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Abstract

The linear magnetohydrodynamic stability of a shielding magnetic flux rope with a surface current under coronal
solar conditions is analyzed in the framework of an energy principle. The equation describing the potential energy
change induced by disturbances of the equilibrium was derived. It has been shown that the surface reverse current
shielding the azimuthal component of the magnetic field lines outside a flux rope stabilizes the development of
kink- and flute-type instabilities in the long-wavelength limit independently of the cross-sectional radial profile of
current density. Kink modes are the most unstable ones as their generation requires less energy than other modes.
Based on the obtained dispersion relation for kink oscillations, we proposed a new expression for the determination
of magnetic field components of the twisted loop.

Unified Astronomy Thesaurus concepts: Magnetohydrodynamics (1964); Space plasmas (1544)

1. Introduction

The magnetic flux tube and current sheets are the main
“building blocks” of solar magnetic configurations (see, e.g.,
Parker 1979; Priest 1984; Priest & Forbes 2000; Ryutova 2018).
The magnetohydrodynamic (MHD) instabilities of magnetic
flux ropes (i.e., twisted flux tubes) are partially responsible for
plasma heating, particle acceleration, and wave generation at
different spatio-temporal scales. Kink instability is a subject of
special interest since there is much evidence that this instability
can be responsible for flare energy release and coronal mass
ejections (see, e.g., Sakurai 1976; Török & Kliem 2005; Myers
et al. 2015; Chen 2017). However, the question about the
stability conditions of flux ropes is not fully resolved yet (see,
e.g., Priest 1984; Hassanin et al. 2016).

Previously, the kink instability of a plasma cylinder with a
longitudinal electric current was investigated theoretically by
Kruskal & Schwarzschild (1954) and Leontovich & Shafranov
(1961). It has been shown that a flux rope with length L, radius
a, and azimuthal and longitudinal magnetic field components
Bj and Bz, respectively, becomes unstable with respect to kink
perturbations if the total twist angle of magnetic field lines

( ) ( )F = jLB a aB az exceeds some critical value Φc=2π. This
value corresponds only to one full rotation of the magnetic field
line. For solar coronal loops, which we can consider as straight
cylinders, the aspect ratio a/L=1 (see, e.g., Nakariakov et al.
1999), and therefore the azimuthal component of magnetic field
Bj, is Bj=Bz. Although the Kruskal–Schafranov condition
has been obtained for a flux rope with an electric current
surrounded by vacuum, with an accuracy of the coefficient the
critical twist angle (Φc=2.9π) is still valid for solar coronal
loops anchored at footpoints (see, e.g., Hood & Priest 1981;

Priest 1984). Meanwhile, Srivastava et al. (2010) have found
the signature of a highly twisted coronal loop in the active
region by using satellite multiwavelength observations. The
observed coronal loop showed a strong right-handed twist in
the chromospheric and coronal images with a total twist angle
for the whole loop Φ∼12π. In turn, Liu et al. (2019), based on
the study of twist angles of magnetic field lines released by 30
off-limb rotational solar coronal jets, has found that the
maximum Φ≈9.4π and that the kink instability threshold in
the solar atmosphere should not be a constant.
A number of theoretical studies have shown that magnetic

flux tubes are responsible for the variety of observable solar
phenomena that should be isolated in the photosphere, i.e., they
are surrounded by the field-free plasma (see, e.g., Ryutov &
Ryutova 1976; Parker 1979; Spruit 1981; Priest 1984; Fan 2009;
Weber & Browning 2016; Tsap et al. 2018). Parker (1996) has
shown that the total current across a cross section of the
photospheric magnetic flux tube is equal to zero due to the
presence of the surface current. In particular, this suggests that
the presence of nonvanishing vertical currents is an artifact
caused by the limited spatial resolution of the observing
magnetograph. In contrast, Melrose (1991, 1995, 1996) has
found arguments against these representations. Some observa-
tional and numerical simulation results show evidence in favor
of nonneutralized electric currents in the active regions of the
solar photosphere (see, e.g., Georgoulis 2018; Schmieder &
Aulanier 2018; Russell et al. 2019). At the same time, we cannot
exclude the fact that partially isolated magnetic flux ropes with a
shielding longitudinal surface current also exist (see also
Wilkinson et al. 1992; Wheatland 2000; Schmieder &
Aulanier 2018).
Sakurai (1976) has applied the method of normal modes to

analyze the kink stability of a filament (an isolated twisted
magnetic flux tube). However, the external magnetic field and
gas pressure were not considered. Linton et al. (1996) have
taken into account the external gas pressure and studied the
linear stability of an isolated flux rope below the solar
photosphere within the linear approximation. Based on an
energy principle the authors concluded that kink instability
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consists mainly of internal motions while the helical transla-
tions of the entire tube are stable. It was suggested that the
plasma β?1 which is unusual in the lower solar corona. The
partially isolated magnetic flux ropes with oppositely directed
volume currents were studied previously by Mikic et al. (1990).
By using numerical calculations, it was shown that the
magnetic flux rope becomes unstable if the twist angle
Φ>4.8π. Recently, Cheremnykh et al. (2017) have studied
incompressible perturbations by using the normal modes
method. It was found that in the long-wavelength limit the
eigenfrequency of the kink mode (m=1) is real and
completely unaffected by the choice of internal background
magnetic twist. Later, Cheremnykh et al. (2018) showed that
the stability criterion of the m=1 mode is independent of the
background azimuthal components of the plasma velocity and
magnetic field. The results of studies mentioned above show
that the reverse current inside a flux rope should stabilize the
development of kink instability. However, the proposed
approaches had some essential restrictions associated with the
mathematical difficulties caused by the complexity of either the
magnetic configuration (Mikic et al. 1990; Linton et al. 1996)
or calculation methodologies (Cheremnykh et al. 2017).

The main aim of this work is to investigate the stability of
the partially isolated magnetic flux rope with a shielding
surface current under solar coronal conditions on the basis of an
energy principle (Bernstein et al. 1958). This method has been
used previously for theoretical investigation of the solar
coronal loops (e.g., Priest 1984; Hood 1986; Melville et al.
1986; Linton et al. 1996) but shielding longitudinal currents
had not been considered.

The paper is organized as follows. In Section 2, we present
the main idea of our approach. The procedure of minimization
of the potential energy change and the search of the
eigenfunctions of a flux rope are described in Section 3 and
Section 4, respectively. Section 5 is devoted to the analysis of
the stability of kink modes and application of obtained
theoretical results. Discussions and conclusions are provided in
Section 6.

2. An Energy Principle for a Flux Rope with Sharp
Boundary

In the cgs system of units the equation of plasma motion,
induction equation, continuity, and energy balance in a single-
fluid ideal MHD can be represented as

( )r r= - +
´

+
v j B

g
d

dt
p

c
, 1

[ ] ( )
¶
¶

=  ´ ´
B

v B
t

, 2

( ) ( )
r

r
¶
¶
+  =v

t
0, 3

( )
⎛

⎝
⎜

⎞

⎠
⎟
r

=
g

d

dt

p
0, 4

where ρ is the plasma mass density,v is the plasma velocity, p

is the gas pressure,g is the the acceleration of gravity, γ=5/3
is the ratio of specific heat, and the electric current density

( )
p

=  ´j B
c

4
. 5

LetS be the displacement vector of the elementary plasma
volume from the equilibrium. Then, taking into account the
equilibrium equation

( )r- +
´

+ =
j B

gp
c

0, 6

as well as Equations (2)–(5), the linearized Equation (1) can be

written as (see, e.g., Bernstein et al. 1958):

̈ ˆ { } ( )r + =S K S 0. 7

Here, the differential operator K̂ depends on the equilibrium

values of the gas pressure p, plasma density ρ, and magnetic

fieldB:

ˆ { } [ [ ( )]]

[ ( )]

[( ) ] ( ) ( )

p

g r

=  ´  ´ ´

´ + ´  ´ ´

+   +  - 

K S S B

B j S B

S S g S

c

p p

1

4
1

, 8

where

̈ =
¶
¶
=
¶
¶

S
v S

t t
.

2

2

Bernstein et al. (1958) have shown that the differential
operator K̂ is Hermitian, i.e., the following equality should be
satisfied

ˆ { } ˆ { } ( )ò òh x x h=K KdV dV , 9

for the arbitrary eigenfunctions h and x.
By multiplying Equation (7) in a scalar way by the time

derivative of the vector displacement S and by integrating it over
the plasma volume V, together with Equation (9), we arrive at

ˆ { }
⎡

⎣⎢
⎤

⎦⎥
ò òr

¶
¶

+ =S SK S
t

dV dV
1

2

1

2
0,

V V

2

or

( )+ =T W const, 10

where changes in kinetic T and potential W energies are

ˆ { }ò òr= =S SK ST dV W dV
1

2
,

1

2
.

V V

2

The equation of energy conservation (10) shows that any
arbitrary perturbation, with a decrease of potential energy
(W<0), leads to the increase of kinetic energy T and,
therefore, to the development of MHD instability. In contrast,
the system is stable if a change of energy W>0. This is the
main idea of an energy principle (see also Sakurai 1976). Such
an approach allows us to obtain useful information about
stability conditions without the consideration of eigenfunc-
tionS in detail.
By assuming thatS can be represented as

( ) ( ) ( )= WS r s rt i t, exp ,

instead of Equation (7) we have

ˆ { } ( )lr l= = Ws K s , . 112

Therefore, the problem of MHD stability focuses on finding the

eigenvalues λ. Equation (9) suggests that the eigenvalues λ

2
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should be real. The negative eigenvalues of λ correspond to the

instability growth rate ∣ ∣lG = while the positive ones

describe the frequency lW = of MHD eigenmodes.

Investigation of the MHD stability of magnetic plasma

configurations reduces to the finding of eigenvalues λ of the

linear differential operator K̂ .
The vectors can be found analytically for a few limited

cases by using the method of normal modes (e.g., Priest 1984;
Goedbloed & Poedts 2004). Therefore, an energy principle is
more convenient for the analysis of instability conditions.

By multiplying Equation (11) bys and integrating over the
plasma volume, we can find the eigenvalues as

( )
ò

l
r

=
s

W

dV

2
. 12

V

2

From Equation (12), it follows that smallest positive
eigenvalues λ correspond to the most feasible oscillations.
These eigenvalues can be identified by applying the Rayleigh–
Ritz method (see, e.g., Dungey 2016).

For the sharp plasma–plasma boundary which separates
internal (i) and external (e) regions by surface σ, from
Equation (12) we have (Tsap et al. 2006, 2008)

( )
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+ +
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wheren is the normal to the boundary surface σ. The equation

of the pressure balance should be satisfied at the boundary

surface σ

( )
⎛
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⎞
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p p
+ = +

s s
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8 8
. 16i

i
e

e
2 2

By neglecting gravity, from Equation (15) for K we can
conclude that the main source of instability is the electric
currentj (Ampere force) since terms with the gas pressure p
should be equal to zero for the most critical modes. Indeed, the
vectors can be expressed in terms of longitudinalsP and
perpendiculars⊥ components in respect to the direction of
magnetic fieldB

= + ^s s s .

As a result, is easy to show (see, e.g., Zagorodny &

Cheremnykh 2014) thatsP is only present in the term

( ) ( )g g =  +  ^s s sp p .2 2

The incompressible perturbations are most unstable when the

values of Wi and We in Equation (14) are minimal, i.e., when

∇s=0. It can be achieved by choosingsP.
By using a cylindrical coordinate system (r, j, z), let us

consider a magnetic flux rope with a shielding surface current
(Figure 1). The proposed model suggests that the equilibrium
magnetic field is

( ( ) ( ))

( )
( )

⎧
⎨
⎩

=
>

j 
B

B r B r r a

B r a

0, , , ;

0, 0, , .
17

zi

ze

As it follows from expression (17) we consider the cylinder

boundary as an MHD discontinuity with a surface current. Note

that the proposed model reduces to a partially isolated flux rope

because the azimuthal component of the magnetic field Bj is

equal to zero outside of the tube.
In our study we take into account the surface potential

energy Wσ, which is usually not considered in a laboratory
plasma. By neglecting gravity, Equations (5) and (6) give:

( )
⎛

⎝
⎜

⎞

⎠
⎟
p p

 + = B Bp
B

8

1

4
.

2

Therefore, for the equation of equilibrium in the r-direction we

have

( )
p

= - jdP

dr

B

r4
. 18

2

Figure 1. Sketch of a shielding magnetic flux rope with an internal surface
current.
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According to the Equations (15) and (18) the derivative of ⟨ ⟩P
is

( )
p

á ñ
= - = jd P

dn

dP

dr

dP

dr

B

r4
. 19

e i
2

The displacements can be represented as

( ) ( ) ( )( )= j+s r s r e , 20i m kz

where the integer number m describes the sausage (m= 0),

kink (m= 1), and fluting (m�2) modes. By setting the

wavenumber k as k=−2πn/L, where n�1 is an integer

number, the element of the lateral surface of the magnetic

cylinder dσ as

s j=d ad dL,

and substituting Equations (19) and (20) into Equation (14), we

obtain

( )
( )
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2 4
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8
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r r
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2

0

2
2

2
2

Since Wσ>0, the surface longitudinal currents stabilize the

development of MHD instabilities. Moreover, stabilization

depends on the value of the azimuthal component of the

magnetic field Bj(r) at the boundary only.

3. Minimization of Wi and We Energies for a Flux Rope

The condition  =s 0 allows us to minimize the potential
energies over the internal Vi and external Ve volumes in respect
to sj and sz. By using the equation for a perturbed magnetic
field

[ ]d =  ´ ´B s B ,

which follows from the induction Equation (2), and

Equation (20), we arrive at
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In turn, in cylindrical coordinates,  =s 0 reduces to
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By combining Equations (23) and (24), we can express the

displacements sj and sz in terms of sr and ζ as
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Then, using Equations (22) and excluding sj and sz by means

of Equation (25), from Equation (15) follows
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This expression has the minimum value at
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Therefore, in accordance with Equations (14) and (28), the

minimization procedure leads to the following (see also

Newcomb 1960)
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where the lower index j corresponds to i and e. The first two

terms under the integral (29) are positively determined and

stabilize the instability development. Therefore, only the last

term, which is related to the the longitudinal current jz, can be

responsible for the instability.
After integration of the term with s ds drr r from Equation (29)

we obtain the following expression for potential energy inside a
flux rope
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Note that the last equation by means of the equilibrium (i.e.,

Equation (18)) can be reduced to the expression obtained

previously by Shafranov (1970)
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The potential energy outside a flux rope is
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Equations (30)–(32) at k a 12 2 and ¹m 0 reduce to the form
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The kink (m= 1) mode of the magnetic flux rope should be

most unstable since µg mi
2 at  ¥m (see the Appendix and

Miyamoto 1988 for the particular case of homogeneous

current).

4. The Eigenfunctions

In order to find the expressions for eigenfunctions we should
find solutions of the Euler–Lagrange equations (see e.g.,
Shafranov 1970):

( )⎜ ⎟
⎛

⎝

⎞

⎠
- = d

dr
f
ds

dr
g s r a0, , 34i

r
i r

( )⎜ ⎟
⎛

⎝

⎞

⎠
- = >

d

dr
f
ds

dr
g s r a0, , 35e

r
e r

which have to satisfy the matching conditions at r=a.
By using Equations (33) and taking into account that the

external magnetic field =B constze , from Equation (35) we
obtain

( ) ( )⎜ ⎟
⎛

⎝

⎞

⎠
+ - =

r

d

dr
r
ds

dr
m s

1
1 0. 36

r
r

3 2

The solution of differential Equation (36), which describes

displacement sr outside of the flux rope, is

( ) ( )⎜ ⎟
⎛
⎝

⎞
⎠

=
+

s s a
a

r
. 37r r

m 1

For the kink mode (m= 1), the solution (37) reduces to (see

also Cheremnykh et al. 2017)

( ) ( )⎜ ⎟
⎛
⎝

⎞
⎠

= >s s a
a

r
r a, , 38r r

2

and will be used in the next section.
According to Equations (33) and (34), the equation for sr

inside the flux rope in the long-wavelength limit, e.g., ka=1,
takes the following form

( ) ( )( ) ( )⎜ ⎟
⎛

⎝

⎞

⎠
+ - =kB kB

r

d

dr
r

ds

dr
m s

1
1 0. 39i

r
i r

3 2 2 2

It should be stressed that the points wherekBi=0 are usually

called resonant points (Shafranov 1970).
For the kink mode from Equation (39) it follows that

( ) ( )⎜ ⎟
⎛

⎝

⎞

⎠
=kB

d

dr
r

ds

dr
0. 40i

r3 2

When the singular points are absent ( ¹kB 0i ) the trivial

solution of Equation (40) can be represented as (see also Bahari

& Khalvandi 2017; Cheremnykh et al. 2017)

( )= = s s r aconst, . 41r 0

Note that in the Equation (30), the term proportional to ds drr

under the integral sign is equal to zero in this case.
To determine the condition of the absence of resonant points

let us rewrite Equation (40) in the following form

( )
( )

( )

( )
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2
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2
.

42

r

zi

3
2

If Φ(r) is a monotonously decreasing function of r and by

taking into account that the minimum value of n=1, the

resonant point inside the magnetic flux tube is absent at

( )
p

F =
<

r 0

2
1,

5

The Astrophysical Journal, 901:99 (9pp), 2020 October 1 Tsap et al.



and, therefore, the resonance effects can be ignored (see also

Cheremnykh et al. 2017).
For the general case, when the resonant point rsn inside the

magnetic flux rope is present, from Equation (42) it is easy to
show that the expression for Wi can be minimized if

( )
⎧
⎨
⎩

=
<
 

s
r r

s r r a

0, 0 ,

, .
43r

sn

sn0

The behavior of function (43), as well as resonant points rsn
determined by expression

( )
p

F =
=

r r
n

2
,

sn

are shown in Figure 2. Under such a choice of sr the

contribution of the term, which is proportional to fi under the

sign of integral (30), vanishes at r rsn.

5. The Stability of the Kink Mode

Let us obtain the expression for the total potential energy W
at m=1 by assuming the arbitrary distribution of the current
j(r) over the cross section of the magnetic flux rope. By
substituting solution (38) into Equation (32), the potential
energy outside a flux rope can be represented as

( ) ( )=W
L
k a B s a

8
. 44e r

2 2
ze
2 2

As it follows from Equations (21) and (44), the values of Wσ

and We are positive and, therefore, the external and surface

perturbations should stabilize the development of kink

instability, which can be associated only with the internal

potential energy Wi.

Since the term with fi under the sign of integral for Wi in
Equation (30) should be negligibly small and

( )ò ~
L s

W
g dr k a

8
, 45

a r

a

i
0
2

2 2

sn

it is easy to see that in the long-wavelength limit Wi≈Wa.

Note that the relationship (45) is satisfied in the case of a few

resonant points inside of the magnetic flux rope.
Hence, in view of Equations (21), (33), and (44)

( )( ) ( )= + + = + >sW W W W
L
k a s a B B

8
0, 46a e r zi

2 2 2 2
ze
2

where Bzi=Bzi(a). Thus, the magnetic flux rope will remain

stable in respect to the kink modes for arbitrary values of twist

angles Φ in the long-wavelength limit.
In accordance with Equation (A3)

( ) ( ) ( )ò òr r r r p+ = +s sdV dV s a a L, 47
V V

i e r
2 2 2 2

i e

and from Equations (13) and (46) the square of eigenfrequen-

cies for a flux rope is

( )
( )

p r r
W =

+
+

k B B

4
. 48

zi

i e

2
2 2

ze
2

Equation (48) coincides with numerical and analytical results

obtained previously by Bennett et al. (1999) and Cheremnykh

et al. (2017), respectively. However, we did not impose any

restriction on the dependence of the longitudinal Bzi component

(i.e., on jj current component) on r whereas according to

Bennett et al. (1999) and Cheremnykh et al. (2017) it should be

constant.
Equation (48) also coincides with the dispersion relation for the

untwisted thin magnetic flux tube (e.g., Spruit 1982; Roberts et al.
1984; Tsap & Kopylova 2001). This equation was proposed by
Nakariakov & Ofman (2001) to determine the absolute value of
the magnetic field strength But in untwisted coronal loops at low
plasma beta b p= p B8 12 . The authors have shown that the
transverse magnetic loop oscillations can be related to the global
(fundamental) standing kink modes. By using the equation of the
pressure balance, = =B B Bzi

ut ut
ze, the corrected calculated

formula (there is a typo in Equation(6) of Nakariakov &
Ofman 2001) has the form (see also Aschwanden 2004;
Nakariakov & Verwichte 2005):

( ) ( )p r r r= = +B B
L

T
8 1 , 49zi i e i

ut ut

where T is the observed period of transverse oscillations. For

the typical magnetic loop parameters the estimated magnetic

field But turned out to be equal to 4–30 G (see, e.g., Nakariakov

& Ofman 2001; Nakariakov & Verwichte 2005). Equation (49)

provides us the value of the magnetic field in an assumption

that no magnetic twist is present.
As it follows from our analysis the dispersion relation (48)

can also be used for magnetic field diagnostics of twisted
coronal loops. In fact, the equation of the pressure balance at
the boundary r=a in case of β=1 in accordance with the
Equation (16) can be written as

( ) ( ) ( )= + =jB B B B . 50zi
tw 2 2 tw 2

ze
2

Figure 2. The schematic plots of the resonant point and solution shown in
Equation (43).
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The phase velocity Ω/k for the fundamental mode is Ω/k=
2L/T. Since = FjB B a Lzi

tw with regard for Equations (48) and

(50), the longitudinal magnetic field component of the twisted

magnetic flux tube can be represented as

( )

( )
( )

pr r r
=

+
+ F

B
L

T a L

4 1

2
. 51zi

i e itw

2

Equations (49) and (51) provide

( )
( )=

+ FB

B

a L2

2
. 52

zi

zi

ut

tw

2

By using Equations (50) and (51), the estimate of the absolute

value of the magnetic field strength for the twisted magnetic

flux tube can be found as

( )
( )
( )

( )pr r r= +
+ F
+ F

B
L

T

a L

a L

4
1

1

2
. 53i e i

tw
2

2

Therefore, according to Equations (49) and (53), the ratio

between But and Btw is a function of the total twist angle Φ and

can be represented as

( )
( )

( )=
+ F
+ F

B

B

a L

a L
2

1

2
. 54

ut

tw

2

2

The dependence of ratios for longitudinal (B Bzi zi
ut tw) and

absolute (B But tw) magnetic fields as the function of angle Φ

calculated by using Equations (52) and (54) for the aspect ratios
a/L=0.05, 0.1, and 0.2 are presented in Figure 3. It is clearly
seen that these ratios depend on Φ significantly. Following
observational results reported by Srivastava et al. (2010), for
the estimated twist angle Φ≈12π and the aspect ratio
a/L=0.05, from Equations (52) and (54) it follows that

»B B 1.67zi zi
ut tw and But/Btw≈1.28.

6. Discussion and Conclusions

In the present paper, the kink stability of a shielding magnetic
flux rope with a surface current has been studied. This type of
magnetic configuration may be generated, for example, by the
vortex plasma motions (see, e.g., Kitiashvili et al. 2012, 2013;

Giagkiozis et al. 2018; Snow et al. 2018; Murawski et al. 2018)
accompanied by the slight penetration of magnetic field lines
into the external region due to the ohmic diffusion. At the same
time, the questions on physical mechanisms responsible for
generation of surface neutralized and nonneutralized electric
currents remain open (e.g., Dalmasse et al. 2015; Georgoulis
2018; Schmieder & Aulanier 2018).
We have used an energy principle approach which allowed

us to analyze the general properties of kink and other MHD
modes in the presence of surface current and obtain the exact
expressions for eigenfunctions and eigenvalues which usually
can be found by using the normal modes method. Following
Parker (1996) we limited our study to the model of a magnetic
flux rope with a surface current shielding the azimuthal
component of magnetic field outside the tube. In particular, an
energy principle permitted us to generalize results obtained by
Cheremnykh et al. (2017) and conclude that surface currents
may stabilize the kink (m= 1) and fluting (m>1) modes
under coronal conditions in the long-wavelength limit. This
result is independent of the radial profile of the current density.
It supports a number of flare models which include connection
of the energy release with nonneutralized electric currents (e.g.,
Kliem & Török 2006; Stepanov & Zaitsev 2016).
The calculated estimates suggest that kink modes should be

dominant under coronal conditions since a minimal amount of
energy is needed for their generation. In particular, it explains
the ubiquitous character of decayless kink oscillations in the
solar corona (see, e.g., Nisticò et al. 2013; Anfinogentov et al.
2015). We have also shown that the dispersion relation (48),
which is often used for the magnetic field diagnostics in
untwisted coronal loops, remains true for twisted ones.
Our findings also indicate that surface currents may play a

significant role in the dynamics of magnetic flux tubes. The
detection of these currents is an important practical task as they
may completely stabilize the development of kink instability.
New high-resolution spatial observations of the dynamic
magnetic field by the Daniel K. Inouye Solar Telescope should
be very helpful for a better understanding of this process.

Y.T., A.S., and Y.K. were partially supported by the Russian
Foundation for Basic Research (project No.18-02-00856) and the
Ministry of Education and Science (project No. 0831-2019-0006).

Figure 3. The dependence of ratios for longitudinal (B Bzi zi
ut tw) and absolute (But/Btw

) magnetic fields of untwisted (ut) and twisted (tw) flux tubes on the total twist
angle Φ. The vertical dashed line corresponds to the observed twist angle of the loop Φ=12π as reported by Srivastava et al. (2010).
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Appendix
Homogeneous Current

For the uniform longitudinal current density ( jz=const) the
azimuthal magnetic field according to Ampere’s law (5) has the
following form:

( ) ( )=j jB r B a
r

a
.

Therefore, the solution of the differential Equation (39)

described displacements inside a flux rope can be represented as:

( ) ( )⎜ ⎟
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⎝

⎞

⎠
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-
s s a

r

a
. A1r r

m 1

Substituting Equation (A1) into Equation (30) we obtain that
the potential energy of internal perturbations is
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If plasma densities inside ρi and outside ρe of a flux rope are

slowly varying functions of r, we find

( ) ( )ò òr r
r r

p+ =
+

s sdV dV
m

s a a L. A3
V V

i e
r

2 2 2 2

i e

As a result, from Equations (13), (21), (A2), and (A3) we get
the square of eigenfrequencies for a flux rope with the uniform
electric current density jz in the long-wavelength limit:

( )
( ) ( ) ( )
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Equation (A4) coincides with the corresponding equation

obtained by Cheremnykh et al. (2017) using the method of

normal modes and the dispersion relation (48) at m=1. In
addition, from Equation (A4) it follows that the excitation of

eigenmode with m=1 will be accompanied by the minimum

potential energy change.
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