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The quantum steering ellipsoid of a two-qubit state is the set of Bloch vectors that Bob can collapse

Alice’s qubit to, considering all possible measurements on his qubit. We provide an elementary

construction of the ellipsoid for arbitrary states, calculate its volume, and explain how this geometric

representation can be made faithful. The representation provides a range of new results, and uncovers new

features, such as the existence of “incomplete steering” in separable states. We show that entanglement can

be analyzed in terms of three geometric features of the ellipsoid and prove that a state is separable if and

only if it obeys a “nested tetrahedron” condition.

DOI: 10.1103/PhysRevLett.113.020402 PACS numbers: 03.65.Ta, 03.67.Mn

The Bloch sphere provides a simple representation for

the state space of the most primitive quantum unit—the

qubit—resulting in geometric intuitions that are invaluable

in countless fundamental information-processing scenarios.

The two-qubit system, likewise, constitutes the primitive

unit for bipartite quantum correlations. However, the

two-qubit state space is described by 15 real parameters

with a surprising amount of structure and complexity. As

such, it is challenging both to faithfully represent its states

and to acquire natural intuitions for their properties [1–3].

The phenomenon of steering was first uncovered by

Schrödinger [4] (and subsequently rediscovered by others

[5–7]), who realized that local measurements on Bob’s side

of the pure state jψiAB could be used to “steer” Alice’s state

into any convex decompositions of her reduced state ρA.

Hence, we say that for jψiAB, steering is “complete” within

Alice’s Bloch sphere. For a two-qubit mixed state ρ, it is

known [8] that the convex set of states that Alice can be

steered to is an ellipsoid EA, see Fig. 1.

The purpose of this Letter is to show that this steering

ellipsoid is the natural generalization of the Bloch sphere

picture, in that it can be used to give a faithful representa-

tion of an arbitrary two-qubit state in three dimensions, and

moreover, that the core properties of the state and its

correlations are made manifest in simple geometric terms.

By adopting this representation, we are led to a range of

novel results for both separable and entangled states.

First, it reveals a new feature of separable quantum states,

called incomplete steering, where not all decompositions of

ρA within the steering ellipsoid EA are accessible. More

importantly, the representation reveals surprising structure

in mixed state entanglement. We find that mixed state

entanglement decomposes into the simple geometric com-

ponents of (a) the spatial orientation of the ellipsoid, (b) its

distance from the origin, and (c) its size. We are also lead to

the surprising nested tetrahedron condition: a state is

separable if and only if its ellipsoid fits inside a tetrahedron

that itself fits inside the Bloch sphere.

The representation also provides unity and insight for a

range of distinct features. The nested tetrahedron condition

leads to a simple determination of the minimal number of

product states in the ensemble of any separable state. We

note that the ellipsoid volume is an entanglement criterion,

and provide a formula for it in terms of detðρÞ and detðρTBÞ.
Nonzero ellipsoid volume is a type of correlation inter-

mediate between discord and entanglement.

Beyond these new insights, we also feel that this method

of compactly depicting any two-qubit state in three

FIG. 1 (color online). Ellipsoid representation of a two-qubit

state. For any two-qubit state ρ, the set of states to which Bob can

steer Alice forms an ellipsoid EA in Alice’s Bloch sphere,

containing her Bloch vector a. Bob’s Bloch vector b is also shown.

Published by the American Physical Society under the terms of
the Creative Commons Attribution 3.0 License. Further distri-
bution of this work must maintain attribution to the author(s) and
the published article’s title, journal citation, and DOI.
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dimensions should be of interest to a range of researchers in

both the theoretical and experimental quantum sciences.

The Pauli basis.—Let σμ ¼ f1; σx; σy; σzg, μ ¼ 0; 1; 2; 3

denote the “homogeneous Pauli basis.” Any single-qubit

Hermitian operator Ê can be written Ê ¼ 1

2

P

3

μ¼0
Xμσμ,

where the Xμ ¼ trðÊσμÞ are components of the real vector

X. Demanding that Ê ≥ 0 is equivalent to X0 ≥ 0 and

X2
0
≥
P

3

i¼1
X2
i , and we can identify Ê as a positive-operator

valued measure (POVM) element.

In a similar way, any two-qubit state ρ can be written

in the Pauli basis as ρ ¼ 1

4

P

3

μ;ν¼0
Θμνσμ ⊗ σν, where

Θμν ¼ trðρσμ ⊗ σνÞ is real for all μ; ν. As a block matrix

we have Θ ¼ ð 1 bT

a T
Þ, where a; b are the Bloch vectors of

the reduced states ρA and ρB of ρ, respectively, and T is a

3 × 3 matrix encoding the correlations [2]. If Bob does a

POVM and obtains outcome Ê, he steers Alice to the state

proportional to trB½ρð1 ⊗ ÊÞ�, which, in the Pauli basis, is

given by the four-vector 1
2
ΘX, with probability 1

2
ð1þ b · xÞ

where x ¼ ðX1; X2; X3ÞT .
The four-vector formalism is related to the idea of

stochastic local operations and classical communication

(SLOCC) [1], which are operations of the form

ρ → ρ0 ¼ SA ⊗ SBρðSA ⊗ SBÞ†, where SA; SB are invert-

ible complex matrices. The set of states attainable from ρ

under SLOCC is called the SLOCC orbit of ρ, and denoted

SðρÞ. Under this action, the matrix Θ transforms as Θ0 ¼
ΛAΘΛ

T
B where ΛAðBÞ are proper orthochronous Lorentz

transformations [9]. Significant in what follows, for a

SLOCC operation affecting only Bob (Θ0 ¼ ΘΛB), the

set of states Alice is steered to is unaffected, since: X is

in the forward light cone if and only if X0 ¼ ΛBX is,

and Θ0X ¼ ΘX0.
Previously, in [8], a range of SLOCC techniques were

employed to study entanglement and steering for two-qubit

mixed states; however, this approach encounters problems

when applied to certain separable states and, moreover, is

not suited to addressing the geometric features of interest.

The techniques developed here follow a different line, and

circumvent both of these issues.

Construction of the quantum steering ellipsoid.—We

now provide an alternative construction of the steering

ellipsoid EA to that in [15], which applies even when EA is

degenerate.

Our construction of EA is easiest to understand in the

case when the state ρ has b ¼ 0. For such a state, suppose

Bob projects his qubit onto the pure state X ¼ ð 1
x
Þ with

x ¼ 1. Given this outcome, Alice is steered to

Y ¼ ΘX ¼
�

1 0
T

a T

��

1

x

�

¼
�

1

aþ Tx

�

; ð1Þ

which occurs with probability 1

2
, and where Alice’s Bloch

vector is now aþ Tx. The set of all states Alice can end up
with is simply the unit sphere of possible x, shrunk and

rotated by T and translated by a, i.e., an ellipsoid centered

at a with orientation and semiaxes given by the eigenvec-

tors and eigenvalues of TTT . The ellipsoid dimension is

rankðTÞ ¼ rankðΘÞ − 1. Points inside the ellipsoid can be

reached via convex combinations of projective measure-

ments, and conversely, a POVM element is a positive

operator and so can be spectrally decomposed into a

mixture of projectors, thus, giving a point within the

ellipsoid.

Now, consider a general state with b ≠ 0. If b ¼ 1, then ρ

is a product state, in which case there is no steering and the

steering ellipsoid is the single point a. For the case b < 1,

we find that the SLOCC operator 1 ⊗ ð2ρBÞ−ð1=2Þ corre-

sponds to a Lorentz boost Lb by a “velocity” b that

transforms ρB to the maximally mixed state (which has

b ¼ 0). We refer to this special filtered state ~ρ as the

“canonical state” on the SLOCC orbit SðρÞ. Since SLOCC
operations on Bob do not affect Alice’s steering ellipsoid,

the parameters of an arbitrary state’s steering ellipsoid

are obtained by simply boosting Θ by Lb and reading off

the ellipsoid parameters. This gives a steering ellipsoid

centered at cA ¼ ða − TbÞ=ð1 − b2Þ, with orientation and

semiaxes lengths si ¼
ffiffiffiffi

qi
p

given [9] by the eigenvectors

and eigenvalues qi of the ellipsoid matrix

QA ¼ 1

1 − b2
ðT − abTÞ

�

1þ bbT

1 − b2

�

ðTT − baTÞ: ð2Þ

To obtain EB, the ellipsoid at B, we simply perform a

swap of A and B, which corresponds to transposing Θ and

sends b → a, a → b, T → TT . Hence, EA and EB always

have the same dimensionality, rankðΘÞ − 1. This completes

the construction of the geometric data (EA, a, b) for a given

state ρ. Next, we describe the reverse direction: obtaining ρ

from an ellipsoid EA and the vectors a and b.

Reconstruction of ρ from geometric data.—Given

a; b; EA ¼ ðQA; cAÞ, to recover ρ, we need T. In [9], we

prove that this matrix is given by

T ¼ 1

γ

�

γcAb
T þ

ffiffiffiffiffiffiffi

QA

p

Oþ γ − 1

b2

ffiffiffiffiffiffiffi

QA

p

ObbT

�

; ð3Þ

where O ∈ Oð3Þ satisfies a ¼ cA þ ffiffiffiffiffiffiffi

QA

p
Ob. This specifies

O up to a rotation O0 ∈ Oð3Þ such that O0b ¼ b. The action

of O0 can be encoded, for example, by a coloring of EA as in

[16]. In this way, the steering ellipsoid can be used as a

faithful representation of ρ.O0 corresponds to a local unitary
and/or partial transpose on Bob’s system, and so is irrelevant

for any correlation properties such as entanglement.

“Complete” and “incomplete” steering.—The steering

ellipsoid specifies which states Bob can steer Alice to.

A more subtle question is which decompositions of
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Alice’s reduced state he can steer to. Clearly, a necessary

condition is that all of the states in the decomposition must

be in EA, surprisingly however, it turns out that this is not

sufficient.

Consider some nonproduct two-qubit state with

ellipsoids EA and EB. The following are equivalent [9]:

(1) (Complete steering of A) For any convex decomposition

of a into vectors in EA or on its surface, there exists a

POVM for Bob that steers Alice to it. (2) The affine span

of EB contains the origin.

These conditions hold for all nondegenerate ellipsoids

(which includes all entangled states) as well as all states

where b ¼ 0. However, complete steering is not symmetric:

the state ρ ¼ 1

2
ðj00ih00j þ j þ 1ihþ1jÞ has complete steer-

ing of Alice by Bob, but not vice versa.

The three geometric contributions to entanglement.—

The Peres-Horodecki criterion [17,18] asserts that a two-

qubit state ρe is entangled if and only if ρ
TB
e has a negative

eigenvalue. Furthermore, it can be shown [15] that, at most,

one eigenvalue of ρ
TB
e can be negative, and that ρ

TB
e is full

rank for all entangled states [19]. Hence, det ρ
TB
e < 0 is a

necessary and sufficient condition for entanglement.

Suppose ρ is entangled, then any state in its SLOCC orbit

SðρÞ is also entangled [15], including the canonical state

~ρ ∈ SðρÞ. It follows that ρ is entangled if and only if

detð~ρTBÞ < 0. However, the states ρ and ~ρ share the same EA,

and so, expanding detð~ρTBÞ < 0 in the geometric represen-

tation, we find that ρ is entangled if and only if a physical

steering ellipsoid with center c ¼ cn̂ and matrix Q satisfies

c4 − 2c2ð1 − trQþ 2n̂TQn̂Þ þ hðQÞ < 0; ð4Þ

where hðQÞ≔1–8
ffiffiffiffiffiffiffiffiffiffiffi

detQ
p

þ 2trðQ2Þ − ½trðQÞ�2 − 2trðQÞ,
and we drop A; B labels as entanglement is a “symmetric”

relation. This equation is manifestly invariant under global

rotations, corresponding to local unitaries on the quantum

state, and shows that correlations between the qubits

manifest themselves in three geometric ways: (1) the dis-

tance c of the ellipsoid center from the origin, (2) the size of

the ellipsoid, and (3) its “skew,” captured by the term n̂TQn̂,

which reflects the alignment of the ellipsoid relative to the

radial direction described by center unit vector n̂.

The nested tetrahedron condition.—The condition for

entanglement given by equation (4) provides a compact

algebraic condition for nonseparability and uncovers con-

tributions from different geometric aspects. However, the

steering ellipsoid captures the distinction between sepa-

rable and nonseparable states in another elegant way: A

two-qubit state ρ is separable if and only if its steering

ellipsoid EA fits inside a tetrahedron that fits inside the

Bloch sphere. To prove necessity, suppose Alice and Bob

share a separable state ρ ¼ P

n
i¼1

piαi ⊗ βi. Since we can

always take n ≤ 4 [20], the Bloch vectors of the αi
define a (possibly degenerate) tetrahedron T within

Alice’s Bloch sphere. Bob’s outcome Ê collapses Alice

to
P

n
i¼1

ðtrðÊβiÞ=trðÊρBÞÞpiαi. Hence, her steered Bloch

vector will be a convex combination of the Bloch vectors

for the αi—in other words her steering ellipsoid is con-

tained in T .

We prove, in [9], that the nontrivial converse holds: any

ellipsoid that fits inside a tetrahedron that itself fits inside

the Bloch sphere must arise from a separable state, and

thus, the nested tetrahedron condition is both necessary

and sufficient for separability of the state.

This key geometric insight leads to some nontrivial

corollaries. For example, for any separable state ρ, the

minimal number of product states in an ensemble

decomposition ρ ¼ P

n
i¼1

piαi ⊗ βi is n ¼ rankðΘÞ. If

rankðΘÞ ¼ 1, we have a product state, and so n ¼ 1, while

if rankðΘÞ ¼ 2, we have that EA is a line segment and we

form a decomposition of ρ using the endpoints of this

segment, giving n ¼ 2. The case rankðΘÞ ¼ 3 is slightly

more involved, but follows from the fact any ellipse inside a

tetrahedron inside the unit sphere also lies inside a triangle

in the unit sphere [9,21]. Finally, it is known [20] that any

separable state can be written using four product states,

which covers the case rankðΘÞ ¼ 4. Combining this with

the above results on complete steering provides a natural

geometrical classification of two qubit states, as in Fig. 2.

Quantum discord and ellipsoid orientation.—Quantum

discord has received much attention as a measure of the

quantumness of correlations (see [22] for details) in which

zero discord for one party roughly corresponds to them

possessing a nondisturbing projective measurement. Within

the geometric representation, it is readily seen that ρ has

zero discord for A if and only if EA degenerates to a radial

line segment, while ρ has zero discord for B if and only if

EA is one dimensional and b ¼ 2jcA − aj=lA, where lA is the
length of EA [9].

To illustrate the effect of the alignment of EA on the

entanglement and discord of a state, we can consider a

one-parameter family of states of the form ρðθÞ ¼ 1

4
ð1þ

1

2
σz ⊗ 1þP

ijTijðθÞσi ⊗ σjÞ, for which the ellipsoid

skew varies smoothly with θ while maintaining a constant

volume for EA. Specifically, we have that TðθÞ ¼
RyðθÞKRT

y ðθÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

QAðθÞ
p

, and so RyðθÞ ∈ SOð3Þ gener-

ates states with inequivalent correlations via rotation of

the steering ellipsoid around its own center cA ¼ ð0; 0; 1
2
ÞT,

note that this “internal rotation” is distinct from a global

rotation generated by a local unitary on the state. We

choose K ¼ diagð−ð9=20Þ;−ð3=10Þ;−ð3=10ÞÞ so that

ρðθÞ ≥ 0, for all θ ∈ ½0; πÞ. This family of states illustrates

opposing behavior of the discord and concurrence as a

function of θ, see Fig. 3. The entanglement favors an

orientation in which the longest semiaxis is aligned (radial)

with cA at the point θ ¼ π=2, while discord is maximized

when the short semiaxis is radial, at θ ¼ 0; π [23].

Volume of the ellipsoid.—The expression for the volume

of EA provides a compact and nontrivial relation between
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the steering properties of ρ and the ranks of ρ and ρTB .

The volume of any ellipsoid is proportional to the product

of its semiaxes V ¼ ð4π=3Þs1s2s3. Therefore, EA

has volume VA ¼ ð4π=3Þ ffiffiffiffiffiffiffiffiffiffiffiffiffi

detQA

p
. Using the ellipsoid

matrix in equation (2), which may be rewritten as

VA ¼ ð4π=3Þðj detΘj=ð1 − b2Þ2Þ. However, it turns out

[9] that detΘ ¼ 16ðdet ρTB − det ρÞ; therefore,

VA ¼ 64π

3

j det ρ − det ρTB j
ð1 − b2Þ2 : ð5Þ

The EB volume follows from VA via the simple rela-

tion VB ¼ VAð1 − b2Þ2=ð1 − a2Þ2.
The ellipsoid volume is a nonlinear entanglement

criterion. Specifically, the Werner state on the separable-

entangled boundary has EA being the maximal sphere

volume V
⋆
¼ 4π=81 inscribed inside the largest possible

tetrahedron that can be inscribed inside the unit sphere [25].

We immediately deduce that any state with EA that has

volume V > V
⋆
must be entangled. Note that entangled

states can have V ≤ V
⋆
.

Since V > V
⋆
can only be attained by entangled states,

whilst zero discord states have one-dimensional (degener-

ate) ellipsoids, we see that nonzero volume, or “obesity,”

is strictly stronger than discord but strictly weaker than

entanglement.

Conclusion.—The quantum steering ellipsoid provides a

faithful representation of any two-qubit state and a natural

geometric classification of states. It yields clear and

intuitive understanding into the usual key aspects of

two-qubit states, uncovers surprising new features (such

as the nested tetrahedron condition, skew and obesity, and

incomplete steering) while prompting novel questions,

such as: can we use (4) to define a class of “least-classical”

separable states for fixed (a, b, c)? Can we use the nested

tetrahedron condition to provide a simple construction for

the best separable approximation [28] for a state ρ? What is

the geometric characterization of the possible steering

ellipsoids for an arbitrary two-qubit state? This would

FIG. 3 (color online). Discord (solid curve) and concurrence

(dotted curve) of the state ρðθÞ as a function of the orientation θ of
the ellipsoid. Entanglement is maximized when the major axis is

radial.

FIG. 2 (color online). The classes of steering ellipsoids. Here,

“Separable” (Sep.) and “Entangled” (Ent.) label the type of corre-

lation,while“Incomplete” (Incomp.) and“Complete” (Comp.) label

the type of steering. The large (green) dot is the reduced state in the

respective Bloch sphere. States with EA, being three dimensional,

have nonzero volume (or simply “obesity”), and these are either

entangled or separable. The state ρ is separable if and only if EA fits

insidea tetrahedroninsidetheBlochsphereofA.Forseparablestates,
the set EA can also be two dimensional (a steering pancake), or one

dimensional (a steering needle), or trivially zero dimensional (not

shown).For these cases, steering is either“complete,” if all ensemble

decompositions of a in EA are attainable (when the span of EB

contains 1

2
1), otherwise, the steering is “incomplete.” Zero discord

occurs only for radial steering needles.
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potentially be useful when using ellipsoids to visualize the

results of two-qubit state tomography. In [9], we have

provided a discussion of several extensions to the work

described in this Letter, beyond the two-qubit scenario to

higher dimensional systems.
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