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Abstract 

Motivated by the wide range of projections of regional rainfall (or precipitation, pr) based on 

the CMIP5 ensemble of global climate models, we investigate the atmospheric moisture budget 

of idealized rising-CO2 (1pctCO2) simulations from ten models submitted to CMIP6. We use 

the new CMIP6 standard variables, the vertically-integrated eastward and northward moisture 

flux, and provide a multi-model assessment of these, their convergence (conv), along with water 

vapour path (prw). Seasonal climatologies of a 20-year base climate for pr, prw, flux, and conv 

match well those from the ERA5 reanalysis. In addition, composites ‘H’ of quantities for 

months in the top decile of monthly rainfall, calculated at each model grid point, produce a field 

of heavy rainfall, on average double that of the mean. Spatial correlation coefficients (r) 

between the pr and conv fields are typically 0.7 in each season. This rises to 0.9 for the 

corresponding H fields, due to the important link between moisture convergence and heavy 

rainfall. 

Fields of standardized change (Δ), or change per degree of global warming, were calculated. 

The ensemble-mean Δpr is only weakly correlated with the base climate pr, and likewise for 

conv. However, the prw change is highly correlated with the base prw, pointing to the 

importance of the ‘thermodynamic’ change in that variable. Globally, the net Δconv is highly 

correlated with Δpr, around 0.9. This rises to 0.95 for the heavy-rain composites. Relationships 

between changes in pr and other components hold at grid points also, when the individual model 

results are correlated. Clearly, there is a dependence in the change in pr with that in conv, 

particularly for heavy rainfall. Assessment of a larger ensemble from CMIP6, using the new 

flux variables, would improve the evaluation of these processes, and potentially allow more 

confident projections in future rainfall changes. 

 

Key words: Atmospheric moisture transport, heavy precipitation, climate change 
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1. INTRODUCTION 

Projections for potential future change in precipitation throughout the globe have been provided 

by the Intergovernmental Panel on Climate Change, through chapters of its Assessment Reports, 

such as that by Collins et al. (2013). Current national assessments of future change under 

various scenarios of rising greenhouse gas concentrations include those for the UK (Murphy et 

al., 2018) and Australia (CSIRO and Bureau of Meteorology, 2015). The basic evidence for 

change from many of these assessments comes from numerical climate simulations contributed 

to the World Climate Research Program’s Coupled Model Intercomparison Projects, with 

CMIP5 (see www.wcrp-climate.org/wgcm-cmip/wgcm-cmip5) being that most recently 

completed. These are often supplemented by regional ‘downscaling’ simulations, for example 

in the projections for eastern Australian rainfall by Dowdy et al. (2015). 

Climate models, such as from the CMIP5 ensemble, generally simulate increased rainfall 

in the global mean under future global warming (e.g. Kharin et al., 2013), but for many locations 

there is a wide range of change with often both increases and decreases (Collins et al., 2013, 

Fig. 12.22). Narrowing this range, and the associated uncertainty in projections, is a major 

research challenge, and an underlying motivation for the present study. In order to better 

understand the simulated changes, various authors (e.g., Watterson, 1998, Seager et al., 2010, 

and others reviewed by Collins et al., 2013) have considered the atmospheric moisture budget 

and how rainfall change may be linked with that in the horizontal transport or flux of water 

vapour. 

Moisture flux data have not been readily available from past CMIP experiments, and 

although fluxes can be usefully approximated by combining wind and humidity from standard 

output, Seager et al. (2010) show that there can be significant biases, compared to fluxes 

calculated from all model levels and time steps. In any case, multi-model analyses in the IPCC 

Assessment Reports have not focused on this transport, or indeed the vertically-integrated 

http://www.wcrp-climate.org/wgcm-cmip/wgcm-cmip5)
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atmospheric water vapour (‘water vapour path’, or ‘precipitable water’), despite that being a 

standard output variable in CMIP5. Nevertheless, in recent years this and the vertically-

integrated fluxes, which are key terms in a simplified, two-dimensional atmospheric moisture 

equation, along with precipitation, have been the focus of many studies of the tropical 

monsoons (e.g. Guo et al., 2018; Keane et al., 2019) and of atmospheric rivers (e.g., Chen et 

al., 2020), which both provide moisture for heavy rainfall. In some studies of atmospheric rivers, 

the magnitude of the flux vector is denoted IVT (for integrated vapour transport). Integrated 

fluxes are now available in the ECMWF’s Reanalysis 5 (or ERA5) data set (Copernicus Climate 

Change Service, C3S, 2017).  

A common approach of the above studies in understanding rainfall change is to consider 

the ‘thermodynamic’ influence of greater atmospheric water vapour under warming and the 

‘dynamic’ influence of changes in the atmospheric circulation and associated weather patterns. 

From the moisture budget, much of the effect on changes in mean rainfall is driven by the 

convergence of flux. Held and Soden (2006) approximated the thermodynamic change in that 

using a scaling by temperature. We consider a related approach. 

The data specification for CMIP6 (Eyring et al., 2016) includes vertically-integrated 

eastward and northward fluxes as output variables. At the WCRP/CMIP6 Workshop in March 

2019, Watterson et al. (2019) presented analyses of data simulated by six models, which 

demonstrated spatial relationships between the flux and rainfall in both a ‘base climate’ 

representing the ‘recent past’ and a future change of climate under global warming. These 

climates were derived from the core experiment of CO2 concentration increasing at 1% yr–1, 

denoted 1pctCO2 (details provided shortly), which has previously been used in studies of the 

dependence of precipitation on temperature change (e.g., Li et al., 2013). While there are 

CMIP6 experiments with potentially more realistic forcing scenarios for the 21st century, the 

flux variables have not been requested for these, and little is currently available. In any case, 
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the 1pctCO2 experiment is well suited to generating the global field of standardized change, or 

change per degree of global warming, from a model. Where convenient, standardized change 

will be denoted by Δ. Under the pattern scaling approximation (Collins et al., 2013, section 

12.4.2) the standardized change provides a useful representation of the pattern of change for 

various forcing scenarios. Furthermore, an ensemble of fields on a common grid can be readily 

used to explore relationships between variables. For example, Watterson (2019) correlated grid 

point values with indices of change in sea surface temperature (SST) across 40 CMIP5 models. 

Hope and Watterson (2018) used composites of data, from months with high monthly rainfall 

at spatial grid points, to examine the relationships between heavy rainfall and surface 

temperature. This approach can be applied to fluxes also. 

To provide timely support for the IPCC’s Sixth Assessment Report, this study extends the 

initial analyses by Watterson et al. (2019) using the available CMIP6 1pctCO2 moisture data. 

The vertical integral for flux and water vapour is assumed in the following, unless otherwise 

specified. The main aim is to assess how the convergence of the flux and the water vapour path 

relate to the rainfall, and to the range of change in rainfall across the ensemble. The following 

section briefly describes the methods used, starting with the equation for atmospheric moisture, 

then a partition of flux changes into (indicative) thermodynamic and dynamic components 

using only the change in water vapour path, and the analysis of high monthly rainfall. The data 

sets used are described in Section 3, including from a small ensemble of ten CMIP6 models. 

Seasonal climatologies for the base climate, from an initial 20-year period denoted P1, are 

presented in Section 4, including the high monthly rainfall. Standardized changes are presented 

in Section 5. Relationships between quantities are then analysed in Section 6, focusing on 

spatial correlations between ensemble averages, or multi-model means, and correlations across 

the models at points. The conclusions follow in Section 7. Supplementary material comprises 

Figures S1 to S10. 
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2. ANALYSIS OF ATMOSPHERIC MOISTURE 

2.1 Vertically-integrated moisture equation 

With the focus of the analysis being the supply of moisture for precipitation ܲ from the 

atmosphere, the atmospheric moisture budget can be written (e.g., Watterson, 1998; Guo et al, 

2018) 

ܲ = + ܧ  – ܥ   ,(1)                                                                                            ݐ߲/ܹ߲ 

where ܧ  is evaporation from the surface, ܥ = −∇. ۴ is the convergence of the vertically-

integrated horizontal moisture flux, vector ۴, and ܹ is the integrated water (vapour, liquid 

and ice). Following Ye et al. (2019),  

۴ =  ݃ିଵ ∫  ೞ d܄ ݍ
     and    ܹ =  ݃ିଵ ∫  ೞd ݍ

 ,                                                   (2), 

where ݃ is gravity, ௦ is the surface pressure, ݍ is the specific humidity, and ܄ is the 

horizontal wind vector. In models these calculations are discretised and adjustments may be 

required to conserve water, combining all its forms. The estimation of moisture flux has often 

involved extraction of daily (preferably more frequent) wind vector and moisture data from 

model levels (at least through the lower troposphere, where most of the humidity resides), and 

the calculation of the product and the integral. It is a great advantage to be able to use a 

provided data set of ۴, and ideally its convergence, as used within a model simulation. To 

calculate ܥ, we use NCL’s centred finite difference function uv2dv_cfd (with a one-sided 

difference at the polar latitudes), giving an approximation to the model calculation, albeit with 

some numerical noise. 

The CMIP6 names for the quantities assessed here are tas for surface air temperature, pr 

for precipitation (ܲ in Equation 1), prw for water vapour path (ܹ) and intuaw, intvaw for the 

vertically integrated moisture transport (۴). We use these names, except for calling the vector 
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‘flux’, and its convergence (ܥ) ‘conv’. We do not attempt to evaluate the complete water 

budget, but look for relationships between terms, based on the available quantities. With the 

liquid and ice components being typically 1% of the total moisture (see also Park et al., 2013), 

we use prw and flux without regard to whether those components are included. Conveniently, 

all these variables are two dimensional. 

2.2 Partition of changes 

In the context of a future globally warmer climate, and following Collins et al. (2013, p1077), 

changes in precipitation may be partitioned into a thermodynamic component, related mostly 

to water vapour changes, and a dynamic component, related to atmospheric circulation 

changes. For the horizontal moisture flux, these components have often been defined by 

changing either the winds or the humidity within the vertical integral (e.g. Seager et al. 2010; 

Keane et al. 2019). Watterson (1998) avoided the integral by using an approximation 

involving prw and an effective velocity. We propose an even simpler approach to determining 

an indicative thermodynamic change in a quantity: multiplying the fractional change in prw 

with the base climate or P1 value of the quantity. This is akin to the ‘Clausius-Clapeyron 

scaling’ used by Held and Soden (2006, Equation 6), where the factor is 7%, per degree of 

warming, which they applied to ܲ –  as a close approximation to the climatological ,ܧ 

convergence. As Seager et al. (2010) showed, much of their thermodynamic component 

followed from the increased saturation humidity. Assuming the fractional increase in 

humidity is near-constant in the lower troposphere, this fraction is similar to the fractional 

change of prw. Detailed assessments of the moisture budget by O’Gorman and Schneider 

(2009) and Chen et al. (2019) found that the change in prw is typically a little higher, because 

of greater warming in the upper troposphere. An indication of the sensitivity to this will be 

given. The difference of the net change and our thermodynamic component is assumed here 

to be the ‘dynamic’ component, although this would include nonlinear and other terms. (The 
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change in prw is wholly thermodynamic under this approach – Watterson (1998) applied an 

alternative one.) 

Here we focus on the seasonal climatological conv from a model, and use its standardized 

change in prw, as a fraction of the P1 prw, in determining the thermodynamic component of 

the standardized change in conv. This is denoted as ΔconvT, with T for ‘thermodynamic’. The 

remaining change is denoted ΔconvD, with D for ‘dynamic’. Using the notation from Equation 

(1), these calculations can be expressed as  

்ܥ∆ = ଵܥ
௱ௐ
ௐభ

      and      ܥ߂ = ܥ߂  −  (3)                                                                   ,்ܥ߂ 

where subscript 1 is for P1. As used only in selected plots, the flux can be partitioned 

similarly. (Note that the convergence of each component of the flux would only approximate 

the corresponding component of conv from Equation 3.) 

2.3 Composites for high monthly rainfall 

The analysis of extreme monthly precipitation previously applied to CMIP5 by Watterson et 

al. (2016) has been applied here to two 20-year periods (starting with P1) of data from each of 

our CMIP6 simulations. At each model grid point, the top decile of monthly rain rate values 

in each of the four seasons is determined in each period. The usual three-month seasons are 

used, with a focus on December–February or DJF and June–August, JJA. For each season and 

period there are 60 individual months so the top decile forms an ‘H’ composite of the six 

highest values. Hope and Watterson (2018) determined composites of anomalies of various 

quantities for the six H months, or times lagged before or after by up to several months, at 

each individual point. We focus on the composites of the actual values of pr, prw, conv and 

flux for the high-rainfall months (i.e. at lag 0) at each point. These composites are denoted 

here as, for example, pr-H. As for the other variables, the composite conv field is calculated 

by averaging the conv values from the individual months specified at each model grid point. 
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This is different to the convergence of the field of composite fluxes, which uses fluxes at 

adjacent points often from different months and is very noisy. 

 

3. DATA SETS 

3.1 CMIP6 simulations 

The models whose 1pctCO2 simulations are analysed are listed in Table 1, along with their 

official institution, following the CMIP6 designations, and a three-character code name used 

here for convenience. Early submissions to the CMIP6 archive included CNRM-CM6-1 (code 

cn6) and CNRM-ESM2-1 (code cne) from CNRM-CERFACS and IPSL-CM6A-LR (i6e) 

from IPSL, both modelling centres being in France. These submissions included all the 

variables that are needed for our analyses, in the monthly-mean form. Note that most monthly 

atmospheric variables are included in the ‘Amon’ table of CMIP6, while the flux variables are 

listed under ‘Emon’, the ‘extension’ table. Models cn6 and cne have a relatively high 

horizontal resolution, with a representative grid length of 125 km, and high number of 

atmospheric levels, both given in Table 1. Model cne has additional components such as 

ocean biogeochemistry, making it an Earth System Model (ESM), as has i6e, and in the code 

this is designated by ‘e’ as the third character. Data from a version of cn6 with higher 

resolution, CNRM-CM6-1-HR (code cnh) is also available. 

We had anticipated that with 1pctCO2 being a core experiment, other groups would often 

submit the flux for it, however this has not been common. The MOHC, from the UK, has 

submitted flux from their ESM model, UKESM1-0-LL (hue), and this includes atmospheric 

transport of ice and liquid water. The standard model, HadGEM-GC31-LL (h3l) at the same 

resolution, denoted N96 (with a grid of 144 latitudes and 192 longitudes), and a model with 

higher resolution, N216 (324 and 432), HadGEM3-GC31-MM (h3m) have also been 

submitted, but without full flux data. For both these models, we have therefore accessed the 
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data for the two periods directly from MOHC. The available flux data are for the transport of 

water vapour. This flux output is also available from the two models submitted by CSIRO, 

Australia: ACCESS-CM2 (ac2) and ACCESS-ESM1-5 (ace). These also use the MOHC’s 

atmospheric Unified Model (UM), on an N96 grid, although the ESM model has an earlier 

version of the UM. The Australian models have ocean and land components that are different 

from the MOHC models, as is documented on the CMIP6 webpages. The MIROC team from 

Japan has submitted data from the low resolution MIROC-ES2L, code mce. All ten 

simulations are designated as the first (i.e., ‘r1’) from the model. Further details on the  

models are provided in the following references: cn6, Voldoire et al. (2019); cnh, Voldoire 

(2019); cne, Séférian et al. (2019); i6e, Hourdin et al. (2020); h3m and h3l, Williams et al. 

(2017); hue, Sellar et al. (2019); ac2, Bi et al. (2020); ace, Law et al. (2017) and Ziehn et al. 

(2020); and mce, Hajima et al. (2020). 

While the formulations of these ten models are not as diverse as the full CMIP6, the 

multi-model mean of this small ensemble should provide climatological means that can 

represent the relationships between simulated quantities. To form this, the individual model 

fields are interpolated onto a common one-degree global grid, on which the average, denoted 

here av10, will be analysed. This is done for both the base climate and the standardized 

change fields, including the H composites and change components. 

3.1.1 Global mean warming 

The 1pctCO2 experiment starts from a nominal 1850 state, taken from a ‘control’ 

simulation of ‘pre-industrial’ climate. The atmospheric CO2 concentration (prescribed to be 

spatially uniform) increases at 1% per year for 150 years. From each model the global mean 

tas rises steadily, at a rate that depends on the model, as illustrated in Figure S1. For the 

averaging periods used in the analyses, we retain the 20-year length used in previous studies. 

For the base climate, we use years 2-21 of the simulation, denoted P1, while the high-
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warming period at the end of the experiment, or P2, is from years 131-150. To define 20 DJF 

seasons with consecutive months, the first season starts in the previous December. The P1 

climate should approximate the climate of the recent past, before substantial warming, 

although the mean temperature is typically only a little higher than that of the initial state. 

(Note that the CMIP6 ‘historical’ experiment should be used for realistic climates over the 

past century.)  

The change in global mean tas, from P1 to P2, is given for each model in Table 1 and 

ranges from 4.3 °C to 6.5 °C. It is worth noting that the CO2 concentration in the 1pctCO2 

simulation rises by a factor of 3.6 from P1 to P2 (between central years). This and the 

warmings are around the top of the range of those projected from pre-industrial to the end of 

the 21st century, under a high emissions scenario (Collins et al. 2013, section 12.3.1.1, Figure 

12.5). 

The full series of seasonal and annual means used are of 149 yearly values. When 

possible, the standardized changes are defined, following Watterson (2019), using regression 

over all values with the annual global mean tas series. In the case of the high monthly rain 

analyses, or when the data set is limited, the difference P2 minus P1 is used, scaled by the 

corresponding change in tas. In forming standardized changes, maximizing the climate 

change signal by using periods at the ends of the simulations should reduce the statistical 

uncertainty from unforced interdecadal variability. Tests show that there is minimal difference 

between the results from the two methods, although statistical uncertainty is, in theory, 

smaller when all years are used. 

3.2 ERA5 Reanalysis data 

Atmospheric ‘reanalyses’ produced by weather models that assimilate global observations, 

including soundings of winds and humidities, can provide gridded integrated moisture fluxes 

in a comparable form to those of the CMIP6 models. The ECMWF product ERA5, using a 
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highly resolved modelling system than can be considered state-of-the-art and recently 

released in monthly-mean form, is considered here. While past reanalyses have had 

limitations in the moisture budget (e.g., Berrisford et al., 2011), Hersbach et al. (2020) find 

that ERA5 provides an improved global moisture budget and rainfall distribution. Since our 

data set starts with year 1979, we present climatological results from ERA5 only for 

qualitative comparison with those from CMIP6. The years averaged are 1980-2017, starting 

with the previous December. ERA5 includes the vertical integrals of eastward and northward 

water vapour flux, and also the ‘divergence of moisture flux’. We use these, along with the 

integral of water vapour, the ‘mean total precipitation rate’, and surface air (at 2m) 

temperature. The ERA5 data grid spacing is 0.25°, but for the global plots the data are 

interpolated to a one-degree grid. We do not consider other observational moisture data sets 

here, but Rodell et al. (2015) and Robertson et al. (2016) provide a comparison of moisture 

budget terms from several data sets.  

4. CLIMATOLOGIES FOR THE BASE CLIMATE 

4.1 Mean quantities 

The seasonal climatological fields for the P1 base climate from each model have been 

calculated and are presented as representing the recent past. The global and annual means of 

tas (Table 1) range from 12.6 °C to 15.1 °C, which is typical of the variation in simulated pre-

industrial climates within CMIP experiments. The av10 value of 13.8 °C is actually only a 

little smaller than the ERA5 1980–2017 mean, 14.2 °C. While a closer match could be 

obtained by extending the P1 time span, the effect on the moisture fields would be limited. 

For the present purposes the P1 fields should be adequate. 

To provide an example of fields from all individual models, we select a region with some 

of the most intense climatological fluxes, Southern Asia during the summer monsoon. Figure 

1 shows the JJA climatology for pr and flux on the model grids. All ten models provide a 
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reasonable match to the patterns represented by the ERA5 data, shown in the top left. Flux 

impacts the west coasts of India and Indochina, where there is high mean rainfall. Northward 

flux extends to the Himalayas, where rainfall is also high. Rain is less intense in the lower 

resolution models i6e and mce, and more intense, and sharpest, in the high-resolution h3m 

and cnh. In some cases, the rainfall is more intense than in ERA5: for example, cn6 

overestimates the high coastal rainfall, as also shown by Voldoire et al. (2019, their Figure 5, 

using observational data). A tendency for the UM to have a dry bias over India is evident in 

all five UM-based models, particularly for ac2, but less so for h3m. In any case, the av10 

fields produce all the features seen in ERA5 in this domain. A plot of the differences, Figure 

S2, shows that the ensemble mean is, nevertheless, a little drier over much of India. Fluxes in 

the Bay of Bengal are not quite as strong as in ERA5, and rainfall over the Himalayas is less 

intense. 

The similarity of av10 and ERA5 generally extends to the globe and each season, with 

both DJF and JJA shown in Figure 2. The fluxes are again shown, but pr is replaced by prw. 

High prw prevails in the low latitudes, in both models and reanalyses. There is often a peak in 

prw in monsoonal regions, such as India and the Caribbean in JJA, and Brazil and northern 

Australia in DJF. Plots of the differences, in Figure S3, reveal some inaccuracy in the position 

of the bands of high prw and adjacent fluxes. In both av10 and ERA5, the anticyclonic flow 

over subtropical oceans in summer is striking. Naturally, there is a large seasonal cycle in prw 

at high latitudes. There is a small cycle in pr and prw in the av10 global means also, with 

values for four seasons given in Table 2. Even locally, though, variation in prw provides only 

a very small contribution to the climatological budget (Equation 1), in contrast to evaporation 

(e.g., Park et al., 2013).  

The seasonal convergence fields for av10 are shown in Figure 3, alongside pr, with flux 

vectors overlying both. The low-latitude peaks in prw tend to coincide with the peak 
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convergence and also rainfall. Peaks of rainfall and convergence coincide in many midlatitude 

places also, notably along western coasts of the Americas, Europe, Japan and New Zealand. It 

is worth noting that the annual means averaged over all land (land fraction 0.308) for pr/conv 

are 2.37/0.79 mm d–1, which compares with 2.29/0.71 mm d–1 from ERA5 and observational 

estimates of 2.18/0.86 mm d–1 from Rodell et al. (2015). Of course, globally convergence is 

balanced by an equal amount of divergence (Table 2). Subtropical regions with high 

divergence (Figure 3) tend to have low rainfall, while low rainfall over desert regions is 

generally associated with near-zero conv, although the fluxes can be moderate. Most of these 

features in av10 are well matched to those in ERA5 (and the corresponding Figure S4). 

Differencing of fluxes can lead to a noisy conv field. At the poles, an erroneous result follows 

in models whose flux components are not accurately defined to represent a flow across the 

pole.  

4.2 High monthly rainfall 

For each model in turn, the top decile of monthly pr values at each point within the 20 3-

month seasons of P1 were determined, and the average taken to form the H composite for 

each seasonal case. After interpolating each model field to the common grid, the av10 field 

was calculated. The resulting pr-H fields for DJF and JJA are plotted in Figure 4. The patterns 

are similar to the means in Fig. 3, with the ratio of H to the mean being typically 2 to 3. From 

values given in Table 2, the ratio of the global means is 2.1 for DJF and 2.0 for JJA. Averages 

of values from the same months at each point were calculated for the flux and conv fields, to 

complete Figure 4. The pattern for conv-H is similar to that for conv, but values are mostly 

more positive, with smaller regions of divergence. The global mean conv rises from 0.0 for 

the all-month case to H values 2.9 mm d–1 for DJF and 2.7 mm d–1 for JJA, nearly as much as 

the rise for pr, of 3.3 mm d–1 for DJF and 3.1 mm d–1 for JJA (see Table 2 for all seasons). 

The pattern for flux in H is also similar, often with somewhat larger magnitudes. While such 
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enhanced fluxes would indicate greater transport through the point with high rain, it is the 

convergence there that is important. These relationships are further quantified in Section 6. 

Note that the change in prw during high rainfall months, as well as evaporation, contribute to 

the moisture budget (Equation 1). 

 

5. STANDARDIZED CHANGE 

5.1 Mean quantities 

The standardized change is the change per degree of global warming, based on the 1pctCO2 

simulation from each model. For convenience, ‘per degree of global warming’ is usually 

omitted from the units given in various results, so they effectively represent change at one 

degree of annual and global mean warming. The actual changes for that warming may differ if 

the response is not linear, but it differs across models in any case. The mean across the 10-

member ensemble of the field of standardized change in warming (Δtas) depends on the 

season, as can be seen in Figure S5. Values at high latitudes exceed 3 (°C) in winter, but in 

summer are more typical of land generally, 1 to 1.5. The multi-model mean standardized 

change for prw (also in Figure S5, along with moisture flux for each season) is largest in the 

tropics, as expected for this absolute (non-percentage) change, but also has a pattern with 

considerable dependence on the local surface warming, and both quantities universally 

increase. From values given in Table 2, the change in the global mean prw, per degree, as a 

percentage of the P1 climate value, is 7.6% in DJF and 7.9% in JJA. The fields for the av10 of 

percentage change are shown in Figure S6, with increases of typically 6 to 10%, but more 

where warming is much larger than average. 

We focus on the rainfall and flux changes, and Figure 5 illustrates the individual models 

for the same summer monsoon case as Figure 1. For each the pattern of flux change in this 

region resembles that for the base climate (noting the much smaller reference vector scale) 
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broadly indicating an intensification of fluxes with increasing temperature. Similarly, in most 

models, the rainfall increases in the high rainfall regions of Figure 1, including the west coasts 

and Himalayas. The av10 patterns are similar in Figures 1 and 5, although there are some 

regions of high P1 rainfall with a decline, e.g. the west coast of India at 12°N, and the 

Annamite Range of eastern Indochina. The av10 convergence result, in the top-left of Figure 

5 provides a very close match to av10 Δpr. Evidently, relatively subtle changes in the flux 

relate to spatial variations in rainfall change and to differences between models. For instance, 

rainfall increases in far southern Vietnam in models with strengthened flux from the south, 

but not in cn6 and cne, with no change in mean flux. The plot of the av10 Δpr minus Δconv, 

shown in Figure S7, indicates some differences that indicate changed evaporation, including a 

small increase over some seas. 

The global fields for av10 changes in two seasons are shown in Figure 6. The pattern for 

flux again reflects an enhancement of the base climate, under warming. The global mean 

magnitude of the standardized flux vector is around 7% of the P1 value, which is close to the 

prw result. Along much of the equatorial zone there is a large increase, in mm d-1 terms, for 

both pr and conv. The areas of strong convergence in P1 (Figure 3) often have increases, 

while strong divergence tends to become stronger. Although there are many areas of high 

rainfall with increases, some bands of change in pr do not coincide with bands in P1. For 

example, in av10 the central equatorial Pacific has a low pr band in DJF, but a strong 

increase, while northern South America is wet in JJA and has a decrease. The pr and conv 

change fields resemble each other, and the same contours can be used (in contrast to Figure 

3), given that the mean of the Δpr field (Table 2) is now small relative to the spatial variation. 

Nevertheless, the widespread increase in pr at high latitudes in winter is not well matched by 

Δconv (which has decreases in the Arctic Ocean –presumably, ܧ increases). The customary 

multi-model result, of change in pr as a percentage of the base climate of each model, is 
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shown in Figure S8. Comparable values for the increases to those in prw (Figure S6), and 

some similarity in patterns, reflect the importance of atmospheric moisture to rainfall amount. 

5.2 Thermodynamic/Dynamic partition 

Changes resulting from an enhancement of humidity under warming are consistent with a 

thermodynamic change. Using the simple approach proposed in Section 2.2, an indicative 

thermodynamic change in a field was derived by simply multiplying the base climate seasonal 

field by the local fractional change in prw, for each model. The resulting multi-model means 

for conv and flux, along with the ‘dynamic’ residual are shown in Figure 7. Certainly, for the 

Southern Asia summer monsoon, this thermodynamic component in Δconv, from a local prw 

increase of around 8% (per degree, Fig. S6), provides much of the pattern in the total. Even 

there, the dynamic component leads to little net change in rain over much of India. In various 

other monsoonal regions with convergence of flux in the base climate, the thermodynamic 

term again provides water for the increased rain, especially over the land. Often, the dynamic 

term removes water, with net decreases over the ocean. In the dry subtropics, the opposite 

signs tend to prevail, with the thermodynamic term amplifying divergence of flux in the base 

climate. The dynamic term partly offsets this, but from Equation (1), changed evaporation 

from the ocean surface can also contribute, and lead to little change in pr. At higher latitudes 

pr generally increases, largely driven by the thermodynamic influence. These results are 

broadly consistent with the assessment of monsoon regions by Endo and Kitoh (2014), and 

elsewhere by the other studies cited. Note that the global mean of each Δconv component is 

near-zero in each season (around 0.01 mm d-1 for ΔconvT and –0.01 mm d-1 for ΔconvD). The 

global standard deviation, as a measure of magnitude, is some 10% larger for ΔconvD.  

As a test of the sensitivity of this partition to using prw to determine the thermodynamic 

scaling, changes in specific humidity have been evaluated from pressure level data from one 

model (cn6). The standardized change of the global mean at 850 hPa (or the level above the 
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surface, if needed) was 6.8%, compared to 8% for prw, a ratio of 0.85. Figure S9 shows the 

result of applying a (smaller) factor 0.75 to the thermodynamic fields of Figure 7. Naturally, 

the ΔconvD term becomes relatively larger, but qualitatively, the partition is very similar. 

5.3 High monthly rainfall 

The standardized change in the top decile of monthly rainfall for each seasonal case is 

calculated from the composites in the two time periods, P1 and P2, determined at each grid 

point. The P2 minus P1 values are divided by the change in tas (annual, from Table 1). The 

av10 fields for Δpr-H in two seasons are shown in Figure 8. The pattern of change is similar 

to that for (all-month) mean pr, but values tend to be more positive and increases in monsoon 

regions are much more prominent. Even as a percentage, the global mean (Table 2) pr-H 

increases are nearly double those for mean pr, with the average over four seasons being 2.6% 

for H and 1.5% for mean. This is consistent with the generally larger percentage changes for 

rainfall extremes in CMIP5 (e.g., Kharin et al., 2013), including those for the top decile 

monthly amounts presented by Watterson (2020). Again, the pattern of change for conv-H is 

similar, and the global mean of this increases, by around 58% of the pr-H change, in mm d–1 

terms (Table 2). Clearly, other budget terms contribute to the pr-H changes. The composite 

moisture fluxes (Figure 8) also tend to have a similar pattern to the all-month results (Figure 

6), often with modest increases in magnitude. We do not attempt to partition Δconv-H, but 

note that several of the studies referenced have assessed changes in extreme daily rainfall. 

 

6. RELATIONSHIPS BETWEEN RAINFALL AND MOISTURE VARIABLES 

6.1 Spatial correlations 

A broad theme in the description of the fields of pr, prw and conv, for all the variants 

presented, is the similarity in spatial patterns. It is worthwhile quantifying this using the 

spatial correlation coefficient, r, over the globe. Values for various pairs of av10 quantities for 
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each season are given in Table 3. Starting with the base climate (recent past or P1) fields, the 

similarity of pr and conv is moderate, with r values around 0.7, limited by the importance of 

evaporation in the moisture budget, Equation (1). Correlations for pr and prw are also 

moderate, with both being broadly larger at warmer latitudes. The high r between the mean 

(pr) and high monthly (pr-H) rain fields reflects a similar local ratio between the two statistics 

for most regions (Watterson et al., 2016). The link between pr and conv is enhanced with the 

H composite. This follows from the increased importance of conv, relative to other terms in 

the budget, as evidenced by the global means (Table 2), with conv-H being strongly positive. 

There is rather little difference in r between the seasons in all the results. 

The comparison of P1 fields and change fields give contrasting results. For prw there is 

high correlation, with the (absolute) change being a relatively similar percentage of P1 

(Figure S6) for most of the globe. For rainfall, there is little correlation globally, even for 

these ensemble means, corroborating the complexity of projecting future rainfall! Similarly, 

Chadwick et al. (2013) noted a correlation of only 0.2 over the tropics for annual fields from 

CMIP5. Our global results for conv (Table 3) are a little higher, but still rather weak. 

Restricting the domain and season to that of Figures 1 and 5, r is 0.25 for pr and 0.35 for 

conv. 

Turning to pairs of change fields, for changes in pr and prw the correlations are larger 

when they are in percentage terms (Table 3), as the common high-latitude increases have 

greater weight. Changes in pr and conv (Figure 6) have higher correlations than the P1 fields. 

While the ΔconvT component is important to Δconv, for instance over the Southern Asia 

domain in JJA (with r = 0.39), its overall correlation with Δconv is similar to that between 

Δconv and conv P1. The ΔconvD term is moderately correlated with Δconv. In fact, the two 

components of Δconv are anticorrelated. The changes in H have a similar pattern to those for 

means, for both pr and conv. The similarity between pr and conv is highest of all for the 
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change in H composites (Figure 8), with r ≥ 0.95. These results indicate an important role for 

both prw and conv in determining the spatial variation in the ensemble mean field of pr, and 

especially in the standardized changes of pr. 

6.2 Correlations across models 

Relationships between moisture quantities can also be sought from the range of values across 

the individual members of the ensemble, using fields on the common one-degree grid. We 

focus on pairs of standardized change quantities, for which there is a value of r across the ten 

models at each grid point. Of particular interest is the variation across the ensemble in the 

standardized rainfall change, since this must be reflected in the range of projected change, and 

hence its uncertainty. (Under pattern scaling, additional uncertainty follows from that in 

global warming.) The fields of r between percentage changes in pr and prw (Δpr % – Δprw 

%, for short) are shown for two seasons in Figure 9. Here, a high correlation at a grid point, 

such as over the Amazon in each case, indicates that a model with large Δpr % would also 

have a large Δprw %. There is considerable spatial variation in the r fields, and even some 

negative values, including over the Arctic Ocean in summer. This variation is likely enhanced 

by statistical uncertainty, given the small ensemble (of ten). However, Watterson (2020) 

showed that for changes in 23 CMIP5 models, the correlation also has much spatial variation, 

with peaks exceeding 0.8, as in Figure 9. 

While a larger ensemble is needed for reliable regional values, the global mean of a 

correlation field should be indicative of the overall strength of a relationship. Global means of 

the fields from Figure 9, and for five other pairs of change variables, are given in Table 4. For 

Δpr % – Δprw %, the means are around 0.45 –positive, but only moderate. The means are 

only a little less for changes in absolute terms (which can be affected by the differences in 

base climates). Evidently some of the range in Δpr can be related to that in Δprw, especially 

over oceans. The supply of the moisture is associated with conv, and as for spatial variation 
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(Table 3), the mean correlation for Δpr – Δconv in each season is higher than for Δpr – Δprw. 

As for the spatial case in Table 3, the dynamic component is moderately correlated with Δpr, 

while Δpr – ΔconvT has near-zero mean r in each season. The most consistently high value is 

between change in pr-H and change in conv-H. For much of the tropics, and also many land 

points in higher latitudes, r is well over 0.8 (Figure S10).  

6.3 Some implications for projections 

Given the relationships between pr, prw and the moisture flux convergence, in the present 

climate, the links in change fields, both spatially and among ensemble members, are not 

surprising. An opportunity provided by the CMIP6 flux fields would be to extend the 

evaluation of present climate simulations to these related quantities. Model projections of 

changes in those related quantities that are correlated with changes in rainfall would provide 

further information about the possible range of future rainfall changes. This would 

particularly be the case for regions where the correlations are particularly large (as shown, for 

example, in Figs. 9 and S10). It is revealing to see the strengthening relationship between pr 

and conv, for the standardized changes assessed here, and for the composites of heavy 

monthly rain. The underlying causes of the range in regional change between models have not 

been addressed here. Numerous studies (including the projections of CSIRO and Bureau of 

Meteorology, 2015, and Chadwick et al. 2017) have linked changes in mean rainfall to mode-

like changes in the mean circulation, especially when these are associated with changes in 

SST (such as El Niño-Southern Oscillation). Watterson (2020) demonstrated that, in the 

CMIP5 ensemble, such links can be extended to heavy rainfall in Australia and parts of Asia. 

If the vertically-integrated moisture flux and water vapour path outputs can be obtained from 

more CMIP6 models, further insights should be obtained. Potentially, models with realism in 

the present climate simulations of the moisture budget components may provide more 

consistent future changes in both mean and heavy rainfall. 
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7. SUMMARY AND CONCLUSIONS 

The wide range of projections of regional rainfall based on the CMIP5 ensemble provides a 

motivation for further studies of the atmospheric moisture budget using CMIP6. We take 

advantage of the new CMIP6 variables, the vertically-integrated eastward and northward 

moisture transport (intuaw, intvaw) or flux, and provide a multi-model assessment of these, 

their convergence, along with water vapour path, prw. Fluxes were obtained from the 1pctCO2 

simulations of ten models, in which the global warming between a 20-y base climate and the 

final 20-years ranged from 4.3 °C to 6.5 °C. Seasonal climatologies of the base period for pr, 

prw, flux and its convergence were presented. As a regional example, the Southern Asia 

summer monsoon was represented in each model, with higher intensities reached in HadGEM3-

GC31-MM and CNRM-CM6-1-HR, the models with smaller grid lengths. While evaluation of 

the CMIP6 present climate should be conducted with more realistic scenarios, the mean base 

climate resembled well climatological fields from the ERA5 reanalysis. Composites ‘H’ of 

quantities for months in the top decile of monthly rainfall, calculated at each model grid point, 

produced a field of heavy rainfall, around double that of the mean. Spatial correlations between 

the seasonal fields were typically 0.7 for pr and conv, rising to 0.9 for the H fields. 

Fields of standardized change (Δ), or change per degree of global warming, were calculated 

from the full time series, or from the base and last 20-y periods (in the H case). In the multi-

model mean, there is a strong increase (in mm d-1 terms) in rainfall and convergence along 

much of the equatorial band, including for H composites, in each season. Water vapour path 

increases everywhere, typically by 6 to 10 % per degree of warming. The ensemble-mean Δpr 

is only weakly correlated (0.2) with the base climate pr, and that for conv little better (0.3). 

However, Δprw is highly correlated with the base prw, pointing to the importance of the 

‘thermodynamic’ change in that variable. A simple definition of that change in other variables 
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used the fractional change in prw as a product, with the residual being ‘dynamic’ change. The 

component ΔconvT is important to Δpr in the Southern Asia monsoon region, where flux tends 

to strengthen, but globally ΔconvD is more strongly correlated. The net Δconv is highly 

correlated with Δpr, around 0.9. This rises to 0.95 for the heavy-rain composites, for which 

Δconv-H provides a close match to Δpr-H over most the globe. These results suggest that when 

weighting model projections of future rainfall change, it may help to see how well they simulate 

quantities other than pr in the current climate, particularly when looking at extreme rainfall, 

where the correlations are higher. 

Relationships between changes in pr and other components hold at grid points also, when 

the individual model results are correlated. The global mean of the correlation fields rises from 

around 0.40 for the pair Δpr – Δprw, to 0.6 for Δpr – Δconv, and 0.7 for Δpr-H – Δconv-H, with 

larger values in some regions. Clearly, there is a dependence in the change in pr with that in 

conv, particularly for heavy rainfall. The range in rainfall change is linked to that in the fluxes, 

which may provide insight into the associated moisture sources. Assessment of a larger 

ensemble from CMIP6, using the new flux variables, has the potential to aid in the evaluation 

of these processes, and potentially allow more confident projections in future rainfall changes.  
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TABLE 1 Models used in the analysis. For each are given: the institution, a code name, representative 
grid length L in km, number of atmospheric levels, and simulated global and annual mean temperatures. 
The temperatures are for the base climate, period P1 (see Section 3.1), in degree Celsius, and the change 
to period P2. L is the side length of a square with the average area of the data grid squares over the 
globe. Models with code ending in ‘e’ have Earth System components. The code names are often 
modifications of names previously used for CMIP5 models by Watterson (2019). (* NERC, NIMS-
KMA, NIWA). 

Model Institution Code L (km) At. Lv. P1 (°C) P2 - P1 
CNRM-CM6-1 CNRM-CERFACS cn6 125 91 13.18 5.48 
CNRM-CM6-1-HR CNRM-CERFACS cnh 44 91 12.64 5.71 
CNRM-ESM2-1 CNRM-CERFACS cne 125 91 13.92 5.02 
IPSL-CM6A-LR IPSL i6e 157 79 13.07 5.53 
HadGEM3-GC31-MM MOHC h3m 60 85 14.15 6.19 
HadGEM3-GC31-LL MOHC-NERC h3l 136 85 13.88 6.49 
UKESM1-0-LL MOHC-* hue 136 85 13.78 6.19 
ACCESS-CM2 CSIRO-ARCCSS ac2 136 85 14.06 5.54 
ACCESS-ESM1-5 CSIRO ace 135 38 14.68 4.28 
MIROC-ES2L MIROC mce 250 40 15.11 3.61 
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TABLE 2 Global mean of ensemble mean (av10) quantities for both the base climate (P1) and the 
standardized change (Δ) for four seasons. Composites for top decile monthly rainfall are denoted by 
H. The unit is mm d–1, except for mm for prw. The seasons are DJF (December–February), MAM 
(March–May), JJA (June–August) and SON (September–November)  

Base climate DJF MAM JJA SON 
prw 22.3 23.2 24.8 23.1 
pr 3.05 3.06 3.14 3.04 
pr-H 6.34 6.46 6.25 6.30 
conv 0.0 0.0 0.0 0.0 
conv-H 2.89 2.92 2.66 2.79 
Change per °C DJF MAM JJA SON 
Δprw 1.69 1.75 1.96 1.86 
Δpr 0.05 0.05 0.04 0.05 
Δpr-H 0.18 0.15 0.15 0.16 
Δconv 0.0 0.0 0.0 0.0 
Δconv-H 0.11 0.08 0.09 0.10 
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TABLE 3 Spatial correlation coefficient between quantities, using the av10 global fields, for each 
season. Results are in three categories: for two base (P1) climate fields, between base and change 
fields, and for two change fields. The standardized changes are in absolute terms, except for 
percentage changes denoted by %. Composites for top decile monthly rainfall are denoted by H. 
Thermodynamic/dynamic component is denoted by T/D. 

Variable 1 Variable 2 DJF MAM JJA SON 
Base climate      
pr conv 0.67 0.65 0.75 0.70 
pr prw 0.64 0.65 0.59 0.65 
pr pr-H 0.94 0.94 0.96 0.95 
pr-H conv-H 0.89 0.89 0.90 0.91 
Base to change      
prw Δprw 0.93 0.93 0.90 0.89 
pr Δpr 0.08 0.21 0.17 0.14 
conv Δconv 0.32 0.43 0.32 0.28 
Change      
Δpr % Δprw % 0.76 0.75 0.57 0.69 
Δpr Δprw 0.26 0.32 0.29 0.29 
Δpr Δconv 0.89 0.91 0.89 0.89 
Δpr ΔconvT 0.19 0.33 0.21 0.20 
Δpr ΔconvD 0.50 0.56 0.53 0.50 
Δconv ΔconvT 0.29 0.43 0.30 0.26 
Δconv ΔconvD 0.50 0.56 0.54 0.53 
ΔconvT ΔconvD –0.68 –0.51 –0.64 –0.68 
Δpr Δpr-H 0.85 0.90 0.89 0.87 
Δconv Δconv-H 0.84 0.87 0.87 0.85 
Δpr-H Δconv-H 0.96 0.96 0.95 0.95 
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TABLE 4 Global mean of the correlation coefficient field for pairs of standardized change quantities, 
calculated from the ten model values at each point of the common one-degree grid. Composites for top 
decile monthly rainfall are denoted by H. Percentage changes are denoted by %. 
Thermodynamic/dynamic component is denoted by T/D. 

Variable 1 Variable 2 DJF MAM JJA SON 
Δpr % Δprw % 0.44 0.47 0.43 0.45 
Δpr Δprw 0.43 0.40 0.37 0.38 
Δpr  Δconv 0.61 0.59 0.55 0.55 
Δpr ΔconvT –0.01 –0.04 –0.06 –0.05 
Δpr ΔconvD 0.52 0.51 0.50 0.49 
Δpr-H Δconv-H 0.72 0.71 0.68 0.68 
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FIGURE 1 Climatological means from both ERA5 and ten models for the Southern Asia summer 
monsoon. The plots show the base climate JJA fields for precipitation, in mm d−1, with moisture flux 
as a vector, with the reference vector being 600 kg m−1 s−1. The top row shows ERA5 (1980–2017) 
and the av10 fields, with the others being the ten models, labelled by the code name. Vectors are 
shown at a spacing of not less than 0.3 of the reference vector length. The length and head size are 
proportional to the vector magnitude. 
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FIGURE 2 Climatological means from ERA5 (left) and av10 (right) in two seasons, top DJF, bottom 
JJA: for water vapour path (prw) in mm and moisture flux, with the reference vector being 500 
kg m−1 s−1. Vectors are shown at a spacing of not less than a quarter the reference vector length 
(likewise for other figures, unless stated). 
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FIGURE 3 Climatological means from av10, in two seasons, top DJF, bottom JJA: precipitation (pr, 
left) and moisture convergence (conv, right), in mm d−1. In both the vectors are the moisture flux, with 
the reference vector being 500 kg m−1 s−1.  
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FIGURE 4 As Figure 3, but for months with top decile of rainfall (H), calculated at each grid point. 

  



 37

 

FIGURE 5 Standardized change (or change per degree of global warming) from ten models for the 
Southern Asia summer monsoon. Other than the top left, the plots show JJA fields for precipitation, in 
mm d−1, with moisture flux as a vector, with the reference vector being 100 kg m−1 s−1. The top row 
shows the av10 fields, but with pr replaced by convergence in the left plot. Vectors are shown as for 
Fig. 1. 
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FIGURE 6 As Figure 3, but all quantities are standardized change. Note the smaller reference vector, 
and here the scales are the same for each variable. 
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FIGURE 7 As Figure 6 (right) but with the fields replaced by two components of change in 
convergence and flux, (left) thermodynamic component (using fractional change of prw) and (right) 
dynamic component, as the residual change.  
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FIGURE 8 As Figure 6, for H composites, but standardized change. 
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FIGURE 9 Correlations (r) between percentage changes in pr and prw, across the ten-model 
ensemble, left for DJF, right JJA. The values are calculated at each one-degree grid point, after 
interpolation of the model fields. 


