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ABSTRACT

Phytosterols and phytostanols are natural products present in vegetable oils, nuts, and seeds, or
added to consumer food products whose intake is inversely associated with incidence and prog-
nosis of several cancers. Randomized cancer prevention trials in humans are unfeasible due to
time and cost yet the cellular processes and signaling cascades that underpin anti-cancer effects
of these phytochemicals have been explored extensively in vitro and in preclinical in vivo models.
Here we have performed an original systematic review, meta-analysis, and qualitative interpret-
ation of literature published up to June 2020. MEDLINE, Scopus, and hand-searching identified
408 unique records that were screened leading to 32 original articles that had investigated the
effects of phytosterols or phytostanols on cancer biology in preclinical models. Data was extracted
from 22 publications for meta-analysis. Phytosterols were most commonly studied and found to
reduce primary and metastatic tumor burden in all cancer sites evaluated. Expression of pAKT,
and markers of metastasis (alkaline phosphatase, matrix metalloproteases, epithelial to mesenchy-
mal transcription factors, lung and brain colonization), angiogenesis (vascular endothelial growth
factor, CD31), and proliferation (Ki67, proliferating cell nuclear antigen) were consistently reduced
by phytosterol treatment in breast and colorectal cancer. Very high dose treatment (equivalent to
0.2-1 g/kg body weight not easily achievable through diet or supplementation in humans) was
associated with adverse events including poor gut health and intestinal adenoma development.
Phytosterols and phytostanols are already clinically recommended for cardiovascular disease risk
reduction, and represent promising anti-cancer agents that could be delivered in clinic and to the
general population at low cost, with a well understood safety profile, and now with a robust

understanding of mechanism-of-action.
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cholesterol

Figure 1. Molecular structure of cholesterol and common dietary plant sterols and stanols. Reproduced from (Hutchinson et al. 2019) with permission.

Introduction

Dietary intake of fruits and vegetables, and of grains and
seeds, is inversely associated with cancer risk and directly
associated with cancer patient survival (WCRF/AICR 2018).
Research that provides mechanistic explanations for these
epidemiological and clinical trial observations is incomplete,
which limits translation for public health. One group of
phytochemicals with proposed anti-cancer activity are phy-
tosterols and their saturated counterparts, phytostanols.
Case-control studies indicated that high dietary phytosterol/
stanol (PSS) intake has been associated with reduced odds
of several cancers including lung (odds ratio (OR) 0.29, 95%
CI 0.14-0.63) (Mendilaharsu et al. 1998), stomach (OR 0.33,
95% CI 0.17-0.65) (De Stefani et al. 2000), colorectum (OR
0.50, 95% CI 0.41-0.61) (Huang et al. 2017), and ovary (OR
0.42, 95% CI 0.20-0.87) (McCann et al. 2003). A recent
meta-analysis indicated PSS intake imparts a non-linear
reduction in pan-cancer relative risk (RR 0.63, 95% CI
0.49-0.81) with peak reduction achieved with approximately
0.5 g/day or 6-7 mg/kg (Jiang et al. 2019).

Phytosterols, structurally and functionally related to chol-
esterol (Figure 1), are present in relatively large amounts in
vegetable oils, nuts and seeds (Phillips et al. 2005) with the
total phytosterol content of some vegetable oils reaching val-
ues as high as 19 g/kg (Yang et al. 2019). The richest sources
are commercial products supplemented with PSS (approx.
2-3g PSS per portion) that are marketed for lowering low
density lipoprotein cholesterol (LDL-C), and do so by
10-15% in addition to what is achievable by statins (EFSA
Panel on Dietetic Products, Nutrition and Allergies 2013;
Han et al. 2016). Large scale manufacturing of PSS has
standardized production methods which has ameliorated
many problems commonly associated with studying natural
products, where isolation, extraction, or synthesis method-
ology may vary, and final compounds applied in studies
may be variable.

In 2000, Hanahan and Weinberg published ‘The
Hallmarks of Cancer’ highlighting key characteristics of the
developing tumor (Hanahan and Weinberg 2000). Here, we

use the updated categorization (Hanahan and Weinberg
2011) to map how PSS may be interacting with cancerous
and pre-cancerous cells in pre-clinical cancer models. This
systematic review addresses a critical gap in the literature by
collating all available information regarding the cellular and
molecular response of tumors to PSS in vivo. Consistent evi-
dence of a robust molecular mechanism (or lack thereof)
would allow clinical research to build on the epidemiological
evidence and begin evaluation of PSS as supplements that
could contribute to reduced global cancer burden in the pre-
vention setting, or as treatment adjuncts that could improve
prognosis for cancer patients.

Methods
Search strategy

A comprehensive search of online databases MEDLINE and
Scopus was carried out throughout June 2020. Search terms
are available in supplementary materials. The intention to
review was submitted to PROSPERO on 9th June 2020 and
was approved and published on 11th June 2020 with refer-
ence number CRD42020191337 (Thorne et al. 2020) and
can be accessed at crd.york.ac.uk/PROSPERO.

Study selection

Titles and abstracts were screened for inclusion criteria; i)
original data papers (e.g. reviews were excluded at this
point); ii) conducted in whole organism animal models; iii)
evaluated cancer (other diseases excluded); iv) phytosterol,
phytostanol, a derivative/metabolite, or a mixture; v) English
language publications; vi) not published in a predatory jour-
nal, listed on the website predatoryjournals.com. Screening
was performed in duplicate by independent reviewers.
Discrepancies were evaluated, discussed, and agreed by all
members of the research team.
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Records excluded (n = 362), with reasons:
Not original article (n =77)
Not animal model (n = 236)
Not cancer related (n = 36)

Not on plant phytosterols/stanols (n = 13)

Articles excluded, (n = 14) with reasons:

Full text not available (n = 6)
Phytosterols/stanols <80% of active
compound or purity not reported (n = 7)

Administration of phytosterols/stanols
not direct to animals (n =1)
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Figure 2. PRISMA flow diagram showing searching, screening, eligibility, and inclusion process.

Data extraction

All data were extracted in duplicate into Microsoft Excel by
independent contributors. Any disagreements were resolved
by discussion with full research team. Extracted data
included information and measures on animal models; study
design; intervention and control treatments, duration, and
dose; cancer type; and outcome assessment. Effect sizes were
extracted as means with measures of variance. Where effect
sizes were only presented in figures, WebPlotDigitizer (v4.2)
was used to extract data (Rohatgi 2019). Where more than 1
treatment group was compared to the same control, the
effect size of the highest dose was extracted, and/or the par-
ent PSS molecule was chosen rather than derivatives.

Statistical analysis

Meta-analyses were performed in RevMan version 5.3 (The
Nordic Cochrane Centre, T. C. C 2014). Heterogeneity was
anticipated between studies due to variation in animal mod-
els and treatments, so random-effects models were used if >
3 studies were available. Where fewer than three studies
were available, a fixed effects model was applied to preserve
power and minimize risk of type-1 errors (Jackson and
Turner 2017). In analysis where effect sizes were calculated
using different metrics that could not be harmonized, stand-
ardized mean difference (SMD) was used (Borenstein et al.
2009). Effect sizes of SMD are interpreted as mean differ-
ence in units of standard deviation (versus control)
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A

Experimental Control Mean Difference Mean Difference
Study or Subgroup Mean SD_Total _Mean SD_Total Weight IV, Random, 95% CI 1V, Random, 95% CI
1.1.1 Breast Cancer Tumour volume (mm3)
Han, B. etal. 2018, DAUL, BCa 4T1 1345 4752 6 6156 126.88 6  6.6% -481.10 [-589.51,-372.69] =
Han, B. et al. 2018, DAUL, BCa MCF7 36131  106.68 8 9503 179.74 8  B65% -588.99 [-733.83,-444.15) —&—
Jiang, P. etal. 2019, DAUL, BCa 47271 157.82 8 964.63 196 8 65% -491.92 [-666.30,-317.54]
Kazlowska, K. et al. 2013, PSSmix, BCa 115.88 49.41 6 29059 75.88 6 6.6% -174.71 [-247.16,-102.26) =
Nguedia, M.J. etal. 2020, DAUC, BCa 1337 8.24 [ 390 2473 6 B67% -256.30 [-277.16,-235.44] *
Sof, M.S. etal. 2018, STIG, BCa 2,558 80.7 6 4896 1298 6 6.6% -2338.00 [2460.36,-2215.64] ¢
Yaacob, N.S. etal. 2015, PSSmix, BCa 11.62 93 4 1,493 24419 5 6.4% -1481.38[-1714.01,-1248.75] ¢
Subtotal (95% CI) 4 45 459%  -827.17[-1297.26,-357.07] —
Heterogeneity: Tau®= 397609.65; Chi*= 1216.99, df= 6 (P < 0.00001); F= 100%
Test for overall effect: Z= 3.45 (P = 0.0006)
1.1.2 Colon Cancer Tumour volume (mm3)
An, M.J. etal. 2009, ZGUG, CRC 1,593 362.69 8 1904 24611 8 62% -311.00 [-614.73,-7.27]
Couder-Garcia, B. 2019, PENI, CRC (15mgikg,3/wk) 1,454 227.26 6 4318 1,091 6 3.9% -2864.00[3755.70,-1972.30] ¢
Couder-Garcia, B. 2019, PENI, CRC (30mgikg,1iwk) 2,389 309.73 6 4646 75221 6 4.8% -2257.00[-2907.91,-1606.09) ¢
Ma, H. etal. 2019, SITO, CRC 697.8 87.9 5 9142 1177 5 B6.6% -216.40 [-345.16,-87.64] N
Subtotal (95% CI) 25 25 215% -1298.56 [-2156.76, -440.35] ——
Heterogeneity: Tau®= 688461.04; Chi*= 67.67, df= 3 (P < 0.00001); F= 96%
Test for overall effect: Z= 2.97 (P=0.003)
1.1.3 Other Cancers Tumour volume (mm3)
Cao, Z.Q.etal. 2019, SITO, PCa 1,050 164.29 8 2093 32857 8  6.3% -1043.00[1297.56,-788.44] ——
Mao, Z. etal. 2019, FUCO, LCa 29268 48.78 3 1610 65.04 3 B.6% -1317.32[1409.32,-1225.32] ¢
Shin, J.E. etal. 2019, SITO, GCa 346.15 69.23 6 94615 196.15 6 B5% -600.00 [-766.44, -433.56]
Sundstrem, T. etal. 2018, SITO, SCa 226.53 207.8045 8 50853 86.5782 8 65% -282.00 [-438.00,-126.00]
Wang, X etal. 2017, SITO, LCa 3243 387 5 6272 71.01 5 66% -302.90 [-373.79,-232.01] —
Subtotal (95% CI) 30 30 32.6%  -707.24[-1199.11,-215.36] e —
Heterogeneity: Tau®= 308220.03; Chi*= 325.10, df = 4 (P < 0.00001); F= 99%
Test for overall effect: Z= 2.82 (P = 0.005)
Total (95% CI) 99 100 100.0%  -864.21[-1137.55,-590.88] ——
Heterogeneity: Tau® = 291499.25; Chi*= 1752.05, df= 15 (P < 0.00001); F= 99% L t + {
5o -1000 -500 500 1000
Testforoverall effect Z=5:20.(7 «0,00001) Low Tumour Size (mm3) High Tumour Size (mm3)
Test for subaroun differences: Chi*=1.38, df=2 (P = 0.50), F= 0%

B Experimental Control Mean Difference Mean Difference
Study or Subgroup Mean SD Total Mean SD Total Weight IV, 95% CI v, 95% CI
2.1.1 Breast Cancer Tumour Weight (g)

Han, B. etal. 2018, DAUL, BCa 4T1 117 019 6 1.39 015 6 81% -0.22 [-0.41,-0.03) =

Han, B. et al. 2018, DAUL, BCa MCF7 0.3 007 8 081 026 8 81% -0.51[0.70,-0.32) -

Jiang, P.etal. 2019, DAUL, BCa 042 007 8 077 016 8 82% -0.35[-0.47,-0.23] e
Kazlowska, K. et al. 2013, PSSmix, BCa 0.65 0.05 6 112 0.09 6 8.3% -0.47[0.55,-0.39) -
Llaverias, G. etal. 2013, PSSmix, HFHC, BCa 285 08 16 395 1.2369 17 58% -1.10[1.81,-0.39]

Llaverias, G. etal. 2013, PSSmix, LFLC, BCa 365 1.44 13 35 1.44 13 41% 0.15 [-0.986, 1.26] s

Sofi, M.S. etal. 2018, STIG, BCa 816 212 6 194 214 6 1.4% -11.24[1365,-8.83] ¢

Subtotal (95% Cl) 63 64 44.0%  -0.61[-0.93,-0.29] =
Heterogeneity: Tau®= 0.13; Chi*= 89.58, df= 6 (P < 0.00001); F=93%

Test for overall effect: Z= 3.71 (P = 0.0002)

2.1.2 Colon Cancer Tumour Weight (g)

Couder-Garcia, B. 2019, PENI, CRC (15mug/ka, 3iwk) 078 012 6 434 0.48 6 7.3% -3.56 [-3.96,-3.16) ——

Couder-Garcia, B. 2019, PENI, CRC (30mg/kg, 1/wk) 1.08 0.24 6 435 037 6 75% -3.27 [-3.62,-2.92] o, =

Subtotal (95% CI) 12 12 14.9% -3.40[3.68,-3.12] <@

Heterogeneity: Tau?= 0.01; Chi*=1.15, df=1 (P = 0.28); F=13%

Test for overall effect: Z= 23.57 (P < 0.00001)

2.1.3 Other Cancers Tumour Weight (g)

Cao, Z.Q. etal. 2019, SITO, PCa 233 0.84 8 413 1.02 8 4.9% -1.80[-2.72,-0.88]

Kangsamaksin, T. et al. 2017, STIG, BDCa KKU-M213 0.68 0.06 4 111 011 5 82% -0.43[-0.54,-0.32) i
Kangsamaksin, T. etal. 2017, STIG, BDCa RMCCA-1 065 025 5 =123 14 & 3.6% -0.58 [-1.83, 0.67] ==
Mao, Z. etal. 2019, FUCO, LCa 018 003 3. 414 0.05 3 83% -0.93 [-1.00,-0.86] *

Shin, J.E. etal. 2019, SITO, GCa 0.06 003 6 037 011 6 8.3% -0.31 [-0.40,-0.22] *

Zhao, C. etal. 2015, DAUC, HEP 046 028 9 151 0.23 9 79% -1.05[-1.29,-0.81] = o

Subtotal (95% CI) 35 36 412% -0.76 [-1.10,-0.42] <@
Heterogeneity: Tau®=0.14; Chi*=152.30, df= 5 (P < 0.00001), F= 97%

Test for overall effect: Z= 4.40 (P < 0.0001)

Total (95% CI) 110 112 100.0%  -1.18[-1.49,-0.87] <
Heterogeneity: Tau®= 0.30; Chi*=714.02, df= 14 (P < 0.00001); F= 98% =_4 #2 0 % !
Test for overall effeq: Z=740(P % 0.00001) Low Tumour Weight () High Tumour Weight (g)
Test for subaroup differences: Chi*= 210.99, df= 2 (P < 0.00001), F=99.1%

C Experimental Control Std. Mean Difference Std. Mean Difference
Study or Subgroup Mean SD Total Mean SD Total Weight IV, Random, 95% CI IV, R 95% CI
Cao, ZQ.etal. 2019, SITO, PCa 3424 222 3 835 271 3 206% -15.91[-31.35,-0.46] S T
Han, B. etal. 2018, DAUL, BCa MCF7 0.21 0.09 4 077 0.32 4 365% -2.07 [-4.06,-0.08]

Mao, Z. etal. 2019, FUCO, LCa 21.89 151 3 10113 3.02 3 11.6% -2655[52.24,-08p) ———————

Sofi, M.S. etal. 2018, STIG, BCa 0.39 0.05 6 1 0.02 6 31.4% -1479[22.09,-7.48] =

Total (95% CI) 16 16 100.0% -11.74 [-22.29, -1.20] i

Heterogeneity: Tau®= 78.39; Chi*= 16.67, df= 3 (P = 0.0008); F= 82% I t t t

Testfor overall effect Z= 2.18 (P = 0.03) -50 -25 oI5 50
a ' z Low Ki67 High Ki67

D Experimental Control Std. Mean Difference Std. Mean Difference
Study or Subgroup Mean SD Total Mean SD Total Weight IV, 95% CI v, 95% CI
Couder-Garcia, B. 2019, PENI, CRC (15maikg,3iwk) 9557 18.85 6 3283 64.07 6 33.9% -4.55 [-7.04,-2.06] el
Han, B. etal. 2018, DAUL, BCa MCF7 061 016 4 105 012 4 387% -2.71 [-5.03,-0.39] ——

Sharmila, R. etal. 2017a, SITO, RCa 185 014 6 296 024 6 27.4% -5.22[-8.00,-2.43] N T
Total (95% CI) 16 16 100.0% -4.02 [-5.51, -2.53] e
Heterogeneity: Tau*= 0.09; Chi*= 2.11, df= 2 (P = 0.35); F= 5% f1 0 ¢5 + 1&

Test for overall effect: Z= 5.28 (P < 0.00001)

5
Low PCNA High PCNA

Figure 3. Forest plot of tumor size and proliferation markers after plant phytosterols and stanols administration. (A) Mean difference in change between PSS treat-
ment and control of tumor volume (mm?) according to cancer type. (B) Mean difference in change between PSS treatment and control of tumor weight (g) accord-
ing to cancer type. (C) Standard mean difference in change between PSS treatment and control of PCNA proliferation marker. (D) Standard mean difference in

change between PSS treatment and control of Ki67 proliferation marker.
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Std. Mean Difference Std. Mean Difference

Study or Subgroup Mean SD Total Mean SD Total Weight IV, Random, 95% CI IV, Random, 95% CI
Han, B. etal. 2018, DAUL, BCa MCF7 117 023 4 229 032 4 16.5% -350[6.27,-072) ¥*+—
Jiang, P. etal. 2019, DAUL, BCa 196 06 8 304 142 8 507% -0.94 [-1.99,0.11] — T
Ma, H. etal. 2019, SITO, CRC 7.38 047 5 832 036 5 328% -203[371,-034 ———®%F—
Total (95% Cl) 17 17 100.0%  -1.72[-2.99,-0.45] e
Heterogeneity: Tau*= 0.55; Chi*= 3.46, df=2 (P=0.18), F= 42% 5_4 52 b 5 44
Test for overall effect: Z= 2.65 (P = 0.008) Low CEA High CEA
B Experimental Control Std. Mean Difference Std. Mean Difference
Study or Subgroup Mean SD Total Mean SD Total Weight IV, Random, 95% CI IV, Random, 95% CI
Han, B. etal. 2018, DAUL, BCaMCF7? 2318 1091 4 118.64 1364 4 174% -B72[1155-189 +——
Jiang, P. etal. 2019, DAUL, BCa 96.53 32.18 8 25247 16584 8 46.5% -1.23[2.33,-0.14] ——
Ma, H. etal. 2019, SITO, CRC 7407 447 5 9491 6.94 5 36.2% -3.29[-5.52,-1.06) -
Total (95% CI) 17 17 100.0% -2.93[-5.41,-0.45] e
Heterogeneity: Tau®= 3.12; Chi*= 6.72, df= 2 (P = 0.03); F=70% E1 0 ?5 3 é 1U=
Test for overall effect: Z=2.32 (P=0.02) Low CA125 High CA125
C Experimental Control Mean Difference Mean Difference
Study or Subgroup Mean SD Total Mean SD Total Weight IV, Random, 95% CI IV, Random, 95% CI
Han, B. et al. 2018, DAUL, BCa MCF7 579 298 4 2965 7.54 4 331% -23.86[31.81,-1591)] —&—
Jiang, P. etal. 2019, DAUL, BCa 1016 547 8 2891 151 8 30.2% -18.75[-29.88,-7.62] —
Nguedia, M.J. et al. 2020, DAUC, BCa 521 0.24 6 963 1.26 6 367% -4.42 [-5.45,-3.39] 8
Total (95% CI) 18 18 100.0% -15.18 [-29.64, -0.73] B
Heterogeneity: Tau®= 147.91; Chi*= 28.66, df= 2 (P =< 0.00001); F=93% 50 5 b 75 50

Test for overall effect: Z= 2.06 (P = 0.04)

Low CA153 (U/mL) High CA153 (U/mL)

Figure 4. Forest plot of cancer serum biomarkers after plant phytosterols and stanols administration. (A) Standard mean difference in change between PSS treat-
ment and control of CEA. (B) Standard mean difference in change between PSS treatment and control of CA125. (C) Mean difference in change between PSS treat-

ment and control of CA153.

following exposure to the intervention. Degree of heterogen-
eity of meta-analyses was quantified using I>. We anticipated
that meta-analyses of animal studies would reflect higher
levels of heterogeneity than human clinical trials (Vesterinen
et al. 2014) as clinical trials aim to minimise inter-popula-
tion variables, whereas animal studies generally aim to min-
imize intra-study variation through the use of inbred
strains, strict protocol, and controlled environments. This in
turn, makes the collective assessment of animal studies sus-
ceptible to high inter-study variation because each study has
adapted its own protocol. We applied I* > 75% as a marker
of high heterogeneity for meta-analysis of animal studies
(Peter et al. 2020). In meta-analyses with >10 comparisons
per outcome and I> > 75%, sources of heterogeneity were
explored and discussed (Deeks et al. 2019; Peter et al. 2020).
Assessment of publication bias was performed by visual
inspection where >10 studies were assessed for a sin-
gle outcome.

Risk of bias

Risk of bias (ROB) was performed for experimental design
and adherence to BJP and PROPSERO guidelines for animal
experiments (SF1A); adherence to BJP guidelines for natural
products (SF1B); adherence to BJP guidelines for immuno-
blotting adapted to include immunohistochemistry (SF1C).

Results
Systematic search

Three hundred and thirty-six records identified in Scopus
were combined with 281 from Medline and with 22

identified through other routes (e.g. preliminary literature
reviews) resulting in 408 unique records after removal of
duplicates. After screening for inclusion and exclusion crite-
ria full text of 46 records was analyzed. Thirty-two were
found suitable for inclusion in qualitative synthesis (sum-
marized in Table 1) and of these 22 were appropriate for
data extraction and meta-analysis. This information is sum-
marized in the PRISMA diagram (Figure 2).

Animal models

Mice or rats were used in all studies except for one that
used zebrafish. Of the 32 studies using mammalian models,
18 employed xenograft assays, 10 induced tumors through
mutagen, and 4 were spontaneous genetic cancer models. A
total of nine studies evaluated colorectal cancer (CRC), 9
breast cancer (BCa), 4 skin/melanoma, 2 lung (LCa). Gastric
cancer (GCa), Ehrlich-Lettre ascites carcinoma (ECa), hepa-
toma (HEP), cholangiocarcinoma (CCA), ovarian cancer
(OCa), pancreatic cancer (PaCa), renal cancer (RCa), and
prostate cancer (PCa) were each studied once. Metastasis
was evaluated in three studies. Twice in the context of skin
evaluating metastasis to the brain and lung, and once in
breast cancer evaluating metastasis to the lung.

PSS administration

The most commonly studied PSS was sitosterol ([SITO]
n=11) and its derivatives (n=7). Stigmasterol ([STIG]
n=4), fucosterol ([FUCO] n=2) and PSS mixtures (n=6)
were next most common, with peniocerol (PENI) and Z-
guggulsterone (ZGUG) reported once each. Campesterol
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Figure 5. Forest plot of apoptosis markers after plant phytosterols and stanols administration. (A) Standard mean difference in change between PSS treatment and
control of Bcl-2. (B) Mean difference in change between PSS treatment and control of Bclxl. (C) Standard mean difference in change between PSS treatment and
control of Bax. (D) Mean difference in change between PSS treatment and control of Bad. (E) Standard mean difference in change between PSS treatment and con-
trol of Caspase-3. (F) Standard mean difference in change between PSS treatment and control of Caspase-9.

(CAMP), a relatively common PSS was only studied as part
of PSS mixtures (n=>5). Phytostanols were only assessed as
mixtures. PSS were administered via three main routes,
either integrated into chow per oral (PO) (n=15), oral gav-
age (OG) (n=5), or injection intravenously (IV) (n=1), or

intraperitoneally (IP) (n=10) or as microinjection (n=1).
The concentration of PSS to which animals were exposed
varied by several orders of magnitude. Doses, normalized
for a typical 65-75kg human, ranged from the equivalent of
3 mg per person per week up to 75g per person per day.
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Figure 6. Forest plot of metastasis and metastasis markers after plant phytoste

Low VEGF High VEGF

rols and stanols administration. (A) Mean difference in change between PSS treat-

ment and control of metastasis number. (B) Mean difference in change between PSS treatment and control of MMP2. (C) Mean difference in change between PSS
treatment and control of MMP9. (D) Standard mean difference in change between PSS treatment and control of VEGF.

Sustaining proliferative signaling

A range of growth factors and signaling pathways regulate
the cell cycle machinery. Typically, tumor proliferative index
in humans can be measured by expression of cell cycle
machinery proteins such as Ki67, PCNA, and CDKs. These
proteins can be measured in tumor tissue by immunohisto-
chemistry or immunoblotting, and tumor growth can be
tracked non-invasively with calipers or measuring expression
of light producing transgenes. Cells can also be isolated
from tumors and flow sorted based on DNA content provid-
ing a measure of cell cycle kinetics in the tumor.

In our meta-analysis of 14 studies (16 comparisons;
n=199) across PSS treatments we report that PSS mitigates
tumor growth volume in breast (MD = —827.17 mm?; 95%
CL: —1297.26, —357.07; 12 =100%; p < 0.001), colon (MD =
—1,298.56 mm’; 95% CI: —2,156.76, —440.35; 12=96%;

p=0.003), other cancers (MD = —864.21 mm?; 95% CI:
—1199.11, —215.36; 12=99%; p =0.005), and overall cancer
(MD = -864.21 mm?> 95% CI: —1137.55, —590.88;

12=99%; p<0.001), compared to controls (Figure 3A).
Similarly, tumor mass was much smaller across PSS treat-
ments in 11 studies (15 comparisons; n=222) reporting on
breast (MD = —0.61g; 95% CL —0.93, —0.29; 12=93%;

p<0.001), colon (MD = —3.40g; 95% CI. —3.68, —3.12;
12 =13%; p < 0.001), other cancers (MD = —0.76g; 95% CI:
—1.10, —0.42; 12=97%; p < 0.001), and overall cancer (MD
—1.18; 95% CI: —1.49, —0.87; 12=98%; p < 0.001), com-
pared to controls (Figure 3B). For overall total cancer mass
(Figure 3A) and volume (Figure 3B), we observed very high
heterogeneity (I>>75%) which is likely attributed to differen-
ces in effect sizes between cancer models. No evidence of
publication bias was observed in funnel plots for either anal-
yses (data not shown). Tumor growth was also assessed in
several studies via plasma markers CEA, CAI125, and
CA153. All markers were significantly reduced in PSS
groups compared to controls (Figure 4A-C).

Deregulation of signaling pathways can lead to struc-
tural changes in epithelial cell organization leading to for-
mation of aberrant crypt foci (ACF), an early marker of
CRC risk (Alrawi et al. 2006). SITO at a range of doses
between 5 and 20 mg/kg per day (Baskar et al. 2010), and
at 0.2% dw PO (Deschner et al. 1982) reduced colonic
epithelial cell proliferation, ACF and crypt multiplicity, as
well as tumor growth in xenograft CRC. In a DMBA
mutagen model of skin cancer, STIG (0.2-0.4g/kg PO)
resulted in fewer and smaller skin papillomas, which were
preceded by significantly longer latency period (Ali et al.
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Figure 7. Forest plot of pAKT and PARP expression after plant phytosterols and stanols administration. (A) Standard mean difference in change between PSS treat-
ment and control of pAKT. (B) Standard mean difference in change between PSS treatment and control of nuclear PARP. (C) Mean difference in change between

PSS treatment and control cleaved PARP.

2015). STIG (50 mg/kg IP) also slowed tumor cell dou-
bling time in a melanoma xenograft model (Iyer and Patil
2012). Yaccob and colleagues found a striking reduction
in an NMU mutagen model of breast cancer, where tumor
number was reduced 10-fold suggesting that induced
tumors actually regressed in the treatment group (Yaacob
et al. 2015).

Expression of cell proliferation markers such as Ki67,
PCNA, components of the cell cycle machinery, and prolif-
eration promoting oncogenes were evaluated in several stud-
ies. When amalgamated we found a significant reduction in
Ki67 (SMD —11.74; 95% CI: —22.29, —1.20; p=0.03;
Figure 3C) and PCNA (SMD —4.02; 95% CI. —5.51,
—2.53; p < 0.0001; Figure 3D). Ki67 was evaluated by west-
ern Blot (WB) or immunohistochemistry (IHC) in four
studies, investigating 20, 40, 60, 80, 100 mg/kg treatments.
Ki67 and PCNA were significantly reduced across all studies.
Interestingly, Ki67 was reduced by FUCO in LCa in a con-
vincing dose-dependent manner (Mao et al. 2019) as was
PCNA by PENI dose (15mg or 30mg/kg weekly) and fre-
quency (15mg/kg once/week or three/week) in CRC xeno-
graft HCT116 (Couder-Garcia et al. 2019). Aside from Ki67
and PCNA, Cyclin D1, a proliferation control protein, was
reduced by 50% in the tumors of SITO treated KCa models
(Sharmila and Sindhu 2017a), but was unchanged in another
study where very high PSS containing chow was provided to
Apc™™ mice (Marttinen et al. 2014) (Table 1).

A range of studies have considered tumor cell prolifer-
ation after exposing models to PSS mixtures, which are
arguably more representative of typical human exposure. In
physiological doses PSS mixtures exerted their inhibitory
effects on tumor growth in different cancer types like chol-
angiocarcinoma and breast cancer (Kangsamaksin et al.
2017; Kaztowska et al. 2013). In an N-Nitroso-N-methylurea

(MNU) carcinogen induced model of CRC, mice were fed
with different doses of PSS in feed (0.3%, 1% and 2% dw) of
a PSS mixture (60% SITO, 30% CAMP, 5% STIG) preneo-
plastic lesion formation was reduced (Janezic and Rao
1992). Ju et al. evaluated exposure to very high doses of a
PSS mixture (9.8 g/kg SITO+ 0.2g/kg STIG) in chow and
observed reduced tumor area in BCa xenograft mouse (Ju
et al. 2004), and Yaacob who applied somewhat lower doses
(40 mg/kg: 53% SITO, 16% CAMP, 26% STIG) also found
reduced tumor volume and number in an MNU mutagen
model of BCa (Yaacob et al. 2015).

At cancer sites where exposure to dietary compounds is
considered highest, such as the GI tract, some studies found
PSS mixtures to not be so effective. Rats fed with 24 mg/rat/
day of a PSS mixture (55% SITO, 41% CAMP, 4% STIG)
developed a similar tumor burden to their controls and were
likely to suffer complications from poor gut bacterial health
(Quilliot et al. 2001). Notably, CAMP made up a large propor-
tion of this PSS mixture. A phytosterol mixture again contain-
ing high CAMP, provided at exceptionally high levels via chow
(20 mg/mouse/day, which when calculated by weight by weight,
is equivalent to 70 g/person/day), was found to promote tumor
formation in the Apc™" mouse model (Marttinen et al. 2014).
In an experimentally matched study by the same group, the
same dose of phytostanols was also found to promote tumor
formation in the same model (Marttinen et al. 2013).

Combined, the broad consensus in the published data
indicates that PSS is anti-proliferative in vivo, and reduced
tumor growth is associated with lower expression of prolif-
eration markers such as Ki67 and PCNA. However, in some
studies performed at very high doses, especially in mixtures
containing high CAMP or CAMS concentrations, PSS
appeared to be either ineffective, led to gut health complica-
tions, or in two cases promoted tumor growth and
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Figure 8. Risk of bias analysis and adherence scores for animal research, immunoblotting, and research on natural products.
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activation of oncogene expression and activity. The route of
administration for high doses appeared to be an important
determinant. The GI tract is exposed to highest doses of
orally administered compounds, which may explain why
dose equivalent to 70 g/person/day of plant stanols, or plant
sterols, was associated with intestinal tumor formation. We
are unaware of studies that have directly compared different
routes of PSS administration to explore this hypothesis further.
Globally, these data indicate that PSS dose, frequency and
route of administration are likely to be important variables to
consider in human studies, especially if pharmacological
approaches with maximum tolerable doses are considered.

Resisting cell death

Programmed cell death is important for managing malignant
and pre-malignant cells. Cancer cells become resistant to
death signals by increasing the expression of anti-apoptotic
proteins, and reducing expression of pro-apoptotic proteins.
Bcl2 and Bclxl for example maintain mitochondrial mem-
brane stability (thus preventing the release of cytochrome c
into the cytoplasm, a very early event in apoptosis) and Bad
and Bax oppose this mechanism by destabilizing mitochon-
drial membrane integrity. Caspases are then activated and
enact orchestrated cellular destruction. In vivo, cell death can
be assessed longitudinally by tumor growth assays, on flow
sorted tumor cells labeled for various stages of apoptosis, or
by measuring expression of proteins regulating apoptosis.

Across all studies we identified, tumors of PSS treated ani-
mals had significantly greater expression of pro-apoptotic pro-
teins and reduced expression of anti-apoptotic signals (Figure
5). There was a significant decrease in expression of Bcl2 (SMD
= —3.14; 95% CL. —5.40, —0.89; p=0.006; Figure 5A) and
BexL (MD = —043 DU; 95% CI: —0.51, —0.35; p < 0.0001;
Figure 5B) in the treated animals relative to controls. Both of
these proteins function to maintain mitochondrial membrane
integrity and resist apoptosis. For the pro-apoptotic proteins,
Bax was strongly induced (SMD = 7.86; 95% CI: 2.69, 13.03;
p=0.003; Figure 5C), whilst Bad was also induced (MD = 0.14
DU; 95% CI: 0.07, 0.21; p < 0.0001 Figure 5D).

Downstream of mitochondrial membrane integrity regu-
lation, caspase expression also regulates apoptosis. In PSS
treated models Casp3 (SMD = 6.09; 95% CI: 2.04, 10.14;
p=0.003; Figure 5E) and Casp9 (SMD = 5.30; 95% CIL:
1.74, 8.86; p=0.004; Figure 5F) were both significantly
higher than in controls. PSS derivatives appeared important
in the magnitude of pro-apoptotic effect observed. Dolai
et al., was the only study included using a PSS derivative,
DAUC, and evaluated its effect on apoptosis proteins at
50mg and 100 mg/kg per day IP. A clear dose dependant
effect was seen with greater increase in cleaved Casp3 and
Casp9, and Bax expression and decrease in anti-apoptotic
Bcl2 in the highest treatment group (Table 1). Ma et al,
established that either DAUC or DAUL at 60 mg/kg OG
resulted in a greater Casp3 and Casp9 activation than SITO
compared to the control untreated model, which was accom-
panied by significant decreases in PI3K/Akt signaling that
were not present in the SITO group (Ma et al. 2019).

GGT: Gamma glutamyl transferase, HFHC: High Fat High Cholesterol IP: Intraperitoneal injection, LDH: Lactate dehydrogenase, LFLC: Low Fat Low Cholesterol, MDA: malondialdehyde, MAPK: Mitogen-activated protein kinase,
mg/kg.bw: milligrams per kilogram of body weight, n: number, NR: Not Reported, OG: Oral Gavage, PARP: Poly (ADP-ribose) polymerase, PCNA: Proliferating Cell Nuclear Antigen, PENI: Penicosterol, PO: Per Os, PSS:

Phytosterols and stanols, PyMT antigen: Polyoma Virus Middle T antigen, SITO: f-Sitosterol, STIG: Stigmasterol, SI; Subcutaneous injection, SOD: Superoxide dismutase, VEGF: Vascular Endothelial Growth Factor, Wei: Weight.
Dose mg/kg is per body weight per day unless otherwise stated. All protein presented as DU unless otherwise stated.Volume presented in cubic millimeter (mm3). Weight presented in grams (g). Area presented in square

ate, DAUP: Daucosterol palmitate, DU: Densitometry Unit, DW: Diet Weight, EGFR: Epidermal growth factor receptor, ER: Estrogen Receptor, ERK: Extracellular-signal-regulated kinase, FUCO: Fucosterol, GUGG: Guggulsterone
millimeter (mm?2). Size presented in millimeter cubed (mm?3).

ACF: Aberrant crypt foci, AC: Aberrant crypt, ALP: Alkaline Phosphatase, CA125: Cancer antigen 125, CA153: Cancer antigen 153, CA199: Cancer antigen 199, CA242: Cancer Antigen 242, CEA: Carcinoembryonic antigen, CAMP:
Campesterol, CAMS: Campestanol CAT: Catalase, Cav1: Caveolin 1, CMC: Carboxymethyl cellulose, CGLF: Colonic Glands in area of lymphoid follicle, DAU: Daucosterol, DAUL: Daucosterol linoleate, DAULN: Daucosterol linolen-



Other hallmarks

Proliferation and cell death were the most heavily studied
hallmarks identified during the systematic search. Other
hallmarks were less extensively studied, yet important dis-
coveries have been made. Four studies measured markers of
metastasis or direct metastatic colonization, and three eval-
uated markers of angiogenesis. PSS treated animals had sig-
nificantly reduced metastatic colonization (SMD = —1.34;
95% CI: —1.91, —0.77; p <0.0001; Figure 6A) from models
of PCa (Awad et al. 2001), BCa (Han et al. 2018), and mel-
anoma (Imanaka et al. 2008; Sundstrom et al. 2019). Matrix
metalloproteinases (MMPs) enzymatic activity facilitate
tumor invasion and metastatic process degrading the extra-
cellular matrix (ECM) components, modulating cell adhe-
sion and interfering with the biological activity of ECM
components and other proteins. At the molecular level
matrix metalloproteinase-2 (MMP2) and matrix metallopro-
teinase-9 (MMP9) were found significantly reduced in BCa
xenograft models (p < 0.00001 for both; Figure 6B and C).
Expression of Snail, a transcription factor that drives epithe-
lial-mesenchymal transformation (EMT), was significantly
reduced by SITO in PaCa BXPC3 xenografts, as were
markers of EMT such as vimentin (Cao et al. 2018) (Table
1). ERK activation is associated with tumor cell angiogenesis
and the metastatic EMT and Sharmila and Sindhu (2017b)
found SITO reduced pERK. Sundstrom et al. (2019) also
observed pERK reduction in brain metastases by SITO
which was accompanied by fewer brain metastases in the
PSS treated group (Sundstrom et al. 2019). Cao and col-
leagues evaluated GSK3p signaling in the context of metasta-
sis formation and EMT in a PaCa xenograft model (Cao
et al. 2018). SITO given daily by IP at 80 mg/kg significantly
reduced E-cadherin and increased vimentin. The angiogen-
esis factor VEGF was reduced in the tumors of PSS treated
mice, compared to controls, as observed in two separate
BCa models (4T1 and MCEF7), treated PO with 50 mg/kg
and 100mg/kg of DAUL (Han et al. 2018), and in a RCa
model, treated with 20 mg/kg PO of SITO (Sharmila and
Sindhu 2017a) (p <0.0001; Figure 6D). Furthermore, STIG
was shown to reduce CCA CD31+ vessels, suggesting a dis-
ruption in tumor blood vessel formation (Kangsamaksin
et al. 2017) but not by a SITO:STIG:CAMP mixture in
MMTV-PyMT Tg mice (Llaverias et al. 2013) (Table 1).
Furthermore, only two studies were focused on tumor-pro-
moting inflammation hallmark. Lipid peroxidation (LPO) is
a mechanism that induces onset and progression of carcino-
genesis through the production of reactive compounds like
malondialdehyde (MDA). Ali et al. (2015) and Nguedia
et al. (2020) showed that DMBA induced LPO, measured
through MDA levels, is significantly reduced by STIG or
DAUC relative to controls in mutagenic models of skin pap-
illoma and breast cancer, respectively. However, while STIG
increased the levels of superoxide dismutase (SOD), catalase
(CAT) and the reduced form of glutathione (GSH), which
are essential for reactive oxygen species (ROS) catalysis,
DAUC increased only CAT activity (Nguedia et al. 2020),
suggesting a weaker ability to induce endogenous antioxi-
dant mechanisms compared to STIG.

CRITICAL REVIEWS IN FOOD SCIENCE AND NUTRITION 17

Broad impact oncogenes

We found a number of oncogenes and tumor suppressor
genes were evaluated as secondary endpoints in numerous
studies. In vitro, PSS have been found to supress activity of
AKT and NFxkB pathways, and to act as PARP inhibitors,
and these roles are evaluated here.

Excessive pAKT leads to enhanced tumor growth, resist-
ance to death signals, metastasis, and angiogenesis
(Revathidevi and Munirajan 2019). Our meta-analysis of 3
PAKT studies (n =42 animals) indicated that pAKT levels
were 45% lower in PSS treated groups (95% CIL: —67%,
—23%; p < 0.0001; Figure 7A). In our qualitive assessment,
we noted that PI3K (an oncogene on the same pathway as
AKT) was also downregulated (Han et al. 2018) and hypo-
phosphorylated in PSS treated animals (Ma et al. 2019)
(Table 1). Phosphorylation of NFxB’s regulatory and tran-
scription factor subunits was reduced by PSS in BCa and
PaCa models. In BCa xenograft DAUL (100 mg/kg day; 7.5g
equ. human dose) reduced phosphorylation of IKKa/f, IkBa,
and p65 (Han et al. 2018). In mammary gland extracts of
the genetic BCa PyMT Tg model PSS treatment significantly
impaired NF«B activity (Llaverias et al. 2013) under high fat
diet conditions (Table 1). In the PaCa model, signaling by
Nrf2-ARE was not altered by SITO, but NFxB activity was
reduced. However, as reported earlier for proliferation, the
CAMP rich high dose PSS mixture indicated that phytoster-
ols given at high doses (20 mg per mouse per day) did not
lead to suppression of oncogene expression or function
(EGFR, b-catenin, cycline D1 or pERK) (Marttinen et al.
2014). Furthermore, the sister paper published the year
before indicated that high phytostanol (8 g/kg dw; 20 mg/
day/mouse; 92% CAMS, 8% STAN) led to significant
increases in pro-proliferative proteins including EGFR and
Cyclin-D1 (Marttinen et al. 2013).

PARP is over expressed in many cancers and is a thera-
peutic target in the treatment of several cancer types with
the use of PARP inhibitors. Our meta-analysis of 2 studies
found nuclear PARP to be significantly reduced by PSS
(SMD = —17.14; 95% CI: —24.03, —10.26; p < 0.0001 Figure
7B) (Couder-Garcia et al. 2019; Ma et al. 2019) and cyto-
plasmic/cleaved PARP significantly increased (SMD = 6.22;
95% CI: 1.60, 10.83; p=0.008 Figure 7C) (Han et al. 2018;
Couder-Garcia et al. 2019; Ma et al. 2019). HCT116 cells are
Ataxia-Telangiectasia Mutated (ATM)-deficient indicating a
sensitivity to DNA repair inhibiting drugs. Couder-Garcia
and colleagues provided the only study that considered both
dose and frequency of administration of PENI in mice xeno-
graft model using HCT116 (Table 1). Interestingly PARP
cleavage was strongly induced, and to a similar extent in
both the frequent administration group (15mg/kg 3 per
week: 10.9-fold) and the high dose group (30mg/kg once
per week: 10.6-fold) (Han et al. 2018; Couder-Garcia et al.
2019; Ma et al. 2019). As this study varied the frequency
and dose of PENI administration it provided valuable infor-
mation on how administration regimen should be consid-
ered in translational first-in-human studies.

The data described here suggests that PSS, particularly
the glucoside derivatives of SITO, may be natural PARP
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inhibitors useful in the treatment of cancers characterized
by mutations in DNA repair genes such as BRCA1/2. SITO,
DAUC, and DAUL all influenced PARP activity by promot-
ing significant decreases in nuclear (active) PARP, and
increases in its cleaved (inactive) form.

Mechanistic insights

Several mechanistic insights into how PSS may alter prolifer-
ation of tumor cells were provided during the systematic
review and details are reported in Table 1. Proliferation of
estrogen receptor positive breast cancer MCF7 xenografts
was inhibited by SITO provided in chow at 9.8 g/kg dw.
Interestingly, SITO treatment led to 35% lower circulating
levels of exogenously introduced estradiol, suggesting the
antiproliferative actions of PSS could have been indirect via
promoting estradiol clearance (Ju et al. 2004). Mitochondrial
function was also found significantly impaired by SITO in a
model of melanoma brain metastasis. In this study the
authors discovered that mitochondrial membrane integrity
was impaired by SITO and this led to oxidative stress medi-
ated apoptosis (Sundstrom et al. 2019). The high PSS dose
studies performed in the Apc™" mouse found increases in
activity (phosphorylation) and expression of pro-proliferative
oncogenes including EGFR, and ERK1/2. Activation of the
same proteins, and others (c-jun, c-fos, JNK, and p38) in a
KCa model was significantly reduced by prolonged exposure
(44-weeks) to SITO (20 mg/kg PO 3 times/week) (Sharmila
and Sindhu 2017b). These dose dependent differences in
oncogene activation indicate a potential non-linear relation-
ship, and activity and expression of such tumor markers
should be assessed in clinical trials.

Evaluation of methodology
Heterogeneity

As expected, high levels of heterogeneity (I>>75%) were
observed in the majority of our meta-analyses—all of which
contained < 10 studies for each outcome. However, we also
demonstrate consistent directionality of effects between stud-
ies within each meta-analysis. This suggests that despite
inter-study differences in experimental design that underlie
the high levels of heterogeneity, the administration of PSS
consistently confers protective effects against the hallmarks
of cancer. Although the present study was not powered to
investigate sub-groups across most analyses, future studies
may be adequately powered to identify key experimental fea-
tures that drive heterogeneity.

Risk of bias and adherence to guidelines for reporting
on natural products, animal research, and
immunoblotting

According to BJP and PROSPERO guidelines for declaration
of transparency and scientific rigor (BJP 2018a), animal
research (BJP 2018b), use of natural products (BJP 2020),
and use of immunoblotting and immunohistochemistry (BJP

2018c) we developed a 57 point survey (Figure 8) that was
completed in duplicate by two independent researchers.
Four papers did not report ethical approval for their
research and corresponding authors did not respond via
contact details provided in the manuscripts. Using our selec-
tion criteria, we had low risk of bias in terms of reporting
study design (Figure 8A). Low ROB was also found for PSS
origin, purity and measurement methods as these criteria
were used to exclude manuscripts that did not report these
characteristics, and/or evaluated effects of plant/food extracts
rather than pure PSS. Few records evaluated PSS toxicity,
pharmacokinetics, dosage rationale, or compared to clinically
effective drug (Figure 8B). However, given the long-term use
of PSS in the cardiovascular disease setting, these character-
istics have been reported extensively elsewhere. Moreover,
antibody validation was not reported in any study, immuno-
blots were always cropped (Figure 8C). We do not see this
as a particular limitation here as antibodies against common
oncogenes such as pAKT and VEGF have been extensively
published previously.

Conclusions

SITO is the most common phytosterol found in foods and
we found SITO was strongly associated with the inhibition
of several cancer hallmarks including: resisting cell death,
sustaining proliferative signaling, inducing angiogenesis, and
activating invasion and metastasis (Graphical Abstract).
SITO is abundant in healthy diets, especially in many vege-
table oils (500 mg sterol per 100 g oil), cereals (50 mg/100g),
and nuts (200mg/100g) (Yang et al. 2019). However, given
the wide range of PSS available in nature, over 200 different
PSS have now been identified and classified (Moreau et al.
2018) it may be important to determine whether any of
these PSS that are as yet untested as anti-tumor agents,
could be better suited. The evidence provided here that
SITO at physiologically achievable concentrations signifi-
cantly impairs tumor development supports the argument
that clinical trials should be evaluating its efficacy as an
adjunct to existing treatment. If translatable to humans, the
evidence presented here suggests that relatively modest
(>200mg) daily PSS intake could impair oncogenic signal-
ing and suppression of multiple cancer hallmarks leading to
reduced cancer risk. Indeed a distinction should be made
between cancer prevention using dietary advice, and cancer
treatment using nutraceutical approaches.

We also have found convincing evidence that PSS may
synergise with several existing therapies such as PARP
inhibitors (Couder-Garcia et al. 2019), gemcitabine (Cao
et al. 2018), and vemurafenib (Sundstrom et al. 2019).
However, the cellular receptors for PSS have not been clearly
identified in the context of cancer cell biology. Previously,
PSS was shown to dampen the effect of oxysterols in breast
cancer (Hutchinson et al. 2019), and oxysterols are now
considered strong mediators of the pathophysiology of sev-
eral cancers (Baek et al. 2017; Segala et al. 2017; He et al.
2019). Further mechanistic evidence could be provided by
applying emerging technologies such as phage display high



throughput screens (Dilly et al. 2017) to panels of PSS to
identify cellular protein receptors to which PSS directly
bind. An alternative mechanism of action is integration into
cellular membranes. Disruption of the plasma membrane
would impair signaling by oncogenic signaling pathways
including AKT (Fakih et al. 2018), and disruption of mito-
chondrial membrane integrity promotes oxidative stress and
tumor cell specific apoptosis (Sundstrom et al. 2019). Given
the well understood toxicity profile of PSS, combined with
their now >20-year use in clinic to reduce cardio-vascular
disease risk, and the plethora of preclinical in vivo evidence
we have summarized here, it is timely to consider PSS as
adjuncts to cancer therapies.
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Abbreviations

ACF Aberrant Crypt Foci;

AWH Average weight human (70kg);

BCa Breast Cancer;

BRAS Dihydrobrassicasterol;

CA125 Cancer antigen 125;

CA153 Cancer antigen 153;

CA199 Cancer antigen 199;

CA242 Cancer Antigen 242;

Cavl Caveolin 1;

CEA Carcinoembryonic antigen;

CCA Cholangiocarcinoma;

CAT Catalase;

CGLF Colonic Glands in area of lymphoid follicle;
CAMP Campesterol;

CAMS Campestanol;

CI confidence interval;

CRC Colorectal Cancer;

DAUC  Daucosterol a.k.a fi-Sitosterol glucoside;
DAUL Daucosterol Linoleate or f-Sitosterol-Glucoside Linoleate;
DAUN Daucosterol linolenate;

DAUP Daucosterol Palmitate;

DU Densitometry Unit;

dw dry weight;

EFSA European Food Standards Agency;
EGFR Epidermal growth factor receptor;
EMT Epithelial Mesenchymal Transition;
ER Estrogen Receptor;

ERK Extracellular-signal-regulated kinase;
E2 Estradiol;

ECa Ehrlich-Lettre ascites carcinoma;
EMT epithelial-mesenchymal transformation;
FUCO Fucosterol;

GGT Gamma glutamyl transferase;

GSH glutathione;

HFHC High Fat High Cholesterol;

HEP Hepatoma;

1P intraperitoneal;

v intravenous;

LCa Lung Cancer;

LDH Lactate dehydrogenase;

LDL-C low density lipoprotein cholesterol;
LFLC Low Fat Low Cholesterol;

MAPK  Mitogen-activated protein kinase;
MNU N-methyl-N-nitrosourea;

MDA malondialdehyde;

MDSC Myeloid-Derived Suppressor Cells;
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n number;

MMP2 matrix metalloproteinase-2;
MMP9 matrix metalloproteinase-9;
NR Not Reported;

NF-xB Nuclear Factor Kappa Beta;
NOAEL No Observed Adverse Effect Level;
OCa Ovarian Cancer;

oG Oral gavage;

PaCa Pancreatic Cancer;

PCa Prostate Cancer;

PARP Poly (ADP-ribose) polymerase;
PCNA Proliferating Cell Nuclear Antigen;
PENI Peniocerol;

PO per oral;

PSS Phytosterols and stanols;

PyMT antigen

Polyoma Virus Middle T antigen;
PSTE Plant Sterol Esters;

P4 Progesterone;

RCa Renal Cancer =ROS = Reactive Oxygen Species;
SCa Skin Cancer or Melanoma;

SCFA Short Chain Fatty Acids;

SITO p-Sitosterol;

STAN Sitostanol;

STIG Stigmasterol;

SI Subcutaneous injection;

SOD Superoxide dismutase;

TSP-1 Thrombospondin-1;

VEGF Vascular Endothelial Growth Factor;
ZGUG Z-Guggulsterone;

Wei Weight.
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