Results

4.1 Kinetic energy in the Parareal solution

Figure 5a, b show the kinetic energy against time, for
Rayleigh numbers 105, 107, for different numbers of Parareal
iterations k. The number of time slices was kept constant at
10. For Ra = 105, an initial Parareal coarse run shows signif-
icant differences from the subsequent Parareal iterations. The
overall kinetic energy is higher in the low resolution coarse
solver, and varies over time periodically. This increased
kinetic energy in the coarse solver is due to dissipation of
the system being under resolved at the coarse resolution.
The periodicity is not present in the fine solution, and the
effect can be seen to reduce in the subsequent iterations. The
kinetic energy quickly reduces to the correct level after the
first iteration for each time slice. Subsequent iterations still
have a small ’bump’ in kinetic energy at the correction time,
but the overall level is in accordance with the fine solver. The
kinetic energy corrects quickly to the correct level (within
tolerance of the fine method) at the start of each time slice,
so that the time averaged value falls within tolerance values.
The magnitude of the jump is also small, and does not grow
significantly beyond the difference between the coarse and
fine solvers. The Ra = 107 case shows problems with the
Parareal convergence. The correction steps increase the error,
which can be seen in the large jumps at the time slice bound-
aries. This is the first indication that Parareal has reached
the limit of usability in this parameter space. These jumps
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Table 2 Spatial resolution
(Nx , Nz), timestep size (in
diffusion times τd ), time-serial
runtimes (seconds), and
simulation duration (in τd ) for
the coarse and fine solvers at
different Rayleigh number (Ra)

Ra Resolution Timestep Runtime Duration

Coarse Fine Coarse Fine Coarse Fine (τd )

105 (16,8) (64,32) 10−4 2 × 10−5 95.4 300 1.0

106 (32,16) (128,64) 5 × 10−5 2 × 10−5 1062 2996 0.6

107 (32,16) (128,64) 5 × 10−6 2 × 10−6 5185 14,169 0.3

are of far larger magnitude than those found in the lower Ra
case, which is a further reason to suspect that the method is
failing for Ra = 107, whilst accepting that it is working for
Ra = 105.

4.2 Parareal convergence

Figure 6 shows how the calculated Nusselt number chan-
ges with increasing Parareal iterations. The Nusselt number
found from the initial coarse solve is outside the accuracy
requirement with an error of around 10% rather than 1%.
In the case of Ra = 105, the Nusselt number converges to
within the accuracy envelope after 1 iteration, but then in
iterations 2–4 it falls back outside this region before con-
verging again from iteration 5. We believe this is due to the
well known ‘hump’ that can be seen for problems with domi-
nant imaginary eigenvalues where the error does not contract
monotonically [16]. For Ra = 107, the Nusselt number con-
verges after a single iteration in this case of 10 time slices. For
different numbers of time slices, the Nusselt number some-
times takes more than one iteration to converge—see Figs.
7, 9.

Figure 7 shows the comparison of the L2 error with the
error inNusselt number for Ra = 106, 107. In the smaller Ra
case, there is smooth convergence in both the L2 error and in
theNusselt error, although theNusselt convergence is slightly
more erratic. In the Ra = 107 case, we see that the Nusselt
number error falls just underneath the tolerance threshold
after the first iteration. This is followed by a shallow decline
in the error until the final iteration. The L2 error behaves very
differently, with a constant error of around 10% right up until
the 9th iteration. We see here the mismatch in the error with
respect to time averaged quantities with errors with respect
to snapshots of the solution (L2).

Figure 8 shows the internal consistency errors (Nuint, |P−
εU |/P) for all three Ra tested. In all three cases, the |P −
εU |/P and Nuint converge to within the 1% tolerance after
one iteration. However, the results for Ra = 107 show that
|P − εU |/P then returns above the tolerance level, and does
not fall reliably until 8 iterations have been completed.

We have also carried out numerical experiments for dif-
ferent numbers of time slices, from 5 to 32 time slices. Here,
we would expect to see a trend where the number of itera-
tions required to converge slowly increases with the number

of time slices. In our results, we found that the number of iter-
ations required did not behave like this for Ra = 107. The
number of iterations required increased and decreased with
no clear pattern up to 20 time slices. Beyond this the iteration
count was always higher than 1, and gradually increasedwith
the number of time slices.

4.3 Scaling and performance

Figure 9 shows the scaling performance for simulations with
Ra = 105, 106, 107. We see standard scaling behaviour
for both 105, and 106, where speedup increases with proces-
sor count until the scaling limit is reached, and no further
performance gains are possible. This is due to an increase
in the number of Parareal iterations required at higher time
slice count. We also see that performance is better at 106

than at 105, likely because the bigger problem size due to
higher resolutions improves scaling. However, the perfor-
mance of Parareal at Ra = 107 is much more mixed. This
is in part due to the errors being very close to the tolerance
level for all iterations after k = 1, see Figure 7b. The error
does not fall with increasing iterations in the way it does for
Ra = 105, 106, rather, it hovers very close to the tolerance
value. Convergence behaviour with number of time slices is
unpredictable in this case. For some numbers of time slices,
such as in figure 7b, the Nusselt error falls below tolerance
after one iteration and remains there. In other cases, such as
five or 16 time slices, see Figure 7c, the error falls below the
tolerance and then rises back again.

5 Conclusions

5.1 Parareal for Rayleigh–Bénard convection

We have shown that the Parareal algorithm allows for reli-
able speedup of simulations in a limited range of Rayleigh
numbers at finite Prandtl number. The algorithm converges
quickly with respect to averaged quantities like the Nus-
selt number and internal energy balance. Although slower,
Parareal also converges with respect to the L2 defect between
subsequent iterations. Speedupsof up to2.4 are possible,with
around 20 processors, with parallel efficiencies of around 0.2
for Rayleigh numbers as high as 106. However, in all cases,
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(a) Ra = 105 (b) Ra = 107

Fig. 5 Dimensionless kinetic energy against time for different numbers
of Parareal iterations K for Ra = 105, 107. Time is measured in terms
of the diffusion time τd , duration was determined as ≈ 100 advective
time units after the transient settled. The coarse solver has 1

4 the number
of modes in x and z as the fine solver, the coarse timestep is ≈ 2× the
fine timestep, and the simulation used 10 time slices (see table 2). The
coarse solver for Ra = 105 shows higher kinetic energy levels, along

with periodic behaviour not present in the fine solution, which is proven
to be found when k > number of processors (k = 11 in this case). For
107, large jumps in the solution for k > 0 are due to the Parareal cor-
rection step. The error at the jumps is growing, rather than shrinking,
as the iteration number increases, showing the inability of Parareal to
converge in this parameter regime

(a) Ra = 105 (b) Ra = 107

Fig. 6 Changing Nusselt number NuV with Parareal iteration k. There
is a large error in the Nusselt number calculated from the coarse solver
(k = 0), so that at least one iteration is required to calculate the correct

Nusselt number (within 1%—dotted red lines). For the Nusselt num-
ber alone, convergence behaviour is encouraging, for Ra = 105 and
Ra = 107. The simulation was carried out with 10 time slices

speedups were limited to at most 20 processors. Beyond that,
increases in the number of required iteration balanced out any
gains from using more processors.

At Ra = 107, we find that convergence of Parareal
degrades substantially. The errors inNu do not fall monotoni-
callywith increasing iteration number. For some simulations,
the error falls below the tolerance level at a low number

of iterations, only to increase in successive iterations. This
erratic behaviour leads to irregular scaling performance at
107; sometimes the simulation converges in one iteration,
sometimes it takes two or three. Parareal is not expected to
be useful for simulations of Rayleigh–Bénard convection at
Rayleigh numbers above 107 as we expect the performance
to degrade further as the flow becomes more turbulent, in
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(a) Ra = 106 (b) Ra = 107, 10 Time slices

(c) Ra = 107, 16 Time slices

Fig. 7 Convergence of Nusselt numberNuV and L2 error with Parareal
iteration for Ra = 106, 107, 10 time slices (a,b), 16 time slices(c). As
kmax is greater than number of timeslices, the solution at kmax per-
fectly represents the serial fine solution. We can see that the L2 error
at Ra = 106 behaves as expected for good Parareal convergence, with
a superlinear convergence behaviour. The Nusselt error at this Ra also

shows convergence, but is more erratic. At Ra = 107, we see much
worse convergence. The L2 error does not converge until the last itera-
tion, when k is equal to the number of time slices. The Nusselt number
error behaves slightly better, but does not decrease monotonically. Fig-
ure(c) shows Ra = 107 but with 16 time slices. Here, it requires two
iterations for the Nusselt number to reach the 1% tolerance

line with previous results [40]. These findings are in con-
trast to what Samuel [35] found for Ra = 107 with infinite
Prandtl number, where he observed a small number of itera-
tions independent of the number of time slices being required
for convergence and increasing speedup up to 40 processors.
Clearly, performance of Parareal is very different in the finite
versus infinite Prandtl number case.

This difference in performance is caused in part by the
well known general degradation of Parareal with increas-
ing Reynolds numbers [40]. It is also caused by the choice of
convergence criteria. The correction step of Parareal depends
on pointwise amplitude corrections at the boundary between

time slices. In Rayleigh–Bénard convection studies, the par-
ticular state of a given field at an instant in time is not of
primary concern, therefore we relaxed the accuracy condi-
tions of the fine solution, so that we did not enforce that the
L2 error be below a threshold value. In the cases of 105 and
106, the L2 error is of roughly the same magnitude as the
time- and space- averaged quantities (Nuint, |P − εU |/P),
used to determine accuracy of the solution. In the 107 sim-
ulations, we can find a good level of accuracy in the Nuint
and |P − εU |/P , whilst the L2 error is still high in spatial
convergence tests, (see Figure 4). As the Parareal algorithm
effectively operates on the L2 error, Parareal convergence
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(a) Ra = 105 (b) Ra = 106

(c) Ra = 107

Fig. 8 Convergence of the internal checks carried out on the data of the
Parareal simulations, for Ra = 105, 106, 107, 10 time slices. The inter-
nal energy balance (|P − εU |/P) takes longer to converge than Nuint.

The Nusselt number is convergent for all three cases, but the internal
energy balance is not convergent at the highest Rayleigh number

is slow. Exploring the performance of other parallel-in-time
methods like PFASST orMGRIT, and potentially a compari-
sonwith Parareal, would be an interesting direction for future
research.

5.2 Convergence of statistical quantities in Parareal

For larger Rayleigh numbers, our tests show a significant
disparity between the instantaneous L2 error in a variable
field such as temperature and the error in statistically calcu-
lated quantities such as the Nusselt number. In one example,
Parareal reached a 1% error with respect to the Nusselt
number in 1 iteration while the L2 error stalled for 7 iter-
ations and only fell below 1% after iteration 8. In a case
like Rayleigh–Bénard convection, statistical quantities like

the Nusselt number are typically the most informative for
understanding the behaviour of the physical system and what
domain scientists are interested in. Therefore, we argue that
this should be the criteria for determination of convergence,
similar to what is used in time serial studies. However, for
a reliable estimate of this kind of quantity, a time average is
required across multiple time slices, in addition to a spatial
average. Obtaining this kind of data during a simulation to
monitor and terminate Parareal’s convergence with respect
to statistical quantities is a problem that presents an inter-
esting challenge, and would be a useful avenue for further
investigation.

The cause for the poor performance of Parareal for hyper-
bolic problems is that Parareal mostly performs an amplitude
correction rather than a phase correction—if the wave speed
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Fig. 9 speedup vs number of timeslices/processors for Ra = 105, 106,
and 107. We can see that performance apeears best for Ra = 106. Peak
speedup is around 2 ∼ 2.4 for all Ra. For 105, and 106, performance
is predictable, with speedup increasing with number of cores until a
scaling limit is reached. For 107, the scaling behaviour is erratic, due
to the errors being very close to the tolerance limit. This leads to more
iterations being required for convergence at some processor counts,
causing the smaller speedups (black triangles)

is incorrect in the coarse propagator, Parareal will be unable
to correct for the phase error this causes [33]. In a time aver-
age, the phase information might be much less important.
Therefore, if a convergence criteria/correction for Parareal
based on time averages could be constructed, this might also
help to alleviate the problems Parareal faces for hyperbolic
problems.
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